Effects of Submerged Macrophytes on Phosphorus Transport between Overlying Water and Sediment in the Growth Period under Static and Flowing Conditions
-
摘要: 沉水植物生长可有效降低河湖内源磷污染. 为探究沉水植物在静水(v=0 m/s)和流水(v=0.10 m/s)条件下对上覆水和沉积物磷迁移影响,选取苦草(Vallisneria natans)和黑藻(Hydrilla verticillata)为研究对象,测定其生长期间上覆水、沉积物中各形态磷含量和沉水植物生物量,并监测环境因子变化. 结果表明:①苦草和黑藻生长期间上覆水和沉积物中各形态磷含量总体呈下降趋势,并在一定时期维持在较低水平. 相同流速下黑藻对上覆水磷的吸收效果优于苦草,苦草能抑制沉积物表面磷释放. ②试验20 d后,苦草和黑藻组上覆水各形态磷浓度显著低于对照组,试验结束时静水苦草组、静水黑藻组、流水苦草组和流水黑藻组上覆水TP(总磷)浓度相比对照组分别下降了0.13、0.15、0.19和0.25 mg/L. 静水条件下沉水植物以降低上覆水中DTP(溶解性总磷)为主,流水条件下以减少DTP和PP(颗粒磷)为主. ③试验结束时,苦草组和黑藻组沉积物TP含量在静水条件下分别下降了91.78、93.25 mg/kg,流水条件下分别下降了83.51、81.03 mg/kg;NaOH-P(NaOH提取磷)含量在静水条件下分别下降了57.76、55.86 mg/kg,流水条件下分别下降了24.52、19.24 mg/kg,沉积物从轻度污染逐步转为未受污染. ④试验50 d,苦草生物量在静水和流水条件下分别增加了353.08和402.03 g,黑藻生物量分别增加了415.00和477.08 g,沉水植物生物增长量在流水条件下显著高于静水组. 研究显示,苦草、黑藻生长均能有效吸收磷,在流水条件下可促进沉水植物生长和磷的吸收,同时改变了上覆水溶解氧(DO)浓度和pH等环境因子,从而影响磷在上覆水和沉积物的迁移及磷形态的转变.Abstract: Submerged macrophytes can effectively reduce the internal loading of phosphorus (P) in lakes and rivers. To investigate the effects of submerged macrophytes on P migration and transformation in overlying water and sediment under static (v=0 m/s) and flowing (v=0.10 m/s) conditions, Vallisneria natans and Hydrilla verticillata were tested. The concentrations of different P forms in overlying water, sediment, and the biomass of submerged macrophytes during the growth period were measured. Changes in environmental factors were simultaneously monitored. The results showed that: (1) During the growth period of V. natans and H. verticillata, the concentrations of different P forms in the overlying water and sediment tended to decrease and maintain low over a period of a time. The absorption of P in overlying water by H. verticillata was better than that by V. natans, while V. natans inhibited the release of P from the sediment surface. (2) On the 20th day of the experiment, the concentrations of all P forms in the overlying water in the V. natans and H. verticillata groups were significantly lower than those in the control group. At the end of the experiment, the concentrations of total P (TP) in overlying water of the static V. natans, static H. verticillata, flowing V. natans, and flowing H. verticillata groups decreased by 0.13, 0.15, 0.19, and 0.25 mg/L, respectively, compared with that of the control group. In the static experimental group, the decrease of dissolved TP (DTP) was observed, while the decrease of both DTP and particulate P (PP) were seen in the flowing experimental group. (3) The TP concentrations in the V. natans and H. verticillata groups decreased by 91.78 and 93.25 mg/kg under static conditions and 83.51 and 81.03 mg/kg under flowing conditions, respectively. Meanwhile, the concentrations of NaOH extracted P (NaOH-P) in the V. natans and H. verticillata groups decreased by 57.76 and 55.86 mg/kg under static conditions and 24.52 and 19.24 mg/kg under flowing conditions, respectively. At the end of the experiment, the sediment had changed from slightly polluted to unpolluted in the experimental group in the experiment. (4) On the 50th day of the experiment, the biomass of V. natans increased by 353.08 and 402.03 g under static and flowing conditions, respectively, while the biomass of H. verticillata increased by 415.00 and 477.08 g, respectively. The growth of submerged macrophytes under flowing conditions was significantly better than that under static conditions. The results showed that V. natans and H. verticillate can absorb P during the growth period, and flowing conditions can promote the growth and P uptake of submerged macrophytes. The associated changes in the dissolved oxygen (DO), pH, and other environmental factors in the overlying water are attributable to P transport across the sediment-water interface and the P transformation.
-
Key words:
- hydrodynamics /
- submerged macrophytes /
- overlying water /
- sediment /
- phosphorous form
-
表 1 SMT分级提取方法
Table 1. Phosphorus sequential extraction by SMT
磷形态 提取方法 TP 称0.2 g沉积物于450 ℃下灰化3 h,加入20 mL 3.5 mol/L的HCl,振荡16 h,离心8 min,测上清液磷浓度 IP 称0.2 g沉积物加入20 mL 1 mol/L的HCl,振荡16 h,离心8 min,测定上清液磷浓度 OP 取IP测定过程中残渣含量,450 ℃下灰化1 h,加入20 mL 1 mol/L的HCl,振荡16 h,离心8 min,测定上清液磷浓度 NaOH-P 称取0.2 g沉积物样品,加入20 mL 1 mol/L的NaOH,振荡16 h,离心8 min,取10 mL上清液加入4 mL 3.5 mol/L的HCl,静置16 h后离心8 min,测定上清液磷浓度 HCl-P 取NaOH-P测定过程中残渣含量,加入20 mL 1 mol/L的HCl,振荡16 h,离心8 min,测定上清液磷浓度 表 2 沉积物和上覆水初始理化指标
Table 2. Initial physicochemical characteristics of sediment and overlying water
样品 理化指标 单位 初始值1) 处理值2) 沉积物 TP含量 mg/kg 745±7.32 725.36±9.45 TN含量 mg/kg 3578±7.37 3527±15.23 上覆水 TP浓度 mg/L 0.03±0.01 0.04±0.00 PP浓度 mg/L 0.01±0.01 0.01±0.00 DTP浓度 mg/L 0.02±0.00 0.02±0.01 SRP浓度 mg/L 0.01±0.00 0.01±0.00 DOP浓度 mg/L 0.01±0.00 0.01±0.00 TN浓度 mg/L 2.50±0.23 2.60±0.41 NH4+-N浓度 mg/L 0.53±0.08 0.56±0.03 NO3−-N浓度 mg/L 0.27±0.12 0.25±0.25 DO浓度 mg/L 4.42±0.34 4.22±0.15 pH — 7.34±0.52 7.56±0.41 注:n=3. 数据为平均值±标准偏差. 1)初始值为其背景值;2)处理值为干燥和曝晒处理后值. 表 3 主体内效应检验
Table 3. Test of between-subjects effects
交互效应组 上覆水各形态磷浓度 沉积物各形态磷浓度 测量次数×试验组 P>0.05 P>0.05 流速×沉水植物组 P>0.05 P>0.05 注: P>0.05表示交互效应不显著. 表 4 水体各形态磷浓度与环境因子及生物量之间皮尔森相关系数矩阵
Table 4. Pearson correlation coefficient matrix among phosphorus in overlaying water, environmental factors and biomass of submerged macrophytes
试验组 指标 TP浓度 DTP浓度 SRP浓度 PP浓度 DOP浓度 pH DO浓度 生物量 静水苦草组 TP浓度 1 DTP浓度 0.88** 1 SRP浓度 0.85* 0.90** 1 PP浓度 0.57 0.21 0.45 1 DOP浓度 0.64 0.82* 0.49 −0.16 1 pH 0.68 0.55 0.73 0.82* 0.15 1 DO浓度 0.85* 0.90** 0.94** 0.52 0.56 0.85 1 生物量 0.85* 0.77* 0.85* 0.74 0.42 0.94** 0.94** 1 静水黑藻组 TP浓度 1 DTP浓度 0.70 1 SRP浓度 0.63 0.73 1 PP浓度 0.53 −0.19 −0.13 1 DOP浓度 0.48 0.82* 0.21 −0.17 1 pH 0.97** 0.67 0.50 0.60 0.55 1 DO浓度 0.93** 0.59 0.36 0.67 0.54 0.99** 1 生物量 0.90** 0.47 0.29 0.77 0.42 0.97** 0.99** 1 流水苦草组 TP浓度 1 DTP浓度 0.70 1 SRP浓度 0.66 0.19 1 PP浓度 0.82* 0.88** 0.25 1 DOP浓度 0.35 0.88** −0.30 0.73 1 pH 0.85* 0.96** 0.41 0.90** 0.74 1 DO浓度 0.86* 0.83* 0.55 0.77* 0.54 0.91** 1 生物量 0.88** 0.93** 0.36 0.93** 0.73 0.97** 0.93** 1 流水黑藻组 TP浓度 1 DTP浓度 0.74 1 SRP浓度 0.53 0.80* 1 PP浓度 0.90** 0.92* 0.70 1 DOP浓度 0.73 0.92** 0.86* 0.86* 1 pH 0.80* 0.46 0.68 0.63 0.05 1 DO浓度 0.83* 0.57 0.76* 0.70 0.23 0.98** 1 生长量 0.76* 0.32 0.59 0.52 −0.09 0.92** 0.98** 1 注:磷浓度为对照组与试验组磷浓度之差;*表示相关性在0.05水平上显著(双侧检验);**表示相关性在0.01水平上显著(双侧检验). 表 5 沉积物各形态磷之间皮尔森关系系数矩阵
Table 5. Pearson correlation coefficient matrix between different phosphorus forms in sediment
试验组 指标 TP含量 IP含量 OP含量 NaOH-P含量 HCl-P含量 静水苦草组 TP含量 1 IP含量 0.998* 1 OP含量 0.986 0.991 1 NaOH-P含量 0.999* 1.000** 0.992 1 HCl-P含量 −0.971 −0.963 −0.918 −0.961 1 静水黑藻组 TP含量 1 IP含量 0.999* 1 OP含量 0.987 0.979 1 NaOH-P含量 1.000* 0.998** 0.981 1 HCl-P含量 −0.885 −0.863 −0.949 −0.870 1 流水苦草组 TP含量 1 IP含量 0.998* 1 OP含量 0.966 0.949 1 NaOH-P含量 0.999* 0.995 0.976 1 HCl-P含量 −0.999* −0.994 −0.977 −1.000** 1 流水黑藻组 TP含量 1 IP含量 1.000** 1 OP含量 0.951 0.951 1 NaOH-P含量 1.000** 1.000* 0.956 1 HCl-P含量 −0.999* −0.999* −0.939 −0.999* 1 注:*表示相关性在0.05水平上显著(双侧检验);**表示相关性在0.01水平上显著(双侧检验). -
[1] 马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-578. doi: 10.3969/j.issn.1004-8227.2002.06.017MA J A,LI H Q.Preliminary discussion on eutrophication status of lakes,reservoirs and rivers in China and overseas[J].Resources and Environment in the Yangtze Basin,2002,11(6):575-578. doi: 10.3969/j.issn.1004-8227.2002.06.017 [2] ABDALLAH M A M.Potential for internal loading by phosphorus based on sequential extraction of surficial sediment in a shallow Egyptian Lake[J].Environmental Monitoring and Assessment,2011,178(1):203-212. [3] LI Y,WANG L G,YAN Z W,et al.Effectiveness of dredging on internal phosphorus loading in a typical aquacultural lake[J].Science of the Total Environment,2020,744:140883. doi: 10.1016/j.scitotenv.2020.140883 [4] 范中亚,王文才,蒋锦刚,等.华阳河湖群沉积物内源磷释放风险及控制策略[J].环境科学研究,2020,33(5):1170-1178.FAN Z Y,WANG W C,JIANG J G,et al.Risk and control strategy of internal phosphorus release from sediments in Huayang lakes[J].Research of Environmental Sciences,2020,33(5):1170-1178. [5] HILT S,ALIRANGUES NUÑEZ M M,BAKKER E S,et al.Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes[J].Frontiers in Plant Science,2018,9:194. doi: 10.3389/fpls.2018.00194 [6] CARPENTER S R,LODGE D M.Effects of submersed macrophytes on ecosystem processes[J].Aquatic Botany,1986,26:341-370. doi: 10.1016/0304-3770(86)90031-8 [7] van DONK E,van de BUND W J.Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities:allelopathy versus other mechanisms[J].Aquatic Botany,2002,72(3/4):261-274. [8] ZHOU Y W,ZHOU X H,HAN R M,et al.Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes[J].Science of the Total Environment,2017,580:1421-1428. doi: 10.1016/j.scitotenv.2016.12.108 [9] 徐杰,何萍,刘存歧,等.白洋淀沉水植物群落时空变化及影响因素[J].环境科学研究,2022,35(7):1658-1669.XU J,HE P,LIU C Q,et al.Spatial-temporal variations of submersed macrophyte communities and their influencing factors in Lake Baiyangdian[J].Research of Environmental Sciences,2022,35(7):1658-1669. [10] BAI G L,ZHANG Y,YAN P,et al.Spatial and seasonal variation of water parameters,sediment properties,and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou West Lake in China:submerged macrophyte distribution influenced by environmental variables[J].Water Research,2020,186:116379. doi: 10.1016/j.watres.2020.116379 [11] MANOLAKI P,MOURIDSEN M B,NIELSEN E,et al.A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms[J].Journal of Environmental Management,2020,274:111181. doi: 10.1016/j.jenvman.2020.111181 [12] LIU Z S,ZHANG Y,YAN P,et al.Synergistic control of internal phosphorus loading from eutrophic lake sediment using MMF coupled with submerged macrophytes[J].Science of the Total Environment,2020,731:138697. doi: 10.1016/j.scitotenv.2020.138697 [13] 周楠楠,王赢,高顺峰,等.两种不同根系特征沉水植物对沉积物剖面不同形态磷的影响[J].环境科学学报,2021,41(6):2222-2228.ZHOU N N,WANG Y,GAO S F,et al.Effects of two submerged macrophytes with different root systems on different fractions of phosphorus in sediment profiles[J].Acta Scientiae Circumstantiae,2021,41(6):2222-2228. [14] JANAUER G A,SCHMIDT-MUMM U,SCHMIDT B.Aquatic macrophytes and water current velocity in the Danube River[J].Ecological Engineering,2010,36(9):1138-1145. doi: 10.1016/j.ecoleng.2010.05.002 [15] 吕兴菊,任婧,高登成,等.湖泊水动力变化对沉水植物的影响研究综述[J].生态学报,2022,42(10):4245-4254.LÜ X J,REN J,GAO D C,et al.Impacts of hydrodynamic variation on submerged macrophytes in lakes:a review[J].Acta Ecologica Sinica,2022,42(10):4245-4254. [16] LI Q,GU P,JI X Y,et al.Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment:plant structural,physicochemical and microbial properties[J].Ecotoxicology and Environmental Safety,2020,189:109990. doi: 10.1016/j.ecoenv.2019.109990 [17] 刘哲哲,倪兆奎,刘思儒,等.湖泊沉积物有机磷释放动力学特征及水质风险[J].环境科学,2022,43(6):3058-3065.LIU Z Z,NI Z K,LIU S R,et al.Kinetic release characteristics of organic phosphorus of sediment-water and water quality risks[J].Environmental Science,2022,43(6):3058-3065. [18] HORPPILA J,NURMINEN L.Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake[J].Hydrobiologia,2005,545(1):167-175. doi: 10.1007/s10750-005-2677-9 [19] 叶青青,官宝红,李君.杭州城市内河底泥磷污染与磷释放水力模拟[J].环境科学,2009,30(5):1351-1356. doi: 10.3321/j.issn:0250-3301.2009.05.016YE Q Q,GUAN B H,LI J.Phosphorus pollution of the sediment from Hangzhou urban river and hydraulic simulation of phosphorus release[J].Environmental Science,2009,30(5):1351-1356. doi: 10.3321/j.issn:0250-3301.2009.05.016 [20] 刘杰,郑西来,陈蕾,等.水库沉积物氮磷释放通量及释放规律研究[J].水利学报,2012,43(3):339-343.LIU J,ZHENG X L,CHEN L,et al.Study on flux and release law of nitrogen and phosphorus of sediment in reservoir[J].Journal of Hydraulic Engineering,2012,43(3):339-343. [21] RUBAN V,LÓPEZ-SÁNCHEZ J F,PARDO P,et al.Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments:a synthesis of recent works[J].Fresenius' Journal of Analytical Chemistry,2001,370(2):224-228. [22] CHOUDHURY M I,YANG X,HANSSON L A.Stream flow velocity alters submerged macrophyte morphology and cascading interactions among associated invertebrate and periphyton assemblages[J].Aquatic Botany,2015,120:333-337. doi: 10.1016/j.aquabot.2014.09.013 [23] MADSEN J D,CHAMBERS P A,JAMES W F,et al.The interaction between water movement,sediment dynamics and submersed macrophytes[J].Hydrobiologia,2001,444(1):71-84. [24] BIGGS B J F.Hydraulic habitat of plants in streams[J].Regulated Rivers:Research & Management,1996,12(2/3):131-144. [25] LI W,LI Y J,ZHONG J Y,et al.Submerged macrophytes exhibit different phosphorus stoichiometric homeostasis[J].Frontiers in Plant Science,2018,9:1207. doi: 10.3389/fpls.2018.01207 [26] 汪偲,侯泽英,储昭升,等.藻华高风险期微囊藻在洱海中的垂直分布特征及其影响因素[J].环境科学研究,2018,31(7):1250-1257.WANG C,HOU Z Y,CHU Z S,et al.Vertical distribution of Microcystis and its influence factors in Lake Erhai during high risk period for algal bloom[J].Research of Environmental Sciences,2018,31(7):1250-1257. [27] ZHANG Q,LIU Y P,LUO F L,et al.Does species richness affect the growth and water quality of submerged macrophyte assemblages?[J].Aquatic Botany,2019,153:51-57. doi: 10.1016/j.aquabot.2018.11.006 [28] 黄威,刘星,赵丽,等.岱海沉积物内源磷释放特征的研究[J].环境科学研究,2020,33(9):2094-2102.HUANG W,LIU X,ZHAO L,et al.Release characteristics of phosphorus in sediment from Daihai Lake[J].Research of Environmental Sciences,2020,33(9):2094-2102. [29] 王立志,王国祥,俞振飞,等.沉水植物生长期对沉积物和上覆水之间磷迁移的影响[J].环境科学,2012,33(2):385-392.WANG L Z,WANG G X,YU Z F,et al.Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in the growth period[J].Environmental Science,2012,33(2):385-392. [30] 金树权,周金波,包薇红,等.5种沉水植物的氮、磷吸收和水质净化能力比较[J].环境科学,2017,38(1):156-161.JIN S Q,ZHOU J B,BAO W H,et al.Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes[J].Environmental Science,2017,38(1):156-161. [31] 黄蓉,杨文斌,程俊杰,等.菹草和伊乐藻对水-沉积物界面磷迁移转化的影响[J].环境科学研究,2019,32(7):1204-1212.HUANG R,YANG W B,CHENG J J,et al.Effects of Potamogeton crispus L. and Elodea nuttallii on phosphorus migration and transformation between water and sediment[J].Research of Environmental Sciences,2019,32(7):1204-1212. [32] ALLEN W C,HOOK P B,BIEDERMAN J A,et al.Temperature and wetland plant species effects on wastewater treatment and root zone oxidation[J].Journal of Environmental Quality,2002,31(3):1010-1016. doi: 10.2134/jeq2002.1010 [33] 王永平,朱广伟,洪大林,等.沉水植物对沉积物-水界面环境特征的影响[J].环境科学研究,2012,25(10):1133-1139.WANG Y P,ZHU G W,HONG D L,et al.Effects of macrophytes on the environmental characteristics of sediment-water interface[J].Research of Environmental Sciences,2012,25(10):1133-1139. [34] MEI X Q,YANG Y,TAM N F Y,et al.Roles of root porosity,radial oxygen loss,Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater[J].Water Research,2014,50:147-159. doi: 10.1016/j.watres.2013.12.004 [35] JIN X C,WANG S R,CHU J Z,et al.Organic phosphorus in shallow lake sediments in middle and lower reaches of the Yangtze River area in China[J].Pedosphere,2008,18(3):394-400. doi: 10.1016/S1002-0160(08)60030-2 [36] LI Y,WANG L G,CHAO C X,et al.Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading[J].Environmental Pollution,2021,268:115949. doi: 10.1016/j.envpol.2020.115949 [37] LEWANDOWSKI J,SCHAUSER I,HUPFER M.Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany)[J].Water Research,2003,37(13):3194-3204. doi: 10.1016/S0043-1354(03)00137-4 [38] JIN X D,HE Y L,KIRUMBA G,et al.Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River Estuary reservoir[J].Ecological Engineering,2013,55:62-66. doi: 10.1016/j.ecoleng.2013.02.001 [39] Ontario Ministry of the Environment (OME). Guidelines for identifying, assessing and managing contaminated sediments in Ontario[R].Toronto:OME,2012. [40] 李大鹏,黄勇,李伟光.底泥再悬浮条件下pH值对磷的形态及其生物有效性的影响[J].农业环境科学学报,2008,27(4):1540-1544.LI D P,HUANG Y,LI W G.Effect of different pH values on forms and bioavailability of sedimentary phosphorus under the conditions of sediments re-suspension[J].Journal of Agro-Environment Science,2008,27(4):1540-1544. [41] 耿楠,王沛芳,王超,等.动、静水条件下苦草(Vallisneria natans L.)对沉积物磷释放的影响[J].湖泊科学,2015,27(4):637-642. doi: 10.18307/2015.0411GENG N,WANG P F,WANG C,et al.The impact of Vallisneria natans L. on the release of phosphorus from sediment under static and hydrodynamic conditions[J].Journal of Lake Sciences,2015,27(4):637-642. doi: 10.18307/2015.0411 [42] 蔡顺智,李大鹏,唐鑫煜,等.不同扰动下外源磷在形态磷间的分布规律[J].环境科学,2017,38(11):4607-4614.CAI S Z,LI D P,TANG X Y,et al.Distribution of external phosphorus in the sedimentary phosphorus forms under different disturbances[J].Environmental Science,2017,38(11):4607-4614. -