Construction and Application of Dynamic Fugitive Road Dust Emission Inventory Approach Based on Traffic Speed-Flow Model
-
摘要: 目前国内外关于道路扬尘排放的计算多采用美国环境保护局推荐的AP-42排放因子法,直接计算道路扬尘的年均排放总量,但其动态化程度不足,难以满足日益增长的精细化管理需求. 本研究采用车速-流量模型构建高时间分辨率的道路车流量获取方法. 以天津市为例,采用自下而上的方法,结合本地化的排放因子以及天津市采取的道路扬尘控制措施,借助GIS平台编制高时空分辨率的道路扬尘排放清单,精细反映天津市道路扬尘排放的时空分布特征. 结果表明:①时间尺度上,受早晚高峰的影响,城市道路在08:00—09:00与18:00—19:00扬尘排放强度较大,13:00—14:00是白天扬尘排放强度的低值时段. ②空间尺度上,夜间(03:00—04:00)道路扬尘排放强度的高值区域集中在高速路段,白天扬尘排放强度的低值时段(13:00—14:00)集中在城市道路中支路密集的地区,道路扬尘排放强度高峰时期(18:00—19:00)集中在各类型的城市道路. 全年道路扬尘排放高值区域集中在城市支路和郊区道路. ③天津市内六区全年道路扬尘PM2.5、PM10、TSP排放量分别为603、2 492和12 986 t,相较以往研究有所下降. 从区域看,道路扬尘排放总量呈偏远郊区>环城四区>市内六区的规律. 城市道路采取的洒水措施明显降低了道路扬尘排放总量. 研究显示,受交通扰动影响,道路扬尘排放呈现明显的时空分布差异.Abstract: The calculation of fugitive road dust emissions mostly adopts the AP-42 emission factor method recommended by the US Environmental Protection Administration. It directly calculates the average annual total emission of fugitive road dust, which is difficult to meet the growing demand for refined management for the degree of dynamics is not enough. This study develops a new approach to obtain high-time-resolution traffic volume information by using traffic speed-flow model. Taking Tianjin City as an example, this study adopts the bottom-up method and combines Tianjin′s localized emission factors, road dust control measures of and GIS platform to compile a high temporal and spatial resolution fugitive road dust emission inventory, which can better reflect the temporal and spatial distribution characteristics of fugitive road dust emissions in Tianjin City. The results show that: (1) On the time scale, due to influence of traffic peaks in the morning and evening, the emissions of urban fugitive road dust are higher during 08:00-09:00 and 18:00-19:00, and 13:00-14:00 is the relatively low period of the daytime dust emission. (2) On the spatial scale, the high dust emission areas are concentrated in the highway at night (03:00-04:00), in areas with dense urban branch roads at noon (13:00-14:00) and in various urban roads at peak time (18:00-19:00). Annually, the high emission areas are concentrated in roads out of the city and dense urban branch roads. (3) The annual PM2.5, PM10 and TSP emissions of the six city districts are 603, 2,492 and 12,986 t, respectively, which are lower than previous studies. The total fugitive road dust emissions are as follows: remote suburbs > four districts around the city > six city districts. Sprinkling urban roads can significantly reduce the total fugitive road dust emissions. This study shows there are significant differences in the temporal and spatial distribution of road dust emissions due to the dynamic changes in traffic volume.
-
Key words:
- fugitive road dust /
- traffic speed-flow model /
- dynamic /
- emission inventory
-
表 1 天津市不同类型道路长度
Table 1. Lengths of different road types in Tianjin City
一级类别 二级类别 道路长度/km 城市道路 主干路(核心主干路) 1 493 次干路 1 338 支路 2 056 郊区道路 偏远主干路 2 058 偏远次干路 3 017 偏远支路 5 388 高速 1 713 表 2 不同类型道路的平均车质量
Table 2. Average vehicle weight of different road types
道路类型 主干路 次干路 支路 偏远主干路 偏远次干路 偏远支路 高速 平均
车质量/t1.86 1.83 1.72 2.77 2.58 2.39 2.92 表 3 天津市对不同类型道路采取的清洁控制措施
Table 3. Road cleaning measures of different road types in Tianjin City
控制措施 道路类型 控制效率/% PM2.5 PM10 TSP 吸尘清扫 主干路 9 11 13 次干路 9 11 13 支路 6 7 8 洒水(2次/d) 主干路 46 55 66 次干路 表 4 本研究道路扬尘PM2.5排放因子、道路长度、道路车流量和道路扬尘PM2.5、PM10、TSP年排放量与天津市已有研究的对比
Table 4. Comparison of PM2.5 emission factors,road length,traffic volume and PM2.5,PM10,TSP total annual emission in this research with other researches
道路类型 PM2.5排放因子/[g/(辆·km)] 道路长度/km 道路车流量/(辆/d) 年排放量/t 数据来源 PM2.5 PM10 TSP 主干路 0.11 63.85 63 288 162 670 3 488 文献[22] 次干路 0.17 106 34 440 227 938 4 888 支路 0.49 567.9 7 200 731 3021 15 741 环线 0.09 70.84 87 696 204 843 4 393 主干路 0.07 82 53 416 99 409 2 133 本研究 核心主干路 0.07 85 92 264 177 733 3 819 次干路 0.12 164 29 193 186 767 3 996 支路 0.33 68 19 461 141 583 3 038 -
[1] 中国环境监测总站.全国城市空气质量报告[EB/OL].北京:中国环境监测总站,(2022-06-28)[2022-02-16].http://www.cnemc.cn/jcbg/kqzlzkbg/.html. [2] 王跃思,李文杰,高文康,等.2013—2017年中国重点区域颗粒物质量浓度和化学成分变化趋势[J].中国科学:地球科学,2020,50(4):453-468.WANG Y S,LI W J,GAO W K,et al.Trends in particulate matter and its chemical compositions in China from 2013-2017[J].Science China:Earth Sciences,2020,50(4):453-468. [3] 肖致美,徐虹,李立伟,等.基于在线观测的天津市PM2.5污染特征及来源解析[J].环境科学,2020,41(10):4355-4363.XIAO Z M,XU H,LI L W,et al.Characterization and source apportionment of PM2.5 based on the online observation in Tianjin[J].Environmental Science,2020,41(10):4355-4363. [4] XU H,XIAO Z M,CHEN K.et al.Spatial and temporal distribution,chemical characteristics,and sources of ambient particulate matter in the Beijing-Tianjin-Hebei Region[J].Science of the Total Environment,2019,658:280-293. doi: 10.1016/j.scitotenv.2018.12.164 [5] GAO J J,WANG K,WANG Y.et al.Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei Region of China[J].Environmental Pollution,2018,233:714-724. doi: 10.1016/j.envpol.2017.10.123 [6] HUANG X F,YUN H,GONG Z H,et al.Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China[J].Science China:Earth Sciences,2014,57(6):1352-1362. doi: 10.1007/s11430-013-4686-2 [7] 国家环境保护总局.防治城市扬尘污染技术规范[EB/OL].北京:国家环境保护总局,(2008-02-01)[2022-06-21].https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/hjbhgc/200711/t20071127_113439.html. [8] 中华人民共和国中央人民政府.住房和城乡建设部办公厅关于进一步加强施工工地和道路扬尘管控工作的通知[EB/OL].北京:中华人民共和国中央人民政府,(2019-04-09)[2022-04-06].http://www.gov.cn/zhengce/zhengceku/2019-09/29/content_5434651.html. [9] 新乐市人民政府.新乐市城市管理综合行政执法局城市道路扬尘治理专项行动工作方案[EB/OL].新乐:新乐市人民政府,(2021-10-29)[2021-05-06].http://info.xinle.gov.cn/content.jsp?code=sjzxlzhzfj/2022-00500. [10] ZHANG Q Y.Vehicle emission inventories projection based on dynamic emission factors:a case study of Hangzhou,China[J].Atmospheric Environment,2008,42(20):4989-5002. doi: 10.1016/j.atmosenv.2008.02.010 [11] HUANG L.Dynamic calculation of ship exhaust emissions based on real-time AIS data[J].Transportation Research Part D:Transport and Environment,2020,80:102277. doi: 10.1016/j.trd.2020.102277 [12] ZHANG S J,NIU T L,WU Y,et al.Fine-grained vehicle emission management using intelligent transportation system data[J].Environmental Pollution,2018,241:1027-1037. doi: 10.1016/j.envpol.2018.06.016 [13] 杨益,姬亚芹,高玉宗,等.基于2种采样方法的北京市夏季道路扬尘的监测及积尘负荷分布特征[J].环境工程学报,2022,16(9):3050-3057. doi: 10.12030/j.cjee.202205040YANG Y,JI Y Q,GAO Y Z,et al.Monitoring and distribution characteristics of dust load on roads in Beijing during summer based on two sampling methods[J].Chinese Journal of Environmental Engineering,2022,16(9):3050-3057. doi: 10.12030/j.cjee.202205040 [14] CHEN S Y,ZHANG X R,LIN J T,et al.Fugitive road dust PM2.5 emissions and their potential health impacts[J].Environmental Science & Technology,2019,53(14):8455-8465. [15] GUSTAFSSON M,GORANBLOMQVIST G,JARLSKOG I,et al.Road dust load dynamics and influencing factors for six winter seasons in Stockholm,Sweden[J].Atmospheric Environment,2019,2:100014. doi: 10.1016/j.aeaoa.2019.100014 [16] AMATO F,BEDOGNI M,PADOAN E,et al.Characterization of road dust emissions in Milan:impact of vehicle fleet speed[J].Aerosol and Air Quality Research,2017,17(10):2438-2449. doi: 10.4209/aaqr.2017.01.0017 [17] US EPA.Emission factor documentation for AP-42,section 13.2.1 paved roads[R].Washington DC:Environmental Protection Agency,2010. [18] KUHNS H.Vehicle-based road dust emission measurement.part Ⅱ:effect of precipitation,wintertime road sanding,and street sweepers on inferred PM10 emission potentials from paved and unpaved roads[J].Atmospheric Environment,2003,37(32):4573-4582. doi: 10.1016/S1352-2310(03)00529-6 [19] 王社扣,王体健,石睿,等.南京市不同类型扬尘源排放清单估计[J].中国科学院大学学报,2014,31(3):351-359. doi: 10.7523/j.issn.2095-6134.2014.03.009WANG S K,WANG T J,SHI R,et al.Estimation of different fugitive dust emission inventory in Nanjing[J].Journal of University of Chinese Academy of Sciences,2014,31(3):351-359. doi: 10.7523/j.issn.2095-6134.2014.03.009 [20] 杨乃旺,宋文斌,闫东杰,等.基于积尘负荷的西安市铺装道路扬尘排放研究[J].环境科学学报,2021,41(4):1259-1266.YANG N W,SONG W B,YAN D J,et al.Emission characteristics of pavement road dust in Xi'an based on dust load method[J].Acta Scientiae Circumstantiae,2021,41(4):1259-1266. [21] 宋立来,李廷昆,毕晓辉,等.京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法[J].环境科学研究,2021,34(8):1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03SONG L L,LI T K,BI X H,et al.Construction and dynamic method of soil fugitive dust emission inventory with high spatial resolution in Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2021,34(8):1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03 [22] 许妍,周启星.天津城市交通道路扬尘排放特征及空间分布研究[J].中国环境科学,2012,32(12):2168-2173. doi: 10.3969/j.issn.1000-6923.2012.12.009XU Y,ZHOU Q X.Emission characteristics and spatial distribution of road fugitive dust in Tianjin,China[J].China Environmental Science,2012,32(12):2168-2173. doi: 10.3969/j.issn.1000-6923.2012.12.009 [23] LI L L,WANG K,SUN Z J,et al.Bottom-up emission inventory and its spatio-temporal distribution from paved road dust based on field investigation:a case study of Harbin,northeast China[J].Atmosphere,2021,12(4):449. doi: 10.3390/atmos12040449 [24] 环境保护部.扬尘源颗粒物排放清单编制技术指南[EB/OL].北京:环境保护部,(2014-12-31)[2022-04-27].https://www.mee.gov.cn/ywdt/hjnews/201501/t20150113_294134.html. [25] 庄焰,吕慎.城市道路交通流三参数关系研究[J].深圳大学学报,2005,22(4):78-79.ZHUANG Y,LV S.A study of the speed-flow-density relationships on urban roads[J].Shenzhen University Journal,2005,22(4):78-79. [26] 王殿海.交通流理论[M].北京:人民交通出版社,2002:45-52. [27] 李江.交通工程学[M].北京:人民交通出版社,2002. [28] 杜柏松,李明,罗玲.基于实测交通数据和可靠度理论的多车道荷载横向折减系数研究[J].重庆交通大学学报(自然科学版),2017,36(5):12-16.DU B S,LI M,LUO L.Multi-lane transverse reduction factor based on measured traffic data and reliability theory[J].Journal of Chongqing Jiaotong University (Natural Science),2017,36(5):12-16. [29] 崔亭亭.公路梁式桥拓宽时的荷载横向分布与横向折减系数研究[D].北京:北京交通大学,2016. [30] 交通运输部公路局.公路工程技术标准[EB/OL].北京:交通运输部公路局,(2015-01-01)[2022-06-15].http://www.gov.cn/fuwu/bzxxcx/bzh.html. [31] 全国地理信息资源目录服务系统.1:100万全国基础地理数据库[EB/OL].北京:全国地理信息资源目录服务系,(2022-05-28)[2021-10-02].https://www.webmap.cn/commres.do?method=result100W. [32] 张伟,姬亚芹,李树立,等.天津市春季典型道路积尘负荷分布特征[J].中国环境监测,2018,34(1):54-59.ZHANG W,JI Y Q,LI S L,et al.The distribution characteristics of silt loading of typical roads in Tianjin during spring[J].Environmental Monitoring in China,2018,34(1):54-59. [33] 张诗建.基于快速检测法的天津市道路扬尘排放清单研究[D].天津:南开大学,2016. [34] 中国汽车技术研究中心 .汽车和挂车类型的术语和定义[EB/OL].北京:中国汽车技术研究中心 ,(2014-06-04)[2022-02-07].http://www.gov.cn/fuwu/bzxxcx/bzh.html. [35] 李冬,薛占刚,刘善文,等.不同保洁工艺对道路尘负荷与扬尘控制效率差异的影响研究[J].环境科学研究,2022,35(7):1589-1595. doi: 10.13198/j.issn.1001-6929.2022.04.05LI D,XUE Z G,LIU S W,et al.Effect of various road cleaning measures on road dust silt loading and control efficiency[J].Research of Environmental Sciences,2022,35(7):1589-1595. doi: 10.13198/j.issn.1001-6929.2022.04.05 [36] 天津市城市管理委员会.天津市城市道路清扫保洁质量标准与作业规范 [EB/OL].天津:天津市城市管理委员会,(2019-10-29)[2022-05-06].https://csgl.tj.gov.cn/zwgk_57/xzcwj/scsglw/CGWWJ/202011/t20201111_4052994.html. [37] LIU Y,HUANG W,LIN X,et al.Variation of spatio-temporal distribution of on-road vehicle emissions based on real-time RFID data[J].Journal of Environmental Sciences,2022,116:151-162. doi: 10.1016/j.jes.2021.07.018 [38] MENG X R,et al.Characterization of spatio-temporal distribution of vehicle emissions using web-based real-time traffic data[J].Science of the Total Environment,2020,709:136227. doi: 10.1016/j.scitotenv.2019.136227 [39] 陈操操,邱大庆,于凤菊,等.北京市燃气工业锅炉CO2排放因子及不确定性分析[J].环境科学研究,2020,33(8):1776-1782.CHEN C C,QIU D Q,YU F J,et al.Carbon dioxide emission factors of nature gas boilers and its uncertainty in Beijing[J].Research of Environmental Sciences,2020,33(8):1776-1782. [40] 肖捷颖,刘娟,郭硕,等.石家庄城市道路积尘负荷排放特征研究[J].环境污染与防治,2018,40(2):186-188. doi: 10.15985/j.cnki.1001-3865.2018.02.013XIAO J Y,LIU J,GUO S,et al.Study on silt loading emission characteristics of urban road in Shijiazhuang[J].Environmental Pollution & Control,2018,40(2):186-188. doi: 10.15985/j.cnki.1001-3865.2018.02.013 [41] 崔浩然,樊守彬,韩力慧,等.北京市大兴区道路积尘年际变化特征及管控研究[J].中国环境科学,2021,41(10):4556-4564. doi: 10.3969/j.issn.1000-6923.2021.10.010CUI H R,FAN S B,HAN L H,et al.Interannual variation characteristics and control of road dust in Daxing District of Beijing[J].China Environmental Science,2021,41(10):4556-4564. doi: 10.3969/j.issn.1000-6923.2021.10.010 [42] 天津市人民政府.天津市综合交通“十三五”发展规划[EB/OL].天津:天津市人民政府,(2016-12-06)[2022-04-24].https://fzgg.tj.gov.cn/zwgk_47325/zcfg_47338/zcwjx/fgwj/202012/W020201219529486485659.pdf. -