Characteristics of Ozone and Their Relationship with Meteorological Factors from 2014 to 2021 in Jinan and Qingdao, China
-
摘要: 为研究济南市和青岛市臭氧(O3)浓度长期变化特征及其气象影响因素,基于2014—2021年近地面O3连续8年观测资料和同期气象资料,揭示O3浓度长期变化特征,分析O3浓度与气象因子关系,阐明O3主要输送路径和潜在源区. 结果表明:①整体上,济南市O3污染程度高于青岛市,2个城市O3污染均集中在4—10月. 长期趋势上,2014—2021年济南市O3日最大8 h平均浓度第90百分位数(简称“O3-8 h 90th浓度”)总体呈先升后降的趋势,峰值出现在2019年;青岛市2019年和2017年O3-8 h 90th浓度相对较高,其他年份O3-8 h 90th浓度差异不大. 月变化上,济南市O3-8 h 90th浓度季节性变化较明显,呈单峰状;而青岛市受雨季和清洁海洋气流稀释作用,其O3-8 h 90th浓度呈双峰状. ②高温、低湿、小风等不利气象条件下更易发生O3污染. 相对于青岛市,济南市O3日最大8 h平均浓度(简称“O3-8 h浓度”)与气象因子的相关性更密切,尤其是与日间(08:00—17:00)平均气温(简称“T8-17”)的相关性最强,T8-17>15 ℃时,T8-17每升高1 ℃,O3-8 h浓度升高6.1 μg/m3;青岛市O3-8 h浓度随T8-17的升高总体呈波动式升高趋势,但升幅有限,T8-17每升高1 ℃,O3-8 h浓度仅升高1.5 μg/m3. ③济南市受来自西南、南偏东南方向的气流影响时,O3浓度平均值较高,分别为(113±51)(109±57)μg/m3;青岛市受来自内陆方向的西南气流影响时,O3浓度较高,平均值为(106±45)μg/m3. 2个城市O3外来主要潜在源区具有一定同源性,主要为苏皖鲁豫交界中东部和鲁中地区. 研究显示,2个城市O3污染均以本地污染为主,污染联防联控区域需要重点关注苏皖鲁豫交界中东部及鲁中地区.Abstract: Based on surface ozone (O3) mass concentrations and meteorological data in Jinan and Qingdao from 2014 to 2021, the variation characteristics of daily maximum 8-hour moving average of ozone concentrations (O3-8 h concentrations) and its relationship with meteorological factors were studied. Backward trajectories were also combined with O3 concentrations for trajectories clustering and potential source regions of O3 analysis. The results showed that the O3 pollution level in Jinan was generally higher than that of Qingdao. The O3 pollution episodes occurred from April to October. The annual trend of 90th percentile of O3-8 h concentrations (O3-8 h 90th concentrations ) in Jinan generally showed an upward trend and then a downward trend from 2014 to 2021. Moreover, the peak value of annual O3-8 h 90th concentrations in Jinan appeared in 2019. The annual O3-8 h 90th concentrations of Qingdao in 2019 and 2017 were a little higher than those in other years. The annual O3-8 h 90th concentrations of Qingdao in the other years showed little difference. The monthly variations of O3-8 h 90th concentrations in Jinan were more significant, with a unimodal distribution. However, the monthly variations of O3-8 h 90th concentrations in Qingdao showed a bimodal distribution due to the influence of summer rainy season and clean maritime air mass dilution. The high O3 concentration was more easily caused by unfavorable weather conditions, such as high temperature, low relative humidity and light wind. Compared with Qingdao, O3-8 h concentrations in Jinan had a closer correlation with meteorological factors, especially the average air temperature from 08:00 to 17:00 (T8-17). When T8-17 was greater than 15 ℃, O3-8 h concentration in Jinan increased by 6.1 μg/m3 for every 1 ℃ increase in T8-17. O3-8 h concentration in Qingdao was fluctuated and increased with the increase of T8-17. However, for every 1 ℃ increase in T8-17, O3-8 h concentration in Qingdao only increased by 1.5 μg/m3. The O3 concentration in Jinan was much higher, with an average of (113±51) and (109±57)μg/m3, respectively, when the airflow came from southwesterly and south-southeasterly areas, which was the central and eastern junction of Jiangsu-Anhui-Shandong-Henan region. The O3 concentration in Qingdao was (106±45)μg/m3, together with the southwesterly airflow beginning at the inland regions. The main potential source regions of O3 in Jinan and Qingdao were in the same region, mainly distribute in the central and eastern of junction Jiangsu-Anhui-Shandong-Henan region and the central Shandong region. Based on all the above research results, the O3 pollution in Jinan and Qingdao were mainly driven by local emissions. The regions of coordinated inter-regional O3 prevention and control for Jinan and Qingdao should focus on the central and eastern regions of the junction of Jiangsu-Anhui-Shandong-Henan and the central Shandong.
-
Key words:
- Jinan /
- Qingdao /
- ozone (O3) /
- long-term trend /
- meteorological factor /
- potential source area
-
表 1 2014—2021年济南市和青岛市O3-8 h浓度各分量方差贡献率
Table 1. Contributions of variance in O3-8 h concentrations component to total variance in Jinan and Qingdao from 2014 to 2021
分量 方差贡献率/% 济南市 青岛市 短期分量 30.4 45.5 季节分量 61.7 47.6 长期分量 3.1 0.9 合计 95.2 94.0 表 2 2014—2021年4—10月济南市和青岛市O3污染日和非污染日气象因子与O3-8 h浓度
Table 2. Comparison of meteorological parameters and O3-8 h concentrations between O3 non-attainment days and O3 attainment days in Jinan and Qingdao from April to October during 2014-2021
城市 类别 T8-17/℃ RH8-17 气压/hPa 风速/(m/s) O3-8 h浓度/(μg/m3) 济南市 污染日 29.1±3.1 45%±12% 1 007±5 2.5±1.0 190±23 非污染日 22.1±5.6 57%±21% 1 013±8 2.3±0.9 110±32 青岛市 污染日 25.6±3.8 63%±12% 999±5 3.0±0.7 184±21 非污染日 21.4±5.2 68%±18% 1 002±7 3.1±1.1 104±27 表 3 2014—2021年4—10月济南市和青岛市后向轨迹聚类分析及对应的O3浓度
Table 3. Clustering statistics of backward trajectories with corresponding O3 concentrations in Jinan and Qingdao from April to October during 2014-2021
城市 轨迹类别 轨迹数/条 轨迹频率/% 轨迹途径主要地区 气流方向 O3浓度/(μg/m3) 济南市 Ⅰ 1 668 32.5 山东省潍坊市、淄博市 偏东 86±55 Ⅱ 491 9.6 河北省秦皇岛市、唐山市,山东省滨州市 北偏东北 71±42 Ⅲ 828 16.1 山西省大同市,河北省保定市、衡水市,以及山东省德州市 西北 83±48 Ⅳ 946 18.4 河南省开封市,以及山东省菏泽市、济宁市、泰安市 西南 113±51 Ⅴ 1 199 23.4 江苏省徐州市,以及山东省枣庄市、济宁市、泰安市 南偏东南 109±57 青岛市 Ⅰ 2 453 47.8 东南方向北黄海 东南 84±34 Ⅱ 723 14.1 渤海口、山东省烟台市 东北 76±34 Ⅲ 1 369 26.6 山东省滨州市、东营市、潍坊市 西北 86±45 Ⅳ 591 11.5 安徽省滁州市,江苏省连云港市、宿迁市,以及山东省日照市 西南 106±45 -
[1] LU X,ZHANG L,WANG X L,et al.Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J].Environmental Science & Technology Letters,2020,7(4):240-247. [2] 王文兴,柴发合,任阵海,等.新中国成立70年来我国大气污染防治历程、成就与经验[J].环境科学研究,2019,32(10):1621-1635.WANG W X,CHAI F H,REN Z H,et al.Process,achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago[J].Research of Environmental Sciences,2019,32(10):1621-1635. [3] 张涵,姜华,高健,等.我国大气O3污染成因及影响因素综述[J].环境科学研究,2022,35(12):2657-2665.ZHANG H,JIANG H,GAO J,et al.Review on the causes and influencing factors of O3 pollution in China[J].Research of Environmental Sciences,2022,35(12):2657-2665. [4] WANG T,XUE L K,FENG Z,et al.Ground-level ozone pollution in China:a synthesis of recent findings on influencing factors and impacts[J].Environmental Research Letters,2022,17(6):063003. doi: 10.1088/1748-9326/ac69fe [5] LU X,ZHANG L,SHEN L.Meteorology and climate influences on tropospheric ozone:a review of natural sources,chemistry,and transport patterns[J].Current Pollution Reports,2019,5(4):238-260. doi: 10.1007/s40726-019-00118-3 [6] MA T,DUAN F K,HE K B,et al.Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta Region during 2014-2016[J].Journal of Environmental Sciences,2019,83(9):8-20. [7] QIN M M,HU A Q,MAO J J,et al.PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta,China[J].Science of the Total Environment,2022,810(3):152268. [8] 孟赫,代玮,李健军,等.“Ox增减量”O3人工订正预报方法与应用[J].中国环境监测,2022,38(2):46-51.MENG H,DAI W,LI J J,et al.Application of ‘Ox increase or decrease’ method for O3 human forecast[J].Environmental Monitoring in China,2022,38(2):46-51. [9] MA Z Q,XU J,QUAN W J,et al.Significant increase of surface ozone at a rural site,north of eastern China[J].Atmospheric Chemistry and Physics,2016,16(6):3969-3977. doi: 10.5194/acp-16-3969-2016 [10] GAO W,TIE X X,XU J M,et al.Long-term trend of O3 in a mega city (Shanghai),China:characteristics,causes,and interactions with precursors[J].Science of the Total Environment,2017,603:425-433. [11] 赵伟,高博,卢清,等.2006—2019年珠三角地区臭氧污染趋势[J].环境科学,2021,42(1):97-105.ZHAO W,GAO B,LU Q,et al.Ozone pollution trend in the Pearl River Delta Region during 2006-2019[J].Environmental Science,2021,42(1):97-105. [12] 程先富,周志凌,蔡菁菁.基于模式模拟的苏皖鲁豫交界区典型月份PM2.5来源解析[J].环境科学学报,2023,43(2):365-375. doi: 10.13671/j.hjkxxb.2022.0244CHENG X F,ZHOU Z L,CAI J J.Source analysis of PM2.5 in typical months in the border area of Jiangsu,Anhui,Shandong andHenan based on model simulation[J].Acta Scientiae Circumstantiae,2023,43(2):365-375. doi: 10.13671/j.hjkxxb.2022.0244 [13] 张淼,丁椿,李彦,等.山东省O3时空分布及影响因素分析[J].环境科学,2021,42(12):5723-5735.ZHANG M,DING C,LI Y,et al.Spatial and temporal distribution of ozone and influencing factors in Shandong Province[J].Environmental Science,2021,42(12):5723-5735. [14] ZHANG J,WANG C,QU K,et al.Characteristics of ozone pollution,regional distribution and causes during 2014-2018 in Shandong Province,East China[J].Atmosphere,2019,10(9):501. doi: 10.3390/atmos10090501 [15] TANG H Y,LIU G,ZHU J G,et al.Seasonal variations in surface ozone as influenced by Asian summer monsoon and biomass burning in agricultural fields of the northern Yangtze River Delta[J].Atmospheric Research,2013,122:67-76. doi: 10.1016/j.atmosres.2012.10.030 [16] LI K,JACOB D J,SHEN L,et al.Increases in surface ozone pollution in China from 2013 to 2019:anthropogenic and meteorological influences[J].Atmospheric Chemistry and Physics,2020,20(19):11423-11433. doi: 10.5194/acp-20-11423-2020 [17] JIANG P,CHEN X L,LI Q Y,et al.High-resolution emission inventory of gaseous and particulate pollutants in Shandong Province,eastern China[J].Journal of Cleaner Production,2020,259:120806. doi: 10.1016/j.jclepro.2020.120806 [18] ZHOU M M,JIANG W,GAO W D,et al.Anthropogenic emission inventory of multiple air pollutants and their spatiotemporal variations in 2017 for the Shandong Province,China[J].Environmental Pollution,2021,288:117666. doi: 10.1016/j.envpol.2021.117666 [19] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究,2022,35(6):1351-1361. doi: 10.13198/j.issn.1001-6929.2022.02.25ZHAO M,SHEN H Q,CHEN T S,et al.Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J].Research of Environmental Sciences,2022,35(6):1351-1361. doi: 10.13198/j.issn.1001-6929.2022.02.25 [20] SA E,TCHEPEL O,CARVALLHO A,et al.Meteorological driven changes on air quality over Portugal:a KZ filter application[J].Atmospheric Pollution Research,2015,6(6):979-989. doi: 10.1016/j.apr.2015.05.003 [21] YIN C Q,DENG X J,ZOU Y,et al.Trend analysis of surface ozone at suburban Guangzhou,China[J].Science of the Total Environment,2019,695(52):133880. [22] 栗泽苑,杨雷峰,华道柱,等.2013—2018年中国近地面臭氧浓度空间分布特征及其与气象因子的关系[J].环境科学研究,2021,34(9):2094-2104.LI Z Y,YANG L F,HUA D Z,et al.Spatial pattern of surface ozone and its relationship with meteorological variables in China during 2013-2018[J].Research of Environmental Sciences,2021,34(9):2094-2104. [23] 王治非,张文娟,李敏,等.2018年济南市PM2.5叠加沙尘重污染过程分析[J].环境科学研究,2021,34(11):2588-2598.WANG Z F,ZHANG W J,LI M,et al.Analysis of a heavy air pollution episode with combined sand storm and high PM2.5 occurred in Jinan in 2018[J].Research of Environmental Sciences,2021,34(11):2588-2598. [24] 王琰玮,王媛,张增凯,等.不同季节天津市PM2.5与O3潜在源区及传输路径分析[J].环境科学研究,2022,35(3):673-682.WANG Y W,WANG Y,ZHANG Z K,et al.Analysis of potential source areas and transport pathways of PM2.5 and O3 in Tianjin by season[J].Research of Environmental Sciences,2022,35(3):673-682. [25] WANG Y Q,ZHANG X Y,DRAXLER R R.TrajStat:GIS-based software that uses various trajectory statistical analysis methods to indentify potential sources from long-term air pollution measurement data[J].Environmental Modelling & Software,2009,24(8):938-939. [26] DIMITRIOU K,REMOUNDAKI E,MANTAS E,et al.Spatial distribution of source areas of PM2.5 by Concentration Weighted Trajectory (CWT) model applied in PM2.5 concentration and composition data[J].Atmospheric Environment,2015,116:138-145. doi: 10.1016/j.atmosenv.2015.06.021 [27] 刘超,徐冉,张天航,等.青岛“上合峰会”保障期间臭氧污染特征及其来源贡献分析[J].气象与环境科学,2020,43(3):51-58. doi: 10.16765/j.cnki.1673-7148.2020.03.007LIU C,XU R,ZHANG T H,et al.Analysis of ozone pollution characteristics and its sources during the Shanghai Cooperation Organization Summit in Qingdao[J].Meteorological and Environmental Science,2020,43(3):51-58. doi: 10.16765/j.cnki.1673-7148.2020.03.007 [28] 刘超,张恒德,张天航,等.青岛“上合峰会”期间夜间臭氧增长成因分析[J].中国环境科学,2020,40(8):3332-3341. doi: 10.3969/j.issn.1000-6923.2020.08.010LIU C,ZHANG H D,ZHANG T H,et al.The causes of ozone concentration growth in the night during the ‘Shanghai Cooperation Organization Summit’ in Qingdao[J].China Environmental Science,2020,40(8):3332-3341. doi: 10.3969/j.issn.1000-6923.2020.08.010 [29] 余益军,孟晓艳,王振,等.京津冀地区城市臭氧污染趋势及原因探讨[J].环境科学,2020,41(1):106-114.YU Y J,MENG X Y,WANG Z,et al.Driving factors of the significant increase in surface ozone in the Beijing-Tianjin-Hebei Region,China,during 2013-2018[J].Environmental Science,2020,41(1):106-114. [30] YU Y J,WANG Z,HE T,et al.Driving factors of the significant increase in surface ozone in the Yangtze River Delta,China,during 2013-2017[J].Atmospheric Pollution Research,2019,10(4):1357-1364. doi: 10.1016/j.apr.2019.03.010 [31] 白鹤鸣,师华定,高庆先,等.基于气象调整的京津冀典型城市空气污染指数序列重建[J].生态与农村环境学报,2015,31(1):44-49.BAI H M,SHI H D,GAO Q X,et al.Reordination of air pollution indices of some typical cities in Beijing-Tianjin-Hebei Region based on meteorological adjustment[J].Journal of Ecology and Rural Environment,2015,31(1):44-49. [32] 赵域圻,杨婷,王自发,等.基于KZ滤波的京津冀2013~2018年大气污染治理效果分析[J].气候与环境研究,2020,25(5):499-509.ZHAO Y Q,YANG T,WANG Z F,et al.Effectiveness of air pollution control efforts in Beijing-Tianjin-Hebei Region during 2013-2018 based on the Kolmogorov-Zurbenko Filter[J].Climatic and Environmental Research,2020,25(5):499-509. -