Occurrence, Sources and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Surface Water of Hongze Lake
-
摘要: 洪泽湖是南水北调东线工程重要调蓄湖泊,为了解洪泽湖表层水中全氟和多氟烷基化合物(PFASs)的污染状况,通过超高效液相色谱串联四极杆质谱测定了湖区和入湖河流的表层水15种PFASs的含量,分析比较了不同区域水体中PFASs的浓度与组成,运用HCA法解析了不同污染来源,并应用HQ法对不同人群的健康风险进行评价. 结果表明:①洪泽湖表层水中检出15种PFASs,ΣPFASs浓度为63.4~218.0 ng/L(中位值92.9 ng/L),健康风险较低;②PFASs组分以短链为主,主要污染物为PFPeA,占60.8%;③PFASs在洪泽湖的空间分布呈现由南向北递减的趋势,洪泽湖湖心及过水通道区的PFASs浓度较高;④HCA方法表明,洪泽湖表层水中PFASs主要来自地表径流、橡胶品制造、食品包装和纸类表面处理的工业排放、纺织和金属电镀工业排放和生活污水. 研究显示,洪泽湖表层水中广泛存在多种PFASs,以短链为主,健康风险对居民来说可接受.Abstract: Hongze Lake is an important regulation and storage lake for the eastern route of the South-to-North Water Transfer Project. To understand the pollution status of per- and polyfluoroalkyl substances (PFASs) in the surface water of Hongze Lake, the concentrations of 15 kinds of PFASs in the surface water of the lake area and the rivers entering the lake were determined by ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry. The concentrations and composition of PFASs in different regions were analyzed and compared, and different pollution sources were analyzed by the HCA method. The HQ method was used to evaluate the health risk of different populations. The results showed that: (1) 15 kinds of PFASs were detected in the surface water of Hongze Lake, the concentration of ΣPFASs ranged from 63.4 to 218.0 ng/L (median value was 92.9 ng/L), indicating low health risk. (2) The PFAS components were mainly short chain, and the main pollutant was PFPeA, accounting for 60.8%. (3) The spatial distribution of PFASs in Hongze Lake showed a decreasing trend from south to north, and the concentration of PFASs in the center of Hongze Lake and the water passage area was higher. (4) The HCA method showed that the PFASs in the surface water of Hongze Lake mainly came from surface runoff, industrial discharges from rubber manufacturing, food packaging and paper surface treatment, textile and metal electroplating industrial discharges, and domestic sewage. The research showed that there are many types of PFASs in the surface water of Hongze Lake, mainly in short chain, and the health risk are acceptable to the residents.
-
表 1 表层水中15种目标PFASs的方法检出限和回收率
Table 1. Method detection limits and recoveries of PFASs in the surface water samples
分析物 检出限/(ng/L) 回收率/% 全氟丁酸 (PFBA,C4) 0.987 87.7 全氟戊酸(PFPeA,C5) 0.062 74.5 全氟己酸(PFHxA,C6) 0.007 92.8 全氟庚酸(PFHpA,C7) 0.020 83.5 全氟辛酸(PFOA,C8) 0.008 104.0 全氟壬酸(PFNA,C9) 0.005 94.3 全氟癸酸(PFDA,C10) 0.041 92.6 全氟十一酸(PFUnA,C11) 0.025 75.8 全氟十二酸(PFDoDA,C12) 0.012 90.5 全氟十三酸(PFTrA,C13) 0.082 72.7 全氟十四酸(PFTeA,C14) 0.081 66.2 全氟丁基磺酸(PFBS,C4) 0.211 74.6 全氟己基磺酸 (PFHxS,C6) 0.100 95.3 全氟辛基磺酸(PFOS,C8) 0.015 90.2 全氟癸烷磺酸(PFDS,C10) 0.044 64.8 表 2 我国不同年龄/性别组的平均体重(BW)、饮用水摄入量(DWI)和PFASs每日可接受摄入量(ADI)[25]
Table 2. Mean body weight (BW), the quantity of drinking water intake (DWI), and the acceptable daily intake of PFASs values (ADI) for different age/gender groups in China
年龄 性别 BW/kg DWI/(L/d) 3~6岁 男性 19.63 1.08 女性 18.65 1.08 7~11岁 男性 33.84 1.24 女性 31.94 1.24 12~16岁 男性 55.16 1.73 女性 49.44 1.73 17~19岁 男性 63.43 2.26 女性 52.67 2.26 20~24岁 男性 67.20 2.81 女性 53.80 2.81 25~59岁 男性 70.77 2.81 女性 58.37 2.81 >60岁 男性 67.10 2.81 女性 59.45 2.81 表 3 洪泽湖表层水中PFASs的浓度
Table 3. PFASs concentration in the surface water of Hongze Lake
ng/L 采样点编号 PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA 1 18.2 47.6 4.43 4.54 14.2 1.88 0.241 0.133 2 37.5 45.5 4.64 4.28 18.4 1.70 0.220 0.036 3 18.5 89.7 7.12 3.12 8.98 1.15 0.136 nd 4 12.3 58.9 4.70 3.30 9.30 1.17 0.125 nd 5 17.8 102.5 8.06 3.45 15.5 1.08 0.116 nd 6 16.4 38.7 4.34 3.41 8.90 1.07 0.121 nd 7 23.1 100.9 9.28 3.29 9.14 1.31 0.159 0.029 8 24.3 167.4 11.4 3.13 8.74 1.30 0.175 nd 9 32.5 96.3 11.1 3.16 8.20 1.17 0.125 0.048 10 16.0 57.2 6.25 2.94 8.36 1.11 0.095 nd 11 18.0 66.2 7.54 3.61 15.8 1.12 0.128 0.041 HH 14.4 161.3 11.4 3.11 16.1 1.29 0.262 nd HHXH 7.99 32.0 3.23 3.49 15.1 1.29 0.434 0.052 LSH 13.5 33.4 4.38 4.84 12.3 1.23 0.184 nd SH 13.9 29.0 3.51 4.31 16.8 1.58 0.183 0.076 XBH 7.84 26.9 2.68 3.09 17.0 0.89 0.157 0.243 XHH 21.1 30.7 3.59 3.75 9.61 1.25 0.199 0.039 采样点编号 PFDoDA PFTrDA PFTeDA PFBS PFHxS PFOS PFDS 1 nd nd nd 2.320 0.743 1.130 nd 2 nd <0.0005 nd 2.640 0.902 1.610 nd 3 0.025 nd <0.000 5 0.598 0.281 0.593 <0.000 5 4 0.015 <0.0005 nd 0.555 0.315 0.661 <0.000 5 5 nd <0.0005 0.006 0.643 0.299 0.474 nd 6 nd <0.000 5 0.001 0.726 0.314 0.592 <0.000 5 7 0.020 <0.000 5 0.007 0.606 0.181 0.557 <0.000 5 8 nd <0.000 5 0.001 0.709 0.171 0.687 <0.000 5 9 0.020 <0.000 5 <0.000 5 0.594 nd 0.557 nd 10 0.181 <0.000 5 0.014 nd 0.138 0.648 0.002 11 nd <0.000 5 0.001 0.782 0.246 0.578 <0.000 5 HH nd nd nd 0.554 0.107 0.953 0.003 HHXH 0.066 nd nd 0.660 0.442 0.971 nd LSH nd <0.000 5 <0.000 5 5.230 0.889 0.702 0.002 SH nd <0.000 5 nd 0.793 0.280 0.770 nd XBH 0.430 0.281 0.122 1.780 0.381 1.450 0.186 XHH 0.016 <0.000 5 nd 2.610 0.625 2.200 0.002 注:nd表示低于检出限. 表 4 不同研究区表层水中主要PFASs比较
Table 4. Comparison of PFASs in surface water of different regions
研究区 采样日期 污染物 范围/(ng/L) 平均值/(ng/L) 数据来源 洪泽湖 2020年11月 PFPeA(C5) 26.9~167.4 69.7 本研究 PFBA(C4) 7.84~37.5 18.4 ∑PFASs 63.4~217.9 114.6 骆马湖 2020年10月 PFPeA(C5) 14.5~44 28.64 文献[33] PFOA(C8) 7.6~81.34 24.69 ∑PFASs 46.09~120.33 76.35 太湖 2009年11月 PFOS(C8) 3.6~394 26.5 文献[9] PFOA(C8) 10.6~36.7 21.7 ∑PFASs 1.4~131 43.6 淮河流域 2011年3月 PFOA(C8) 6.2~47 18 文献[15] PFOS(C8) 1.4~25 4.7 ∑PFASs 11~79 28 南四湖 2013年4月 PFOA(C8) 34.9~84.6 61.38 文献[34] PFHpA(C7) 1.34~3.42 2.38 ∑PFASs 38.4~91.4 67.05 小清河 2013年6月 PFOA(C8) 15.3~967611 101.22 文献[35] PFBA(C4) 1.77~34306 89.33 ∑PFASs 32.2~1060295 165.4 白洋淀 2016年3月 PFHxS(C6) 2.07~1688 684 文献[36] PFOA(C8) 13.6~441 147 ∑PFASs 140.5~1828.5 — 长江和秦淮河南京段 2017—2018年 PFOA(C8) 12.5~66 25.8 文献[10] PFHpA(C7) nd~237.8 — ∑PFASs 13.8~274.6 — 韩国六大河流 2010—2012年 PFOS(C8) nd~15.07 3.89 文献[37] PFOA(C8) nd~8.34 2.49 ∑PFASs 1.17~40.63 10.44 南非瓦尔河 2014年9月 PFPeA(C4) 5.7~45 25.8 文献[38] PFOS(C8) 0.4~35.7 5.6 ∑PFASs — 73.43 美国拉斯维加斯过水区 2019年1月、7月 PFHxA(C6) 1.5~187 80.7 文献[39] PFPeA(C4) 2.3~170 52.3 ∑PFASs 3.8~591 223.44 注:nd表示低于检出限,“—”表示文献中没有相关数据. -
[1] PARK M,DANIELS K D,WU S M,et al.Magnetic ion-exchange (MIEX) resin for perfluorinated alkylsubstance (PFAS) removal in groundwater:roles of atomic charges for adsorption[J].Water Research,2020,181:115897. doi: 10.1016/j.watres.2020.115897 [2] 宋博宇,郑哲,吕继涛,等.全氟和多氟烷基类化合物(PFASs)的环境转化与分类管控[J].环境科学研究,2022,35(9):2047-2057. doi: 10.13198/j.issn.1001-6929.2022.06.22SONG B Y,ZHENG Z,LÜ J T,et al.Environmental transformation and classified management of per-and polyfluoroalkyl substances(PFASs)[J].Research of Environmental Sciences,2022,35(9):2047-2057. doi: 10.13198/j.issn.1001-6929.2022.06.22 [3] 刘琰,江秋枫,韩梅,等.红枫湖流域表层沉积物中全氟化合物的污染特征[J].环境科学研究,2015,28(4):517-523.LIU Y,JIANG Q F,HAN M,et al.Contamination profiles of perfluorinated substances in surface sediments of Hongfeng Lake Basin[J].Research of Environmental Sciences,2015,28(4):517-523. [4] BOSSI R,VORKAMP K,SKOV H.Concentrations of organochlorine pesticides,polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland[J].Environmental Pollution,2016,217:4-10. doi: 10.1016/j.envpol.2015.12.026 [5] CHEN R Y,LI G W,YU Y,et al.Occurrence and transport behaviors of perfluoroalkyl acids in drinking water distribution systems[J].Science of the Total Environment,2019,697:134162. doi: 10.1016/j.scitotenv.2019.134162 [6] BAI X L,SON Y.Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada,USA[J].Science of the Total Environment,2021,751:141622. doi: 10.1016/j.scitotenv.2020.141622 [7] BLAINE A C,RICH C D,SEDLACKO E M,et al.Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water[J].Environmental Science & Technology,2014,48(24):14361-14368. [8] LAU C,BUTENHOFF J L,ROGERS J M.The developmental toxicity of perfluoroalkyl acids and their derivatives[J].Toxicology and Applied Pharmacology,2004,198(2):231-241. doi: 10.1016/j.taap.2003.11.031 [9] FANG S H,SHA B,YIN H L,et al.Environment occurrence of perfluoroalkyl acids and associated human health risks near a major fluorochemical manufacturing park in southwest of China[J].Journal of Hazardous Materials,2020,396:122617. doi: 10.1016/j.jhazmat.2020.122617 [10] PREVEDOUROS K,COUSINS I T,BUCK R C,et al.Sources,fate and transport of perfluorocarboxylates[J].ChemInform,2006,37(11):no. [11] 陈业,彭凯,张庆吉,等.洪泽湖浮游动物时空分布特征及其驱动因素[J].环境科学,2021,42(8):3753-3762.CHEN Y,PENG K,ZHANG Q J,et al.Spatio-temporal distribution characteristics and driving factors of zooplankton in Hongze Lake[J].Environmental Science,2021,42(8):3753-3762. [12] BEACH S A,NEWSTED J L,COADY K,et al.Ecotoxicological evaluation of perfluorooctanesulfonate (PFOS)[J].Reviews of Environmental Contamination and Toxicology,2006,186:133-174. [13] HU B,WANG P F,QIAN J,et al.Characteristics,sources,and photobleaching of chromophoric dissolved organic matter (CDOM) in large and shallow Hongze Lake,China[J].Journal of Great Lakes Research,2017,43(6):1165-1172. doi: 10.1016/j.jglr.2017.09.004 [14] WU J,JUNAID M,WANG Z F,et al.Spatiotemporal distribution,sources and ecological risks of perfluorinated compounds (PFCs) in the Guanlan River from the rapidly urbanizing areas of Shenzhen,China[J].Chemosphere,2020,245:125637. doi: 10.1016/j.chemosphere.2019.125637 [15] PAN C G,YU K F,WANG Y H,et al.Perfluoroalkyl substances in the riverine and coastal water of the Beibu Gulf,South China:spatiotemporal distribution and source identification[J].Science of the Total Environment,2019,660:297-305. doi: 10.1016/j.scitotenv.2019.01.019 [16] 陈舒.中国东部地区典型全氟化合物污染地理分布特征及来源辨析[D].北京:中国地质科学院,2016. [17] CAO Y X,CAO X Z,WANG H,et al.Assessment on the distribution and partitioning of perfluorinated compounds in the water and sediment of Nansi Lake,China[J].Environmental Monitoring and Assessment,2015,187(10):611. doi: 10.1007/s10661-015-4831-9 [18] YU N Y,SHI W,ZHANG B B,et al.Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province,China[J].Environmental Science & Technology,2013,47(2):710-717. [19] DONG H K,LU G H,YAN Z H,et al.Distribution,sources and human risk of perfluoroalkyl acids (PFAAs) in a receiving riverine environment of the Nanjing urban area,East China[J].Journal of Hazardous Materials,2020,381:120911. doi: 10.1016/j.jhazmat.2019.120911 [20] 李颖,张祯,程建华,等.2012—2018年洪泽湖水质时空变化与原因分析[J].湖泊科学,2021,33(3):715-726. doi: 10.18307/2021.0308LI Y,ZHANG Z,CHENG J H,et al.Water quality change and driving forces of Lake Hongze from 2012 to 2018[J].Journal of Lake Sciences,2021,33(3):715-726. doi: 10.18307/2021.0308 [21] 陈春锦,徐国宾,段宇.扩大入江、入海泄量对洪泽湖及其上游淮干水位影响分析[J].水利水电技术,2020,51(8):76-85.CHEN C J,XU G B,DUAN Y.Analysis on impacts from increasing discharges into Changjiang River and sea on water levels of Hongze Lake and main stream of Huaihe River[J].Water Resources and Hydropower Engineering,2020,51(8):76-85. [22] 舒卫先,张云舒,韦翠珍.洪泽湖浮游藻类变化动态及影响因素[J].水资源保护,2016,32(5):115-122. doi: 10.3880/j.issn.1004-6933.2016.05.022SHU W X,ZHANG Y S,WEI C Z.Seasonal dynamics of and factors in phytoplankton in Hongze Lake[J].Water Resources Protection,2016,32(5):115-122. doi: 10.3880/j.issn.1004-6933.2016.05.022 [23] 吴天浩,刘劲松,邓建明,等.大型过水性湖泊:洪泽湖浮游植物群落结构及其水质生物评价[J].湖泊科学,2019,31(2):440-448. doi: 10.18307/2019.0213WU T H,LIU J S,DENG J M,et al.Community structure of phytoplankton and bioassessment of water quality in a large water-carrying lake,Lake Hongze[J].Journal of Lake Sciences,2019,31(2):440-448. doi: 10.18307/2019.0213 [24] ZHENG B H,LIU X L,GUO R,et al.Distribution characteristics of poly- and perfluoroalkyl substances in the Yangtze River Delta[J].Journal of Environmental Sciences (China),2017,61:97-109. doi: 10.1016/j.jes.2017.09.015 [25] LU Y,HUA Z L,CHU K J,et al.Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake,East China[J].Environmental Research,2021,194:110733. doi: 10.1016/j.envres.2021.110733 [26] THOMAIDI V S,TSAHOURIDOU A,MATSOUKAS C,et al.Risk assessment of PFASs in drinking water using a probabilistic risk quotient methodology[J].Science of the Total Environment,2020,712:136485. doi: 10.1016/j.scitotenv.2019.136485 [27] UNEP O.Global PFC group synthesis paper on per- and polyfluorinated chemicals (PFCs)[EB/OL].Paris:OECD,(2020-10-10)[2022-11-15]. https://www.oecd.org/chemicalsafety/risk-management/synthesis-paper-on-per-and-polyfluorinated-chemicals.htm,2020-10-10. [28] SO M K,MIYAKE Y,YEUNG W Y,et al.Perfluorinated compounds in the Pearl River and Yangtze River of China[J].Chemosphere,2007,68(11):2085-2095. doi: 10.1016/j.chemosphere.2007.02.008 [29] DASU K,XIA X Y,SIRIWARDENA D,et al.Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment[J].Journal of Environmental Management,2022,301:113879. doi: 10.1016/j.jenvman.2021.113879 [30] WANG N,LIU J X,BUCK R C,et al.6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants[J].Chemosphere,2011,82(6):853-858. doi: 10.1016/j.chemosphere.2010.11.003 [31] LAM N H,CHO C R,LEE J S,et al.Perfluorinated alkyl substances in water,sediment,plankton and fish from Korean rivers and lakes:a nationwide survey[J].Science of the Total Environment,2014,491/492:154-162. doi: 10.1016/j.scitotenv.2014.01.045 [32] WEI C L,WANG Q,SONG X,et al.Distribution,source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J].Ecotoxicology and Environmental Safety,2018,152:141-150. doi: 10.1016/j.ecoenv.2018.01.039 [33] 黄家浩,吴玮,黄天寅,等.骆马湖表层水和沉积物中全氟化合物赋存特征、来源及健康风险评估[J].环境科学,2022,43(7):3562-3574.HUANG J H,WU W,HUANG T Y,et al.Characteristics,sources,and risk assessment of perlyfluoroalkyl substances in surface water and sediment of Luoma Lake[J].Environmental Science,2022,43(7):3562-3574. [34] XIAO S K,WU Q,PAN C G,et al.Distribution,partitioning behavior and potential source of legacy and alternative per- and polyfluoroalkyl substances (PFASs) in water and sediments from a subtropical Gulf,South China Sea[J].Environmental Research,2021,201:111485. doi: 10.1016/j.envres.2021.111485 [35] 李颖.洪泽湖水质演变趋势与驱动因素[D].重庆:西南大学,2021. [36] ZHANG Y,MENG W,GUO C S,et al.Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake,China[J].Chemosphere,2012,88(11):1292-1299. doi: 10.1016/j.chemosphere.2012.03.103 [37] YOUNG C J,FURDUI V I,FRANKLIN J,et al.Perfluorinated acids in Arctic snow:new evidence for atmospheric formation[J].Environmental Science & Technology,2007,41(10):3455-3461. [38] 张鸿,赵亮,何龙,等.不同功能区表层土中全氟化合物污染指纹及其来源解析[J].环境科学,2014,35(7):2698-2704.ZHANG H,ZHAO L,HE L,et al.Pollution fingerprints and sources of perfluorinated compounds in surface soil of different functional areas[J].Environmental Science,2014,35(7):2698-2704. [39] RENNER R.The long and the short of perfluorinated replacements[J].Environmental Science & Technology,2006,40(1):12-13. [40] 姚谦,田英.中国人群全氟化合物健康风险评估研究进展[J].上海交通大学学报(医学版),2021,41(6):803-808.YAO Q,TIAN Y.Research progress in health risk assessment of perfluorinated compounds among Chinese population[J].Journal of Shanghai Jiao Tong University (Medical Science),2021,41(6):803-808. [41] US Environmental Protection Agency.Lifetime drinking water health advisories for four perfluoroalkyl substances (PFAS)[EB/OL].Washington DC:EPA,(2022-06)[2022-11-15]. https://www.epa.gov/system/files/documents/2022-06/PFAS%20Health%20Advisories%20Public%20Webinar%20FINAL%20FINAL.pdf. [42] Miljøministeriet.Bekendtgørelse om vandkvalitet og tilsyn med vandforsyningsanlæg[EB/OL].Copenhagen:Danish Environmental Protection Agency,(2021-11-26)[2022-11-15]. https://www.retsinformation.dk/eli/lta/2021/2361. -