Experimental Study on Remediation of Petroleum Hydrocarbon Pollution in Subsurface Aquifers Based on SEAR Technology
-
摘要: 表面活性剂强化含水层修复技术(SEAR)已广泛应用于地下含水层有机污染修复. 本研究选取环境修复过程中常使用的8种表面活性剂:聚氧乙烯月桂醚(Brij 30)、脂肪醇聚氧乙烯醚(AEO-9)、吐温80(Tween 80)、鼠李糖脂、曲拉通X-100(TritonX-100)、烷基糖苷(APG)、脂肪醇聚氧乙烯醚硫酸钠(AES)、十二烷基磺酸钠(SDS),利用静、动态试验优选出高效环保的表面活性剂,探索表面活性剂浓度、离子强度对汽油增溶效果的影响,同时确定最佳表面活性剂复配体系,并开展室内模拟试验及性能评价验证其修复效果. 结果表明:①8种表面活性剂中鼠李糖脂对汽油的增溶能力表现最优;AEO-9、Tween 80和Brij 30更易吸附在中砂介质;Tween 80与TritonX-100对油污砂洗脱效果最好. 综合优选结果确定TritonX-100为最优效的单一表面活性剂. ②随着表面活性剂浓度和离子强度的增加,溶液中汽油浓度分别呈现先增加后下降和持续下降的趋势. ③通过将优选表面活性剂TritonX-100与洗脱效果最好的Tween 80进行混合确定最优复配比为1∶1,该复配体系下汽油去除率可达99.28%. 动态洗脱试验下该混合体系下汽油去除效率最高为64.55%,比同浓度TritonX-100条件下高22.26%. ④室内模拟试验中TritonX-100与Tween 80两种非离子型表面活性剂以体积比为1∶1进行复配可进一步提升增溶洗脱效果,石油烃总去除率达到83.7%. 研究显示,TritonX-100是一种高效的石油烃修复剂,TritonX-100与Tween 80复配后可进一步提升其修复效果,以上结果可为SEAR技术在实际场地应用提供理论参考与技术支持.Abstract: Surfactant-enhanced aquifer remediation (SEAR) has been widely used in the remediation of organic contamination in underground aquifer. The present study aimed to use efficient surfactants to explore the effects of surfactant concentration and ionic strength on the solubilization effect of gasoline, optimize efficient and environmentally friendly surfactants, determine the best surfactant compound system, and verify their remediation effects. The results show that among the eight surfactants, rhamnolipids showed the best solubilization ability for gasoline; AEO-9, Tween 80 and Brij 30 were more easily adsorbed in medium sand media. Tween 80 and TritonX-100 had the best elution effect on oily sand. The combined results of the preferences identified TritonX-100 as the most effective single surfactant. With the increase of surfactant concentration and ionic strength, the gasoline concentration in solution showed a trend of first increase, decrease and continuous decrease, respectively. The optimum compounding ratio was determined to be 1∶1 by mixing the preferred surfactant TritonX-100 with Tween 80, and the gasoline removal rate was 99.28% in this compounding system. The highest gasoline removal efficiency was 64.55% in the dynamic elution test, which was 22.26% higher than that of the same concentration of TritonX-100. The total removal rate of petroleum hydrocarbons reached 83.7% when two nonionic surfactants, TritonX-100 and Tween 80, were compounded at a volume ratio of 1∶1 in simulation test, which further enhanced the solubilization elution effect. The results show that TritonX-100 is an efficient petroleum hydrocarbon remediation agent, and the combination of two nonionic surfactants can further enhance the solubilization and elution effects. The study results can provide theoretical reference and technical support for the application of SEAR technology in polluted sites.
-
Key words:
- petroleum hydrocarbons /
- subsurface aquifers /
- surfactants /
- compounding system /
- indoor simulation
-
表 1 8种初选表面活性剂的CMC
Table 1. CMC of eight primary surfactants
表面活性剂 CMC/(mg/L) TritonX-100 73.8 SDS 1547.2 AES 145.3 APG 90.9 AEO-9 26.6 Brij 30 18.1 Tween 80 37.2 鼠李糖脂 43.0 表 2 8种表面活性剂的WSR与R2值
Table 2. Calculated values of WSR and R2 for eight surfactants
表面活性剂 CMC/(mg/L) SCMC/(mg/L) WSR R2 TritonX-100 73.8 579 5.22 0.98 鼠李糖脂 43.0 318.4 9.59 0.97 SDS 1547.2 414.4 0.12 0.98 AES 145.3 382.4 1.74 0.98 APG 90.9 348.6 2.31 0.99 AEO-9 26.6 294 5.03 0.99 Brij 30 18.1 226.5 0.74 0.97 Tween 80 37.2 201.5 0.44 0.99 表 3 8种表面活性剂在中砂介质上的吸附率
Table 3. Adsorption rates of the eight surfactants on medium sand media
表面活性剂 吸附率/% Brij 30 46.5 TritonX-100 19.2 AEO-9 52.0 APG 4.2 Tween 80 51.2 AES 11.2 SDS 5.0 鼠李糖脂 19.9 表 4 表面活性剂定量分级评分标准
Table 4. Quantitative grading criteria for surfactant
增溶能力(0.4) 吸附性能(0.2) 洗脱效果(0.4) WSR 评分 A 评分 去除率 评分 0~1 1 >40% 1 <25% 1 1~2 2 30%~40% 2 25%~40% 2 2~4 3 20%~30% 3 40%-60% 3 4~6 4 10%~20% 4 60%-80% 4 >6 5 <10% 5 >80% 5 注:括号中数据为权重. 表 5 表面活性剂综合评分结果
Table 5. Surfactant composite score results
表面活性剂 指标 综合评分 增溶能力 吸附性能 洗脱能力 TritonX-100 1.6 0.8 1.6 4.0 鼠李糖脂 2.0 0.8 0.8 3.6 SDS 0.4 1.0 1.2 2.6 AES 0.8 0.8 1.2 2.8 APG 1.2 1.0 1.0 3.4 AEO-9 1.6 0.2 1.2 3.0 Brij 30 0.4 0.2 0.8 1.4 Tween 80 0.4 0.2 2.0 2.6 表 6 不同复配比下汽油与水的接触角
Table 6. Contact angle between gasoline and water at different compounding ratios
复配比 滴加水后的接触角/(°) 滴加汽油后的接触角/(°) 空白组 41.5 10.5 α=0.1 36.0 9.5 α=0.2 34.5 8.5 α=0.3 32.5 7.0 α=0.4 25.5 5.0 α=0.5 22.5 2.5 -
[1] HUO L L,LIU G S,YANG X,et al.Surfactant-enhanced aquifer remediation:mechanisms,influences,limitations and the countermeasures[J].Chemosphere,2020,252:126620. doi: 10.1016/j.chemosphere.2020.126620 [2] 张皓辉,史俊祥,姜永海,等.某污染场地地下水石油烃的健康风险评估及其微生物群落分析[J].环境科学研究,2022,35(4):1063-1071.ZHANG H H,SHI J X,JIANG Y H,et al.Health risk assessment and microbial community analysis of petroleum hydrocarbons in groundwater of a contaminated site[J].Research of Environmental Sciences,2022,35(4):1063-1071. [3] RITORÉ E,COQUELET B,ARNAIZ C,et al.Guidelines for surfactant selection to treat petroleum hydrocarbon-contaminated soils[J].Environmental Science and Pollution Research,2022,29(5):7639-7651. doi: 10.1007/s11356-021-15876-1 [4] PANAGOS P,van LIEDEKERKE M,YIGINI Y,et al.Contaminated sites in Europe:review of the current situation based on data collected through a European network[J].Journal of Environmental and Public Health,2013,2013:158764. [5] 李梦龙,董维红,鲍立新,等.东北地区典型石油污染场地的地下水土污染健康风险评价[J].中国农村水利水电,2016(7):67-71.LI M L,DONG W H,BAO L X,et al.Health risk assessment of typical petroleum contaminated groundwater and soil in northeast China[J].China Rural Water and Hydropower,2016(7):67-71. [6] 尹勇,戴中华,蒋鹏,等.苏南某焦化厂场地土壤和地下水特征污染物分布规律研究[J].农业环境科学学报,2012,31(8):1525-1531.YIN Y,DAI Z H,JIANG P,et al.Characteristic distributions of typical contaminants in the soils and groudwater of a coking plant in the south of Jiangsu Province,China[J].Journal of Agro-Environment Science,2012,31(8):1525-1531. [7] 吕晓立,邵景力,刘景涛,等.某石油化工污染场地地下水中挥发性有机物污染特征及成因分析[J].水文地质工程地质,2012,39(6):97-102.LV X L,SHAO J L,LIU J T,et al.Contamination characteristics and causes of volatile organic compounds in the groundwater at a petrochemical contaminated site[J].Hydrogeology & Engineering Geology,2012,39(6):97-102. [8] 刘学娜,李海明,李梦娣,等.天津平原区加油站地下水石油烃污染特征及其生物降解机理研究[J].地学前缘,2022,29(3):227-238.LIU X N,LI H M,LI M D,et al.Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain[J].Earth Science Frontiers,2022,29(3):227-238. [9] 赵丽,张韵,郭劲松,等.重庆市加油站周边浅层地下水中石油烃污染调查与特征分析[J].环境工程学报,2016,10(1):131-136.ZHAO L,ZHANG Y,GUO J S,et al.Investigation on pollution characteristics of petroleum hydrocarbon in shallow groundwater around gas stations[J].Chinese Journal of Environmental Engineering,2016,10(1):131-136. [10] WANG M X,ZHANG B,LI G R,et al.Efficient remediation of crude oil-contaminated soil using a solvent/surfactant system[J].RSC Advances,2019,9(5):2402-2411. doi: 10.1039/C8RA09964B [11] LIU J W,WEI K H,XU S W,et al.Surfactant-enhanced remediation of oil-contaminated soil and groundwater:a review[J].Science of the Total Environment,2021,756:144142. doi: 10.1016/j.scitotenv.2020.144142 [12] O'CONNOR D,HOU D Y,OK Y S,et al.Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials:a review[J].Journal of Controlled Release,2018,283:200-213. doi: 10.1016/j.jconrel.2018.06.007 [13] 侯军,赵云峰,税碧垣,等.地下水石油污染修复技术述评[J].石油工业技术监督,2015,31(4):28-33.HOU J,ZHAO Y F,SHUI B Y,et al.A review of restoration technologies for oil pollution to groundwater[J].Technology Supervision in Petroleum Industry,2015,31(4):28-33. [14] 张明瑞,张蓉,张晓艺,等.土壤污染的治理以及表面活性剂的应用[J].中国洗涤用品工业,2020(7):17-25.ZHANG M R,ZHANG R,ZHANG X Y,et al.Treatment of soil pollution and application of surfactants[J].China Cleaning Industry,2020(7):17-25. [15] 李晓东,许端平,张倩,等.Triton X-100对土壤中柴油的解吸特征及影响因素[J].环境科学研究,2018,31(2):320-327.LI X D,XU D P,ZHANG Q,et al.Desorption characteristics of diesel from soils in the presence of Triton X-100 and the factors governing the desorption[J].Research of Environmental Sciences,2018,31(2):320-327. [16] 李果,毛华军,巩宗强,等.几种表面活性剂对柴油及多环芳烃的增溶作用[J].环境科学研究,2011,24(7):775-780.LI G,MAO H J,GONG Z Q,et al.Solubilization of diesel and polycyclic aromatic hydrocarbons by certain kinds of surfactants[J].Research of Environmental Sciences,2011,24(7):775-780. [17] 袁笑,相雷雷,赵振华,等.表面活性剂增溶洗脱土壤中多环芳烃的效果研究[J].环境科学研究,2022,35(8):1885-1892.YUAN X,XIANG L L,ZHAO Z H,et al.Surfactant-enhanced solubilization and elution of polycyclic aromatic hydrocarbons in soil[J].Research of Environmental Sciences,2022,35(8):1885-1892. [18] WEI Y F,LIANG X J,LIN W J,et al.Clay mineral dependent desorption of pyrene from soils by single and mixed anionic-nonionic surfactants[J].Chemical Engineering Journal,2015,264:807-814. doi: 10.1016/j.cej.2014.12.019 [19] ZHU L Z,FENG S L.Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants[J].Chemosphere,2003,53(5):459-467. doi: 10.1016/S0045-6535(03)00541-1 [20] ZHANG Y X,HE X,ZENG G M,et al.Enhanced photodegradation of pentachlorophenol by single and mixed nonionic and anionic surfactants using graphene-TiO2 as catalyst[J].Environmental Science and Pollution Research,2015,22(22):18211-18220. doi: 10.1007/s11356-015-4785-z [21] 郎丽萍,钟金魁,张杰西,等.鼠李糖脂对多环芳烃的增溶作用及影响因素研究[J].安全与环境学报,2015,15(3):267-270.LANG L P,ZHONG J K,ZHANG J X,et al.Effect of rhamnolipid on the enhanced solubilization of the polycyclic aromatic hydrocarbons and the influential factors[J].Journal of Safety and Environment,2015,15(3):267-270. [22] 李薇,王信粉,时利香,等.表面活性剂复配体系修复芘污染土壤实验[J].化工进展,2021,40(6):3526-3535.LI W,WANG X F,SHI L X,et al.Remediation of pyrene-contaminated soil using mixed surfactants solution[J].Chemical Industry and Engineering Progress,2021,40(6):3526-3535. [23] 钟金魁,赵保卫,朱琨,等.表面活性剂对菲的增溶动力学及质量增溶比(WSR)与亲水亲油平衡值(HLB)的关系[J].环境化学,2011,30(10):1737-1742.ZHONG J K,ZHAO B W,ZHU K,et al.Solubilization kinetics of phenanthrene by surfactants and relation between weight solubilization ratio (WSR) and hydrophile-lipophile balance value (HLB) of surfactants[J].Environmental Chemistry,2011,30(10):1737-1742. [24] 杨珊,蔡秀琴,刘雨晗,等.液体物质红外光谱的简便测试方法研究[J].光谱学与光谱分析,2022,42(7):2143-2147.YANG S,CAI X Q,LIU Y H,et al.A simple measuring method for infrared spectroscopy of liquid matters[J].Spectroscopy and Spectral Analysis,2022,42(7):2143-2147. [25] MULLIGAN C N,YONG R N,GIBBS B F.Surfactant-enhanced remediation of contaminated soil:a review[J].Engineering Geology,2001,60(1/2/3/4):371-380. [26] MADANI M,ZARGAR G,ALI TAKASSI M,et al.Fundamental investigation of an environmentally-friendly surfactant agent for chemical enhanced oil recovery[J].Fuel,2019,238:186-197. doi: 10.1016/j.fuel.2018.10.105 [27] MAJEED T,SØLLING T I,KAMAL M S.Foamstability:the interplay between salt-,surfactant- and critical micelle concentration[J].Journal of Petroleum Science and Engineering,2020,187:106871. doi: 10.1016/j.petrol.2019.106871 [28] AZUM N,RUB M A,ALOTAIBI M M,et al.Synergistic interaction between cationic novel gemini surfactant and non-ionic conventional surfactants in aqueous medium[J].Biointerface Research in Applied Chemistry,2021,12(6):7416-7428. doi: 10.33263/BRIAC126.74167428 [29] LI S D,PI Y R,BAO M T,et al.Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons[J].Marine Pollution Bulletin,2015,101(1):219-225. doi: 10.1016/j.marpolbul.2015.09.059 [30] TALLURY P,RANDALL M K,THAW K L,et al.Effects of solubilizing surfactants and loading of antiviral,antimicrobial,and antifungal drugs on their release rates from ethylene vinyl acetate copolymer[J].Dental Materials,2007,23(8):977-982. doi: 10.1016/j.dental.2006.08.005 [31] LIU J F,CHEN W H.Remediation of phenanthrene contaminated soils by nonionic-anionic surfactant washing coupled with activated carbon adsorption[J].Water Science and Technology:A Journal of the International Association on Water Pollution Research,2015,72(9):1552-1560. doi: 10.2166/wst.2015.357 [32] FATMA N,PANDA M.A study on the solubilization of polycyclic aromatic hydrocarbons in gemini-conventional mixed surfactant systems by 1H NMR spectroscopy[J].Materials Chemistry and Physics,2020,254:123223. doi: 10.1016/j.matchemphys.2020.123223 [33] 白静,赵勇胜,周冰,等.非离子表面活性剂Tween80增溶萘实验模拟[J].中国环境科学,2013,33(11):1993-1998.BAI J,ZHAO Y S,ZHOU B,et al.Laboratory investigation of solubilization of naphthalene by nonionic surfactant Tween80[J].China Environmental Science,2013,33(11):1993-1998. [34] 张伟娜,殷永泉,冉德钦,等.阴-非离子表面活性剂复配修复石油污染的土壤[J].河北大学学报(自然科学版),2014,34(3):279-283.ZHANG W N,YIN Y Q,RAN D Q,et al.Remediation of crude oil contaminated soil by the synergistic of anionic and nonionic surfactants[J].Journal of Hebei University (Natural Science Edition),2014,34(3):279-283. [35] WEI J,HUANG G H,YU H,et al.Efficiency of single and mixed Gemini/conventional micelles on solubilization of phenanthrene[J].Chemical Engineering Journal,2011,168(1):201-207. doi: 10.1016/j.cej.2010.12.063 [36] 李凯丽,裴宗平,张鑫.复配表面活性剂APG/SDBS对菲、芘的增溶特性[J].环境科学学报,2018,38(8):3260-3265.LI K L,PEI Z P,ZHANG X.Dissolution characteristics of phenanthrene and pyrene in complex surfactant system[J].Acta Scientiae Circumstantiae,2018,38(8):3260-3265. [37] LUO F,ZENG G M,HUANG J H,et al.Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF[J].Journal of Hazardous Materials,2010,173(1/2/3):455-461. [38] PARIA S.Surfactant-enhanced remediation of organic contaminated soil and water[J].Advances in Colloid and Interface Science,2008,138(1):24-58. doi: 10.1016/j.cis.2007.11.001 [39] ZHOU W J,ZHU L Z.Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant[J].Water Research,2008,42(1/2):101-108. [40] BROWN C L,POPE G A,ABRIOLA L M,et al.Simulation of surfactant-enhanced aquifer remediation[J].Water Resources Research,1994,30(11):2959-2977. doi: 10.1029/94WR01458 -