留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海市PM2.5和臭氧复合污染期多路径减排效果评估

卞锦婷 黄凌 李红丽 李瑞 姜森 廖加强 王杨君 李莉

卞锦婷, 黄凌, 李红丽, 李瑞, 姜森, 廖加强, 王杨君, 李莉. 上海市PM2.5和臭氧复合污染期多路径减排效果评估[J]. 环境科学研究, 2023, 36(2): 314-324. doi: 10.13198/j.issn.1001-6929.2022.12.16
引用本文: 卞锦婷, 黄凌, 李红丽, 李瑞, 姜森, 廖加强, 王杨君, 李莉. 上海市PM2.5和臭氧复合污染期多路径减排效果评估[J]. 环境科学研究, 2023, 36(2): 314-324. doi: 10.13198/j.issn.1001-6929.2022.12.16
BIAN Jinting, HUANG Ling, LI Hongli, LI Rui, JIANG Sen, LIAO Jiaqiang, WANG Yangjun, LI Li. Evaluation of the Effectiveness of Multiple Emission Reduction Pathways during a Concurrent PM2.5 and Ozone Pollution in Shanghai[J]. Research of Environmental Sciences, 2023, 36(2): 314-324. doi: 10.13198/j.issn.1001-6929.2022.12.16
Citation: BIAN Jinting, HUANG Ling, LI Hongli, LI Rui, JIANG Sen, LIAO Jiaqiang, WANG Yangjun, LI Li. Evaluation of the Effectiveness of Multiple Emission Reduction Pathways during a Concurrent PM2.5 and Ozone Pollution in Shanghai[J]. Research of Environmental Sciences, 2023, 36(2): 314-324. doi: 10.13198/j.issn.1001-6929.2022.12.16

上海市PM2.5和臭氧复合污染期多路径减排效果评估

doi: 10.13198/j.issn.1001-6929.2022.12.16
基金项目: 国家自然科学基金青年项目(No.42005112);上海市科技创新行动计划项目(No.19DZ1205007);2022年度中国科协科技智库青年人才计划项目(No.20220615ZZ07110039)
详细信息
    作者简介:

    卞锦婷(1997-),女,江苏南通人,bianjinting@shu.edu.cn

    通讯作者:

    ①黄凌(1988-),女,江西赣州人,副研究员,博士,主要从事空气质量模型研究,linghuang@shu.edu.cn

    ②王杨君(1979-),女,浙江东阳人,副研究员,博士,博导,主要从事空气质量模型研究,yjwang326@shu.edu.cn

  • 中图分类号: X513

Evaluation of the Effectiveness of Multiple Emission Reduction Pathways during a Concurrent PM2.5 and Ozone Pollution in Shanghai

Funds: National Natural Science Foundation of China (No.42005112); Shanghai Science and Technology Innovation Plan, China (No.19DZ1205007); 2022 China Association for Science and Technology Think Tank Young Talent Program (No.20220615ZZ07110039)
  • 摘要: 为探究大气PM2.5和臭氧(O3)复合污染期间的污染物浓度削峰方案,以上海市2018年4月27—30日PM2.5和O3复合污染时段为研究对象,结合区域多尺度空气质量模型(CMAQ模型),建立上海市O3日最大8小时滑动平均值(MDA8 O3)以及PM2.5浓度与人为源排放的NOx和VOCs之间的响应关系,获得了EKMA (empirical kinetics modeling approach,经验动力学建模方法)曲线. 在此基础上,探讨上海市MDA8 O3和PM2.5对前体物排放的敏感性,并进一步量化了本地减排、提前减排和区域减排等不同情景下PM2.5和MDA8 O3的浓度变化. 结果表明:①上海市PM2.5和O3复合污染期间MDA8 O3的峰值率(PR)为0.6~1.1,除浦东惠南站点外,整体处于VOCs控制区. ②上海市人为源NOx和VOCs减排对PM2.5的削峰效果有限(NOx减少80%时,PM2.5浓度下降1.2 μg/m3). 本地VOCs减排对MDA8 O3的削峰较为明显(最大下降量为17.0 μg/m3). VOCs与NOx的减排比例需控制在1.9∶1以上才能使MDA8 O3浓度不发生反弹,同时可优先控制烯烃类的排放. ③上海市MDA8 O3浓度在提前减排和区域减排VOCs情景下均能进一步降低,降幅为0.6%~3.1%,且区域减排带来的受益范围更广;提前减排和区域减排对上海市PM2.5浓度降低的边际效益均甚微. 研究显示,复合污染期间VOCs的排放控制可同时削减PM2.5和MDA8 O3浓度峰值,提前采取污染防控措施以及区域联合控制对上海市O3浓度削峰有一定积极意义.

     

  • 图  1  4 km×4 km模拟区域范围和减排城市示意以及上海市部分国控站点分布

    Figure  1.  4 km×4 km simulated area range and emission reduction city schematic, and locations of selected national monitoring stations in Shanghai

    图  2  上海市不同站点PM2.5和O3浓度监测值和模拟值的相关性

    Figure  2.  Correlation between monitoring values and simulated values of PM2.5 and O3 concentrations at different stations in Shanghai

    图  3  上海市不同站点NOx和VOCs排放变化与MDA8 O3浓度的响应关系

    Figure  3.  Response of MDA8 O3 concentration to emission variations of NOx and VOCs at different stations in Shanghai

    图  4  上海市5个站点MDA8 O3平均浓度对不同VOCs物种的排放变化响应

    Figure  4.  Response of average MDA8 O3 concentration to emission changes of different VOCs species at five stations in Shanghai

    图  5  上海市本地排放对5个站点的PM2.5二次无机组分浓度的贡献率

    Figure  5.  Contribution of local emissions to secondary inorganic PM2.5 at five stations in Shanghai

    图  6  上海市5个站点不同NOx排放比例下SO42−、SOA和·OH 的变化率(VOCs排放比例为40%)

    Figure  6.  Changes of SO42−, SOA and ·OH concentrations under different NOx emission ratios at five stations in Shanghai (VOCs emissions set to 40%)

    图  7  减排方案SⅢ与SⅠ下MDA8 O3和PM2.5浓度差值的空间分布

    Figure  7.  Spatial distributions of differences in MDA8 O3 and PM2.5 concentrations between emission control scenarios SⅢ and SⅠ

    图  8  减排方案SⅢ与SⅠ下上海市不同站点MDA8 O3和PM2.5浓度的变化情况

    Figure  8.  Changes in MDA8 O3 and PM2.5 concentrations at different stations in Shanghai between emission control scenarios SⅢ and SⅠ

    图  9  减排方案SⅣ与SⅠ下MDA8 O3和PM2.5浓度差值的空间分布

    Figure  9.  Spatial distributions of differences in MDA8 O3 and PM2.5 concentrations between emission control scenarios SⅣ and SⅠ

    图  10  减排方案SⅣ与SⅠ下上海市不同站点MDA8 O3和PM2.5浓度变化

    Figure  10.  Changes in MDA8 O3 and PM2.5 concentrations at different stations in Shanghai between emission control scenarios SⅣ and SⅠ

    表  1  不同减排方案中CMAQ模拟情景设置

    Table  1.   Model configurations in different emission control scenarios

    项目VOCs排放比例/%NOx排放比例/%人为源VOCs减排物种减排城市减排时段
    基础情景100100
    方案ⅠS1~S24减排情景2020所有VOCs上海市27—30日
    4040
    6060
    8080
    100100
    方案ⅡS25~S40减排情景20100烷烃、烯烃、芳烃、OVOCs上海市27—30日
    40100
    60100
    80100
    方案ⅢS41~S44减排情景20100所有VOCs上海市24—30日
    40100
    60100
    80100
    方案ⅣS45~S48减排情景20100所有VOCs上海市、南通市、苏州市、嘉兴市、绍兴市、杭州市、宁波市27—30日
    40100
    60100
    80100
    下载: 导出CSV

    表  2  WRF气象因子准确性检验

    Table  2.   Validation of meteorological parameters for WRF simulation

    城市气象参数MBRMSENMB/%r
    上海市T0.5 ℃1.2 ℃2.80.98
    RH−8.9%10.6%−12.80.94
    WS0.5 m/s1.2 m/s21.30.66
    杭州市T−0.4 ℃1.3 ℃−1.80.96
    RH−8.2%10.5%−11.60.93
    WS−0.5 m/s0.9 m/s−20.50.73
    嘉兴市T1.0 ℃1.8 ℃5.20.98
    RH−13.2%15.2%−17.90.89
    WS−0.3 m/s0.9 m/s−10.80.82
    南通市T0.3 ℃1.3 ℃1.80.98
    RH−12.4%14.0%−17.00.93
    WS−12.4 m/s14.0 m/s−17.00.93
    宁波市T0.1 ℃0.9 ℃0.70.98
    RH−7.1%9.4%−9.90.91
    WS−0.5 m/s1.0 m/s−16.20.87
    绍兴市T0.2 ℃1.3 ℃1.00.97
    RH−7.9%10.1%−11.50.92
    WS−0.3 m/s1.0 m/s−14.10.66
    苏州市T0.3 ℃1.8 ℃1.40.97
    RH−9.0%11.0%−13.40.92
    WS−9.0 m/s11.0 m/s−13.40.92
    下载: 导出CSV

    表  3  不同城市CMAQ基准情景中PM2.5和O3浓度校验结果

    Table  3.   Validation of PM2.5 and O3 concentrations in CMAQ base case results in different cities

    城市污染物MB/(μg/m3)RMSE/(μg/m3)NMB/%r
    杭州市O3−2.141.6−2.20.76
    PM2.510.222.221.00.83
    嘉兴市O3−28.953.6−22.30.80
    PM2.52.323.44.00.69
    南通市O3−41.963.4−36.60.68
    PM2.5−25.750.7−34.40.40
    宁波市O3−33.951.7−28.10.80
    PM2.51.418.13.20.72
    绍兴市O3−20.350.9−17.10.74
    PM2.512.331.923.50.61
    苏州市O3−19.055.5−17.70.72
    PM2.5−6.635.9−8.70.59
    下载: 导出CSV

    表  4  上海市不同站点MDA8 O3和PM2.5的PR值

    Table  4.   The PR values for MDA8 O3 and PM2.5 at different stations in Shanghai

    站点名称PR值
    MDA8 O3PM2.5
    徐汇上师大站点0.61.5
    青浦淀山湖站点0.71.5
    宝山庙行站点0.61.0
    金山新城站点0.71.6
    浦东惠南站点1.11.6
    下载: 导出CSV

    表  5  上海市不同站点MDA8 O3的VNr值

    Table  5.   VNr values for MDA8 O3 at different stations in Shanghai

    站点名称VNr
    徐汇上师大站点1.4
    青浦淀山湖站点1.3
    宝山庙行站点1.9
    金山新城站点0.9
    浦东惠南站点
    下载: 导出CSV
  • [1] 花丛,江琪,迟茜元,等.我国中东部地区2015—2020年夏半年PM2.5和臭氧复合污染气象特征分析[J].环境科学研究,2022,35(3):650-658.

    HUA C,JIANG Q,CHI X Y,et al.Meteorological characteristics of PM2.5-O3 air combined pollution in central and eastern China in the summer half years of 2015-2020[J].Research of Environmental Sciences,2022,35(3):650-658.
    [2] 姜华,高健,李红,等.我国大气污染协同防控理论框架初探[J].环境科学研究,2022,35(3):601-610.

    JIANG H,GAO J,LI H,et al.Preliminary research on theoretical framework of cooperative control of air pollution in China[J].Research of Environmental Sciences,2022,35(3):601-610.
    [3] 张宇静,赵天良,殷翀之,等.徐州市大气PM2.5与O3作用关系的季节变化[J].中国环境科学,2019,39(6):2267-2272. doi: 10.3969/j.issn.1000-6923.2019.06.004

    ZHANG Y J,ZHAO T L,YIN C Z,et al.Seasonal variation of the relationship between surface PM2.5 and O3 concentrations in Xuzhou[J].China Environmental Science,2019,39(6):2267-2272. doi: 10.3969/j.issn.1000-6923.2019.06.004
    [4] 张涵,姜华,高健,等.PM2.5与臭氧污染形成机制及协同防控思路[J].环境科学研究,2022,35(3):611-620.

    ZHANG H,JIANG H,GAO J,et al.Formation mechanism and management strategy of cooperative control of PM2.5 and O3[J].Research of Environmental Sciences,2022,35(3):611-620.
    [5] OU S J,WEI W,CAI B,et al.Exploring the causes for co-pollution of O3 and PM2.5 in summer over North China[J].Environmental Monitoring and Assessment,2022,194(4):289. doi: 10.1007/s10661-022-09951-4
    [6] DAI H B,ZHU J,LIAO H,et al.Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013-2019:spatiotemporal distribution and meteorological conditions[J].Atmospheric Research,2021,249:105363. doi: 10.1016/j.atmosres.2020.105363
    [7] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.

    LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778.
    [8] LU K D,GUO S,TAN Z F,et al.Exploring atmospheric free-radical chemistry in China:the self-cleansing capacity and the formation of secondary air pollution[J].National Science Review,2019,6(3):579-594. doi: 10.1093/nsr/nwy073
    [9] GIODA A,OLIVEIRA R C G,CUNHA C L,et al.Understanding ozone formation at two Islands of Rio de Janeiro,Brazil[J].Atmospheric Pollution Research,2018,9(2):278-288. doi: 10.1016/j.apr.2017.10.003
    [10] TAN Z F,MA X F,LU K D,et al.Direct evidence of local photochemical production driven ozone episode in Beijing:a case study[J].Science of the Total Environment,2021,800:148868. doi: 10.1016/j.scitotenv.2021.148868
    [11] TAO J,ZHANG L M,HO K,et al.Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou:the largest megacity in South China[J].Atmospheric Research,2014,135/136:48-58. doi: 10.1016/j.atmosres.2013.08.015
    [12] LI G,BEI N,TIE X,et al.Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign[J].Atmospheric Chemistry and Physics,2011,11(11):5169-5182. doi: 10.5194/acp-11-5169-2011
    [13] XING J,WANG J D,MATHUR R,et al.Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates[J].Atmospheric Chemistry and Physics,2017,17(16):9869-9883. doi: 10.5194/acp-17-9869-2017
    [14] MENON S,UNGER N,KOCH D,et al.Aerosol climate effects and air quality impacts from 1980 to 2030[J].Environmental Research Letters,2008,3(2):024004. doi: 10.1088/1748-9326/3/2/024004
    [15] WANG Z S,LV J G,TAN Y F,et al.Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide,sulfur dioxide,particulate matters and carbon monoxide in ambient air,China[J].Atmospheric Pollution Research,2019,10(4):1203-1210. doi: 10.1016/j.apr.2019.02.003
    [16] GHARIBZADEH M,ALIAKBARI BIDOKHTI A,ALAM K.The interaction of ozone and aerosol in a semi-arid region in the Middle East:ozone formation and radiative forcing implications[J].Atmospheric Environment,2021,245:118015. doi: 10.1016/j.atmosenv.2020.118015
    [17] QU Y W,WANG T J,CAI Y F,et al.Influence of atmospheric particulate matter on ozone in Nanjing,China:observational study and mechanistic analysis[J].Advances in Atmospheric Sciences,2018,35(11):1381-1395. doi: 10.1007/s00376-018-8027-4
    [18] TAGARIS E,LIAO K J,MANOMAIPHIBOON K,et al.The role of climate and emission changes in future air quality over southern Canada and northern Mexico[J].Atmospheric Chemistry and Physics,2008,8(14):3973-3983. doi: 10.5194/acp-8-3973-2008
    [19] WANG N,XU J W,PEI C L,et al.Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta:two different responsive mechanisms to emission reductions in China[J].Environmental Science & Technology,2021,55(9):5721-5730.
    [20] PUN B K,WU S Y,SEIGNEUR C.Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States[J].Environmental Science & Technology,2002,36(16):3586-3596.
    [21] HE Z M,LIU P F,ZHAO X X,et al.Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019:a study based on multiple linear regression and WRF-Chem[J].Science of the Total Environment,2022,807:150792. doi: 10.1016/j.scitotenv.2021.150792
    [22] BAKER K R,KOTCHENRUTHER R A,HUDMAN R C.Estimating ozone and secondary PM2.5 impacts from hypothetical single source emissions in the central and eastern United States[J].Atmospheric Pollution Research,2016,7(1):122-133. doi: 10.1016/j.apr.2015.08.003
    [23] SHAO M,WANG W J,YUAN B,et al.Quantifying the role of PM2.5 dropping in variations of ground-level ozone:inter-comparison between Beijing and Los Angeles[J].Science of the Total Environment,2021,788:147712. doi: 10.1016/j.scitotenv.2021.147712
    [24] ZHANG Y,LIU X H,OLSEN K M,et al.Responses of future air quality to emission controls over North Carolina,Part Ⅱ:analyses of future-year predictions and their policy implications[J].Atmospheric Environment,2010,44(23):2767-2779. doi: 10.1016/j.atmosenv.2010.03.022
    [25] 王帆,秦思达,赵帝,等.基于WRF-CMAQ的沈阳市大气减排情景模拟与对策研究[J].环境保护科学,2022,48(3):111-118.

    WANG F,QIN S D,ZHAO D,et al.Research of scenario simulation and countermeasures for emission reduction in Shenyang based on WRF-CMAQ[J].Environmental Protection Science,2022,48(3):111-118.
    [26] KANG M J,ZHANG J,ZHANG H L,et al.On the relevancy of observed ozone increase during COVID-19 lockdown to summertime ozone and PM2.5 control policies in China[J].Environmental Science & Technology Letters,2021,8(4):289-294.
    [27] 上海市统计局.上海统计年鉴(2021年)[M].北京:中国统计出版社,2021.
    [28] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(2):422-427. doi: 10.1073/pnas.1812168116
    [29] WANG T,XUE L K,BRIMBLECOMBE P,et al.Ozone pollution in China:a review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
    [30] LI X B,FAN G Q,LOU S R,et al.Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China[J].Environmental Pollution,2021,268:115804. doi: 10.1016/j.envpol.2020.115804
    [31] SHI L S,ZHU A S,HUANG L,et al.Impact of the planetary boundary layer on air quality simulations over the Yangtze River Delta Region,China[J].Atmospheric Environment,2021,263:118685. doi: 10.1016/j.atmosenv.2021.118685
    [32] HUANG L,WANG Q,WANG Y J,et al.Simulation of secondary organic aerosol over the Yangtze River Delta Region:the impacts from the emissions of intermediate volatility organic compounds and the SOA modeling framework[J].Atmospheric Environment,2021,246:118079. doi: 10.1016/j.atmosenv.2020.118079
    [33] 严茹莎,李莉,安静宇,等.夏季长三角地区臭氧非线性响应曲面模型的建立及应用[J].环境科学学报,2016,36(4):1383-1392.

    YAN R S,LI L,AN J Y,et al.Establishment and application of nonlinear response surface model of ozone in the Yangtze River Delta Region during summertime[J].Acta Scientiae Circumstantiae,2016,36(4):1383-1392.
    [34] 董赵鑫,邢佳,丁点,等.长江三角洲区域细颗粒物和臭氧对前体物减排的响应及政策启示[J].科学通报,2022,67(18):2079-2088. doi: 10.1360/TB-2021-0615

    DONG Z X,XING J,DING D,et al.Response of fine particulate matter and ozone to precursors emission reduction in the Yangtze River Delta and its policy implications[J].Chinese Science Bulletin,2022,67(18):2079-2088. doi: 10.1360/TB-2021-0615
    [35] WANG P F,GUO H,HU J L,et al.Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J].Science of the Total Environment,2019,662:297-306. doi: 10.1016/j.scitotenv.2019.01.227
    [36] 谢绍东,田晓雪.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J].化学进展,2010,22(4):727-733.

    XIE S D,TIAN X X.Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J].Progress in Chemistry,2010,22(4):727-733.
    [37] DONG X Y,LI J,FU J S,et al.Inorganic aerosols responses to emission changes in Yangtze River Delta,China[J].Science of the Total Environment,2014,481:522-532. doi: 10.1016/j.scitotenv.2014.02.076
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  41
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-12-20

目录

    /

    返回文章
    返回