Performance of an Integrated Two-Phase Anaerobic Reactor Based on Bionics
-
摘要: 反刍动物瘤胃对纤维素类物质具有强大的消化能力,在厌氧发酵领域备受关注. 为了增加秸秆等物质的资源化利用途径,本文基于仿生学的原理,设计了一体式两相新型厌氧反应器,并以秸秆、猪粪和河道底泥为底物进行干式共发酵,研究了该反应器的水解酸化和产甲烷性能. 结果表明:反应器在1~6 d的产气速率较快,单位体积累积产气量的增长速率为366.87 mL/d,最快产气速率为22.3 mL/(g·d)(以每g挥发性固体每天产生的沼气体积计);发酵过程挥发性固体的产气量为0.13 L/g;发酵过程中pH在7.3~8.2之间变化,pH与挥发性脂肪酸(VFAs)浓度整体上呈现相反的变化趋势,说明反应器内未发生氨抑制现象;第1~21天,主反应室产生的溶解性化学需氧量(SCOD)在次反应室中被充分利用,实现了水解过程和水解产物利用过程的分离;厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)是反应器中最丰富的两个菌门,均具有水解和产酸能力. 基于瘤胃设计的反应器既具有不同水解程度底物分层和持续吸收VFAs的效果,又有上部水解和产酸、下部产甲烷的一体式两相厌氧发酵效果. 研究显示,该反应器可有效延长固体物质的停留时间,提高底物的水解酸化效率,减少反应器内局部酸抑制现象的发生.Abstract: Lignocellulosic biomass can be effectively digested in animal rumen, which makes rumen-derived anaerobic digestion an attractive strategy. In order to improve the utilization efficiency of straw and other materials, this study designed an integrated two-phase anaerobic reactor based on the principles of bionics, and investigated its hydrolysis acidification and methane-producing capability by feeding straw, pig manure and river sediment as substrates. The results indicated that the biogas production rate in 1-6 d was fast, and the increasing rate of cumulative gas production was 366.87 mL/(L·d). The fastest biogas production rate in this period was 22.3 mL/(g·d) (measured by the volume of biogas produced per gram of volatile solids per day), and the cumulative gas production per gram volatile solid was 0.13 L. The pH value ranged from 7.3 to 8.2, and showed an overall opposite variation trend with the concentration of volatile fatty acids (VFAs), indicating that ammonia inhibition did not occur in the reactor. The soluble chemical oxygen demand (SCOD) produced by main reaction chamber was substantially utilized in secondary reaction chamber in 1-21 d, realizing the separation of hydrolysis process and the utilization process of hydrolysis products. In the reactor, Firmicutes and Bacteroidetes were the two most abundant bacterial phyla with hydrolysis and acid-production abilities. The reactor not only had the functions of substrate stratification and continuous absorption of VFAs, but also had the upper layer hydrolysis and acid production and lower layer methane production. Therefore, the reactor can effectively extend the solid residence time, improve the hydrolysis and acidification efficiencies, and eliminate partial acid inhibition in the reactor.
-
表 1 底物的基本特性
Table 1. Basic properties of the substrates
底物 TS含量/% VS含量/% VS含量/TS含量 化学需氧量/(mg/g) 总氮含量/(mg/g) 碳氮比 含水率/% 秸秆 92.0 78.9 0.86 3 375.50 127.66 39.66 8.0 猪粪 55.9 46.0 0.82 1 490.61 207.98 10.75 44.1 底泥 33.3 9.7 0.29 244.05 17.58 20.82 66.7 表 2 高通量测序与细菌群落多样性结果
Table 2. Results of high throughput sequencing and bacterial community diversity
样品 Sobs指数 Shannon-Wiener指数 Simpson指数 Ace指数 Chao指数 覆盖度 发酵初始阶段污泥 26 1.09 0.56 27.47 26 0.999 958 发酵结束阶段污泥 22 1.51 0.36 22.00 22 1.000 000 生物膜 24 0.90 0.64 25.60 25 0.999 938 -
[1] KARKI R,CHUENCHART W,SURENDRA K C,et al.Anaerobic co-digestion:current status and perspectives[J].Bioresource Technology,2021,330:125001. doi: 10.1016/j.biortech.2021.125001 [2] KONG Z,LI L,XUE Y,et al.Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater:a review[J].Journal of Cleaner Production,2019,231:913-927. doi: 10.1016/j.jclepro.2019.05.233 [3] MCCARTY P L.The development of anaerobic treatment and its future[J].Water Science and Technology,2001,44(8):149-156. doi: 10.2166/wst.2001.0487 [4] 饶玲华.餐厨垃圾厌氧发酵产沼气规律研究[D].长沙:中南大学,2011:7-8. [5] 林海龙,李巧燕,李永峰,等.厌氧环境微生物学[M].哈尔滨:哈尔滨工业大学出版社,2014. [6] 刘永红.工业厌氧颗粒污泥自固定化过程中的流体力学[M].西安:西安交通大学出版社,2011. [7] SEGHEZZO L,ZEEMAN G,van LIER J B,et al.A review:the anaerobic treatment of sewage in UASB and EGSB reactors[J].Bioresource Technology,1998,65(3):175-190. doi: 10.1016/S0960-8524(98)00046-7 [8] CHIUMENTI A,da BORSO F,LIMINA S.Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant:efficiency and comparison with wet fermentation[J].Waste Management,2018,71:704-710. doi: 10.1016/j.wasman.2017.03.046 [9] AKINBOMI J G,PATINVOH R J,TAHERZADEH M J.Current challenges of high-solid anaerobic digestion and possible measures for its effective applications:a review[J].Biotechnology for Biofuels and Bioproducts,2022,15(1):1-13. doi: 10.1186/s13068-021-02095-6 [10] SAMER M,ABDELSALAM E M,MOHAMED S,et al.Impact of photoactivated cobalt oxide nanoparticles addition on manure and whey for biogas production through dry anaerobic co-digestion[J].Environment,Development and Sustainability,2022,24(6):7776-7793. doi: 10.1007/s10668-021-01757-7 [11] DĄBROWSKA M,ŚWIĘTOCHOWSKI A,LISOWSKI A.Physicochemical properties and agglomeration parameters of biogas digestate with addition of calcium carbonate[J].Agronomy Research,2019,17(4):1568-1576. [12] ZHU Q H,LI X G,LI G W,et al.Enhanced bioenergy production in rural areas:synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw[J].Journal of Cleaner Production,2020,260:121164. doi: 10.1016/j.jclepro.2020.121164 [13] MEYER G,OKUDOH V,van RENSBURG E.A rumen based anaerobic digestion approach for lignocellulosic biomass using barley straw as feedstock[J].South African Journal of Chemical Engineering,2022,41:98-104. doi: 10.1016/j.sajce.2022.05.005 [14] BHUJBAL S K,GHOSH P,VIJAY V K,et al.Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products[J].Science of the Total Environment,2022,814:152773. doi: 10.1016/j.scitotenv.2021.152773 [15] YUE Z B,LI W W,YU H Q.Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass[J].Bioresource Technology,2013,128:738-744. doi: 10.1016/j.biortech.2012.11.073 [16] HOOVER W H,CROOKER B A,SNIFFEN C J.Effects of differential solid-liquid removal rates on Protozoa numbers in continous cultures of rumen contents[J].Journal of Animal Science,1976,43(2):528-534. doi: 10.2527/jas1976.432528x [17] TEATHER R M,SAUER F D.A naturally compartmented rumen simulation system for the continuous culture of rumen bacteria and protozoa[J].Journal of Dairy Science,1988,71(3):666-673. doi: 10.3168/jds.S0022-0302(88)79605-8 [18] MUETZEL S,LAWRENCE P,HOFFMANN E M,et al.Evaluation of a stratified continuous rumen incubation system[J].Animal Feed Science and Technology,2009,151(1/2):32-43. [19] NGUYEN A Q,NGUYEN L N,ABU HASAN JOHIR M,et al.Derivation of volatile fatty acid from crop residues digestion using a rumen membrane bioreactor:a feasibility study[J].Bioresource Technology,2020,312:123571. doi: 10.1016/j.biortech.2020.123571 [20] BAYANÉ A,GUIOT S R.Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass[J].Reviews in Environmental Science and Bio/Technology,2011,10(1):43-62. doi: 10.1007/s11157-010-9209-4 [21] 郝鑫,苏婧,孙源媛,等.餐厨垃圾与污泥、秸秆不同配比联合厌氧发酵对产气性能的影响[J].环境科学研究,2020,33(1):235-242. doi: 10.13198/j.issn.1001-6929.2019.02.05HAO X,SU J,SUN Y Y,et al.Biogas production of anaerobic co-digestion with different ratios of kitchen waste,sewage sludge and rice straw[J].Research of Environmental Sciences,2020,33(1):235-242. doi: 10.13198/j.issn.1001-6929.2019.02.05 [22] 柳丽,李洁,白羿雄,等.KOH和NH3·H2O联合固态预处理对青稞秸秆厌氧发酵特性的影响[J].环境科学研究,2022,35(8):1966-1973.LIU L,LI J,BAI Y X,et al.Effects of KOH and NH3·H2O combined solid-state pretreatment on anaerobic fermentation performance of hulless barley straw[J].Research of Environmental Sciences,2022,35(8):1966-1973. [23] CLESCERI L S,GREENBERG A E,EATON A D.Standard methods for the examination of water and wastewater[M].Washington DC:American Public Health Association,1998. [24] 袁静,张益民,陈蕾,等.修正的凯氏法-纳氏试剂光度法测定固体废物中总氮[J].环境监测管理与技术,2007,19(6):36-39. doi: 10.3969/j.issn.1006-2009.2007.06.011YUAN J,ZHANG Y M,CHEN L,et al.Determination of total nitrogen in solid waste by modified Kjeldahl-Nessler' reagent colorimetric method[J].The Administration and Technique of Environmental Monitoring,2007,19(6):36-39. doi: 10.3969/j.issn.1006-2009.2007.06.011 [25] ZHANG M X,ZHANG G M,ZHANG P Y,et al.Anaerobic digestion of corn stovers for methane production in a novel bionic reactor[J].Bioresource Technology,2014,166:606-609. doi: 10.1016/j.biortech.2014.05.067 [26] JARD G,JACKOWIAK D,CARRÈRE H,et al.Batch and semi-continuous anaerobic digestion of Palmaria palmata:comparison with Saccharina latissima and inhibition studies[J].Chemical Engineering Journal,2012,209:513-519. doi: 10.1016/j.cej.2012.08.010 [27] POKÓJ T,BUŁKOWSKA K,GUSIATIN Z M,et al.Semi-continuous anaerobic digestion of different silage crops:VFAs formation,methane yield from fiber and non-fiber components and digestate composition[J].Bioresource Technology,2015,190:201-210. doi: 10.1016/j.biortech.2015.04.060 [28] CIOABLA A E,IONEL I,DUMITREL G A,et al.Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues[J].Biotechnology for Biofuels and Bioproducts,2012,5:39. doi: 10.1186/1754-6834-5-39 [29] MAO C L,FENG Y Z,WANG X J,et al.Review on research achievements of biogas from anaerobic digestion[J].Renewable and Sustainable Energy Reviews,2015,45:540-555. doi: 10.1016/j.rser.2015.02.032 [30] LI Y,HUA D L,XU H P,et al.Acidogenic and methanogenic properties of corn straw silage:regulation and microbial analysis of two-phase anaerobic digestion[J].Bioresource Technology,2020,307:123180. doi: 10.1016/j.biortech.2020.123180 [31] JUNG J Y,LEE S M,SHIN P K,et al.Effect of pH on phase separated anaerobic digestion[J].Biotechnology and Bioprocess Engineering,2000,5(6):456-459. doi: 10.1007/BF02931947 [32] ABIMBOLA O,OSOKOYA O.Evaluation of biogas production from food waste[J].The International Journal of Engineering and Science,2014,3(1):1-7. [33] 李丹妮,张克强,孔德望,等.非混合接种对猪粪厌氧干发酵产气特性的影响[J].环境工程学报,2021,15(1):279-288. doi: 10.12030/j.cjee.202003150LI D N,ZHANG K Q,KONG D W,et al.Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure[J].Chinese Journal of Environmental Engineering,2021,15(1):279-288. doi: 10.12030/j.cjee.202003150 [34] SHEN F,LI H G,WU X Y,et al.Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment[J].Bioresource Technology,2018,250:155-162. doi: 10.1016/j.biortech.2017.11.037 [35] MA Y Q,GU J,LIU Y.Evaluation of anaerobic digestion of food waste and waste activated sludge:soluble COD versus its chemical composition[J].Science of the Total Environment,2018,643:21-27. doi: 10.1016/j.scitotenv.2018.06.187 [36] DEAVER J A,DIVIESTI K I,SONI M N,et al.Palmitic acid accumulation limits methane production in anaerobic co-digestion of fats,oils and grease with municipal wastewater sludge[J].Chemical Engineering Journal,2020,396:125235. doi: 10.1016/j.cej.2020.125235 [37] PRAJAPATI K B,SINGH R.Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste[J].Bioresource Technology,2018,263:491-498. doi: 10.1016/j.biortech.2018.05.036 [38] CHEN H H,RAO Y,CAO L C,et al.Hydrothermal conversion of sewage sludge:focusing on the characterization of liquid products and their methane yields[J].Chemical Engineering Journal,2019,357:367-375. doi: 10.1016/j.cej.2018.09.180 [39] DUARTE A C,HOLMAN D B,ALEXANDER T W,et al.Incubation temperature,but not pequi oil supplementation,affects methane production,and the ruminal microbiota in a rumen simulation technique (rusitec) system[J].Frontiers in Microbiology,2017,8:1076. doi: 10.3389/fmicb.2017.01076 [40] RAMOS A F O,TERRY S A,HOLMAN D B,et al.Tucumã oil shifted ruminal fermentation,reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay-concentrate diet[J].Frontiers in Microbiology,2018,9:1647. doi: 10.3389/fmicb.2018.01647 [41] JIN W Y,XU X C,YANG F L.Application of rumen microorganisms for enhancing biogas production of corn straw and livestock manure in a pilot-scale anaerobic digestion system:performance and microbial community analysis[J].Energies,2018,11(4):920. doi: 10.3390/en11040920 [42] LUO L W,WONG J W C.Enhanced food waste degradation in integrated two-phase anaerobic digestion:effect of leachate recirculation ratio[J].Bioresource Technology,2019,291:121813. doi: 10.1016/j.biortech.2019.121813 [43] ZHANG T,LIU L L,SONG Z L,et al.Biogas production by co-digestion of goat manure with three crop residues[J].PLoS One,2013,8(6):e66845. doi: 10.1371/journal.pone.0066845 [44] 周海东,刘积成,王莹莹,等.污泥与秸秆共基质中温两相厌氧消化特性[J].环境科学研究,2019,32(5):904-912. doi: 10.13198/j.issn.1001-6929.2018.11.26ZHOU H D,LIU J C,WANG Y Y,et al.Performance of two-phase anaerobic digestion with co-substrates of sewage sludge and corn silage under mesophilic condition[J].Research of Environmental Sciences,2019,32(5):904-912. doi: 10.13198/j.issn.1001-6929.2018.11.26 [45] LUO G,FOTIDIS I A,ANGELIDAKI I.Comparative analysis of taxonomic,functional,and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis[J].Biotechnology for Biofuels and Bioproducts,2016,9(1):51. doi: 10.1186/s13068-016-0465-6 [46] WITTEBOLLE L,MARZORATI M,CLEMENT L,et al.Initial community evenness favours functionality under selective stress[J].Nature,2009,458(7238):623-626. doi: 10.1038/nature07840 [47] WAN J J,ZHANG L J,JIA B Y,et al.Effects of enzymes on organic matter conversion in anaerobic fermentation of sludge to produce volatile fatty acids[J].Bioresource Technology,2022,366:128227. doi: 10.1016/j.biortech.2022.128227 [48] 孔德望,张克强,房芳,等.猪粪厌氧发酵消化液回流体系微生物群落结构特征与产气关系研究[J].农业环境科学学报,2018,37(3):559-566. doi: 10.11654/jaes.2017-1241KONG D W,ZHANG K Q,FANG F,et al.Study of microbial community and biogas production in anaerobic digestion of pig manure with digested slurry recirculation[J].Journal of Agro-Environment Science,2018,37(3):559-566. doi: 10.11654/jaes.2017-1241 [49] GAO R F,CAO Y Z,YUAN X F,et al.Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater[J].African Journal of Biotechnology,2012,11(24):6494-6500. [50] UEKI A,AKASAKA H,SUZUKI D,et al.Paludibacter propionicigenes gen. nov.,sp. nov.,a novel strictly anaerobic,Gram-negative,propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan[J].International Journal of Systematic and Evolutionary Microbiology,2006,56(Pt 1):39-44. [51] LEWIN G R,CARLOS C,CHEVRETTE M G,et al.Evolution and ecology of Actinobacteria and their bioenergy applications[J].Annual Review of Microbiology,2016,70:235-254. doi: 10.1146/annurev-micro-102215-095748 [52] ABENDROTH C,SIMEONOV C,PERETÓ J,et al.From grass to gas:microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures[J].Biotechnology for Biofuels and Bioproducts,2017,10:171. doi: 10.1186/s13068-017-0859-0 [53] DÍAZ A I,OULEGO P,COLLADO S,et al.Impact of anaerobic digestion and centrifugation/decanting processes in bacterial communities fractions[J].Journal of Bioscience and Bioengineering,2018,126(6):742-749. doi: 10.1016/j.jbiosc.2018.05.024 [54] ARAUJO A S F,de ARAUJO de PEREIRA A P,ANTUNES J E L,et al.Dynamics of bacterial and archaeal communities along the composting of tannery sludge[J].Environmental Science and Pollution Research,2021,28(45):64295-64306. doi: 10.1007/s11356-021-15585-9 -