Evaluation of the Effectiveness of Multiple Emission Reduction Pathways during a Concurrent PM2.5 and Ozone Pollution in Shanghai
-
摘要: 为探究大气PM2.5和臭氧(O3)复合污染期间的污染物浓度削峰方案,以上海市2018年4月27—30日PM2.5和O3复合污染时段为研究对象,结合区域多尺度空气质量模型(CMAQ模型),建立上海市O3日最大8小时滑动平均值(MDA8 O3)以及PM2.5浓度与人为源排放的NOx和VOCs之间的响应关系,获得了EKMA (empirical kinetics modeling approach,经验动力学建模方法)曲线. 在此基础上,探讨上海市MDA8 O3和PM2.5对前体物排放的敏感性,并进一步量化了本地减排、提前减排和区域减排等不同情景下PM2.5和MDA8 O3的浓度变化. 结果表明:①上海市PM2.5和O3复合污染期间MDA8 O3的峰值率(PR)为0.6~1.1,除浦东惠南站点外,整体处于VOCs控制区. ②上海市人为源NOx和VOCs减排对PM2.5的削峰效果有限(NOx减少80%时,PM2.5浓度下降1.2 μg/m3). 本地VOCs减排对MDA8 O3的削峰较为明显(最大下降量为17.0 μg/m3). VOCs与NOx的减排比例需控制在1.9∶1以上才能使MDA8 O3浓度不发生反弹,同时可优先控制烯烃类的排放. ③上海市MDA8 O3浓度在提前减排和区域减排VOCs情景下均能进一步降低,降幅为0.6%~3.1%,且区域减排带来的受益范围更广;提前减排和区域减排对上海市PM2.5浓度降低的边际效益均甚微. 研究显示,复合污染期间VOCs的排放控制可同时削减PM2.5和MDA8 O3浓度峰值,提前采取污染防控措施以及区域联合控制对上海市O3浓度削峰有一定积极意义.
-
关键词:
- 协同控制 /
- 臭氧(O3) /
- PM2.5 /
- 区域多尺度空气质量模型(CMAQ模型) /
- 减排情景
Abstract: In order to investigate the synergistic control strategy of both PM2.5 and O3 during a concurrent pollution episode in Shanghai from April 27th to 30th, 2018, this study established the response curves (i.e., EKMA) of the maximum 8-hour average O3 (MDA8 O3) and PM2.5 concentrations to changes in anthropogenic NOx and VOCs emissions. On this basis, the sensitivities of MDA8 O3 and PM2.5 to changes in precursor emissions in Shanghai were discussed, and two more emission control scenarios, one with temporally advanced reduction and the other with regional reduction, were conducted to quantify the changes in MDA8 O3 and PM2.5 concentrations. The results show that: (1) During the period of PM2.5 and O3 pollution in Shanghai, the peak ratio (PR) of MDA8 O3 was 0.6-1.1, with most of Shanghai being in the VOC-limited area, except Pudong district. (2) Reducing anthropogenic NOx and VOCs emissions in Shanghai had limited effects on reducing peak PM2.5 concentration (maximum PM2.5 decrease of 1.2 μg/m3 with 80% reduction in NOx). VOCs emission reduction in Shanghai had a more significant effect on reducing MDA8 O3 concentration (maximum decrease of 17.0 μg/m3). The reduction ratio of VOCs/NOx needs to be controlled above 1.9∶1 to prevent MDA8 O3 from increasing. We should also prioritize controlling olefin emissions. (3) The MDA8 O3 concentration in Shanghai can be further reduced by advanced and regional emission reduction of VOCs (by another 0.6%-3.1%). A broader region of reduction could be achieved by emission reduction at a regional scale. However, the marginal benefit of early and regional emission reduction in reducing PM2.5 concentration in Shanghai is limited. The results show that VOCs reduction during concurrent pollution can reduce both PM2.5 and MDA8 O3 concentrations, and early adoption of pollution prevention and control measures and joint regional control have positive effect on reducing O3 concentration in Shanghai. -
表 1 不同减排方案中CMAQ模拟情景设置
Table 1. Model configurations in different emission control scenarios
项目 VOCs排放比例/% NOx排放比例/% 人为源VOCs减排物种 减排城市 减排时段 基础情景 100 100 — — — 方案Ⅰ S1~S24减排情景 20 20 所有VOCs 上海市 27—30日 40 40 60 60 80 80 100 100 方案Ⅱ S25~S40减排情景 20 100 烷烃、烯烃、芳烃、OVOCs 上海市 27—30日 40 100 60 100 80 100 方案Ⅲ S41~S44减排情景 20 100 所有VOCs 上海市 24—30日 40 100 60 100 80 100 方案Ⅳ S45~S48减排情景 20 100 所有VOCs 上海市、南通市、苏州市、嘉兴市、绍兴市、杭州市、宁波市 27—30日 40 100 60 100 80 100 表 2 WRF气象因子准确性检验
Table 2. Validation of meteorological parameters for WRF simulation
城市 气象参数 MB RMSE NMB/% r 上海市 T 0.5 ℃ 1.2 ℃ 2.8 0.98 RH −8.9% 10.6% −12.8 0.94 WS 0.5 m/s 1.2 m/s 21.3 0.66 杭州市 T −0.4 ℃ 1.3 ℃ −1.8 0.96 RH −8.2% 10.5% −11.6 0.93 WS −0.5 m/s 0.9 m/s −20.5 0.73 嘉兴市 T 1.0 ℃ 1.8 ℃ 5.2 0.98 RH −13.2% 15.2% −17.9 0.89 WS −0.3 m/s 0.9 m/s −10.8 0.82 南通市 T 0.3 ℃ 1.3 ℃ 1.8 0.98 RH −12.4% 14.0% −17.0 0.93 WS −12.4 m/s 14.0 m/s −17.0 0.93 宁波市 T 0.1 ℃ 0.9 ℃ 0.7 0.98 RH −7.1% 9.4% −9.9 0.91 WS −0.5 m/s 1.0 m/s −16.2 0.87 绍兴市 T 0.2 ℃ 1.3 ℃ 1.0 0.97 RH −7.9% 10.1% −11.5 0.92 WS −0.3 m/s 1.0 m/s −14.1 0.66 苏州市 T 0.3 ℃ 1.8 ℃ 1.4 0.97 RH −9.0% 11.0% −13.4 0.92 WS −9.0 m/s 11.0 m/s −13.4 0.92 表 3 不同城市CMAQ基准情景中PM2.5和O3浓度校验结果
Table 3. Validation of PM2.5 and O3 concentrations in CMAQ base case results in different cities
城市 污染物 MB/(μg/m3) RMSE/(μg/m3) NMB/% r 杭州市 O3 −2.1 41.6 −2.2 0.76 PM2.5 10.2 22.2 21.0 0.83 嘉兴市 O3 −28.9 53.6 −22.3 0.80 PM2.5 2.3 23.4 4.0 0.69 南通市 O3 −41.9 63.4 −36.6 0.68 PM2.5 −25.7 50.7 −34.4 0.40 宁波市 O3 −33.9 51.7 −28.1 0.80 PM2.5 1.4 18.1 3.2 0.72 绍兴市 O3 −20.3 50.9 −17.1 0.74 PM2.5 12.3 31.9 23.5 0.61 苏州市 O3 −19.0 55.5 −17.7 0.72 PM2.5 −6.6 35.9 −8.7 0.59 表 4 上海市不同站点MDA8 O3和PM2.5的PR值
Table 4. The PR values for MDA8 O3 and PM2.5 at different stations in Shanghai
站点名称 PR值 MDA8 O3 PM2.5 徐汇上师大站点 0.6 1.5 青浦淀山湖站点 0.7 1.5 宝山庙行站点 0.6 1.0 金山新城站点 0.7 1.6 浦东惠南站点 1.1 1.6 表 5 上海市不同站点MDA8 O3的VNr值
Table 5. VNr values for MDA8 O3 at different stations in Shanghai
站点名称 VNr 徐汇上师大站点 1.4 青浦淀山湖站点 1.3 宝山庙行站点 1.9 金山新城站点 0.9 浦东惠南站点 — -
[1] 花丛,江琪,迟茜元,等.我国中东部地区2015—2020年夏半年PM2.5和臭氧复合污染气象特征分析[J].环境科学研究,2022,35(3):650-658.HUA C,JIANG Q,CHI X Y,et al.Meteorological characteristics of PM2.5-O3 air combined pollution in central and eastern China in the summer half years of 2015-2020[J].Research of Environmental Sciences,2022,35(3):650-658. [2] 姜华,高健,李红,等.我国大气污染协同防控理论框架初探[J].环境科学研究,2022,35(3):601-610.JIANG H,GAO J,LI H,et al.Preliminary research on theoretical framework of cooperative control of air pollution in China[J].Research of Environmental Sciences,2022,35(3):601-610. [3] 张宇静,赵天良,殷翀之,等.徐州市大气PM2.5与O3作用关系的季节变化[J].中国环境科学,2019,39(6):2267-2272. doi: 10.3969/j.issn.1000-6923.2019.06.004ZHANG Y J,ZHAO T L,YIN C Z,et al.Seasonal variation of the relationship between surface PM2.5 and O3 concentrations in Xuzhou[J].China Environmental Science,2019,39(6):2267-2272. doi: 10.3969/j.issn.1000-6923.2019.06.004 [4] 张涵,姜华,高健,等.PM2.5与臭氧污染形成机制及协同防控思路[J].环境科学研究,2022,35(3):611-620.ZHANG H,JIANG H,GAO J,et al.Formation mechanism and management strategy of cooperative control of PM2.5 and O3[J].Research of Environmental Sciences,2022,35(3):611-620. [5] OU S J,WEI W,CAI B,et al.Exploring the causes for co-pollution of O3 and PM2.5 in summer over North China[J].Environmental Monitoring and Assessment,2022,194(4):289. doi: 10.1007/s10661-022-09951-4 [6] DAI H B,ZHU J,LIAO H,et al.Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013-2019:spatiotemporal distribution and meteorological conditions[J].Atmospheric Research,2021,249:105363. doi: 10.1016/j.atmosres.2020.105363 [7] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778. [8] LU K D,GUO S,TAN Z F,et al.Exploring atmospheric free-radical chemistry in China:the self-cleansing capacity and the formation of secondary air pollution[J].National Science Review,2019,6(3):579-594. doi: 10.1093/nsr/nwy073 [9] GIODA A,OLIVEIRA R C G,CUNHA C L,et al.Understanding ozone formation at two Islands of Rio de Janeiro,Brazil[J].Atmospheric Pollution Research,2018,9(2):278-288. doi: 10.1016/j.apr.2017.10.003 [10] TAN Z F,MA X F,LU K D,et al.Direct evidence of local photochemical production driven ozone episode in Beijing:a case study[J].Science of the Total Environment,2021,800:148868. doi: 10.1016/j.scitotenv.2021.148868 [11] TAO J,ZHANG L M,HO K,et al.Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou:the largest megacity in South China[J].Atmospheric Research,2014,135/136:48-58. doi: 10.1016/j.atmosres.2013.08.015 [12] LI G,BEI N,TIE X,et al.Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign[J].Atmospheric Chemistry and Physics,2011,11(11):5169-5182. doi: 10.5194/acp-11-5169-2011 [13] XING J,WANG J D,MATHUR R,et al.Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates[J].Atmospheric Chemistry and Physics,2017,17(16):9869-9883. doi: 10.5194/acp-17-9869-2017 [14] MENON S,UNGER N,KOCH D,et al.Aerosol climate effects and air quality impacts from 1980 to 2030[J].Environmental Research Letters,2008,3(2):024004. doi: 10.1088/1748-9326/3/2/024004 [15] WANG Z S,LV J G,TAN Y F,et al.Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide,sulfur dioxide,particulate matters and carbon monoxide in ambient air,China[J].Atmospheric Pollution Research,2019,10(4):1203-1210. doi: 10.1016/j.apr.2019.02.003 [16] GHARIBZADEH M,ALIAKBARI BIDOKHTI A,ALAM K.The interaction of ozone and aerosol in a semi-arid region in the Middle East:ozone formation and radiative forcing implications[J].Atmospheric Environment,2021,245:118015. doi: 10.1016/j.atmosenv.2020.118015 [17] QU Y W,WANG T J,CAI Y F,et al.Influence of atmospheric particulate matter on ozone in Nanjing,China:observational study and mechanistic analysis[J].Advances in Atmospheric Sciences,2018,35(11):1381-1395. doi: 10.1007/s00376-018-8027-4 [18] TAGARIS E,LIAO K J,MANOMAIPHIBOON K,et al.The role of climate and emission changes in future air quality over southern Canada and northern Mexico[J].Atmospheric Chemistry and Physics,2008,8(14):3973-3983. doi: 10.5194/acp-8-3973-2008 [19] WANG N,XU J W,PEI C L,et al.Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta:two different responsive mechanisms to emission reductions in China[J].Environmental Science & Technology,2021,55(9):5721-5730. [20] PUN B K,WU S Y,SEIGNEUR C.Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States[J].Environmental Science & Technology,2002,36(16):3586-3596. [21] HE Z M,LIU P F,ZHAO X X,et al.Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019:a study based on multiple linear regression and WRF-Chem[J].Science of the Total Environment,2022,807:150792. doi: 10.1016/j.scitotenv.2021.150792 [22] BAKER K R,KOTCHENRUTHER R A,HUDMAN R C.Estimating ozone and secondary PM2.5 impacts from hypothetical single source emissions in the central and eastern United States[J].Atmospheric Pollution Research,2016,7(1):122-133. doi: 10.1016/j.apr.2015.08.003 [23] SHAO M,WANG W J,YUAN B,et al.Quantifying the role of PM2.5 dropping in variations of ground-level ozone:inter-comparison between Beijing and Los Angeles[J].Science of the Total Environment,2021,788:147712. doi: 10.1016/j.scitotenv.2021.147712 [24] ZHANG Y,LIU X H,OLSEN K M,et al.Responses of future air quality to emission controls over North Carolina,Part Ⅱ:analyses of future-year predictions and their policy implications[J].Atmospheric Environment,2010,44(23):2767-2779. doi: 10.1016/j.atmosenv.2010.03.022 [25] 王帆,秦思达,赵帝,等.基于WRF-CMAQ的沈阳市大气减排情景模拟与对策研究[J].环境保护科学,2022,48(3):111-118.WANG F,QIN S D,ZHAO D,et al.Research of scenario simulation and countermeasures for emission reduction in Shenyang based on WRF-CMAQ[J].Environmental Protection Science,2022,48(3):111-118. [26] KANG M J,ZHANG J,ZHANG H L,et al.On the relevancy of observed ozone increase during COVID-19 lockdown to summertime ozone and PM2.5 control policies in China[J].Environmental Science & Technology Letters,2021,8(4):289-294. [27] 上海市统计局.上海统计年鉴(2021年)[M].北京:中国统计出版社,2021. [28] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(2):422-427. doi: 10.1073/pnas.1812168116 [29] WANG T,XUE L K,BRIMBLECOMBE P,et al.Ozone pollution in China:a review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081 [30] LI X B,FAN G Q,LOU S R,et al.Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China[J].Environmental Pollution,2021,268:115804. doi: 10.1016/j.envpol.2020.115804 [31] SHI L S,ZHU A S,HUANG L,et al.Impact of the planetary boundary layer on air quality simulations over the Yangtze River Delta Region,China[J].Atmospheric Environment,2021,263:118685. doi: 10.1016/j.atmosenv.2021.118685 [32] HUANG L,WANG Q,WANG Y J,et al.Simulation of secondary organic aerosol over the Yangtze River Delta Region:the impacts from the emissions of intermediate volatility organic compounds and the SOA modeling framework[J].Atmospheric Environment,2021,246:118079. doi: 10.1016/j.atmosenv.2020.118079 [33] 严茹莎,李莉,安静宇,等.夏季长三角地区臭氧非线性响应曲面模型的建立及应用[J].环境科学学报,2016,36(4):1383-1392.YAN R S,LI L,AN J Y,et al.Establishment and application of nonlinear response surface model of ozone in the Yangtze River Delta Region during summertime[J].Acta Scientiae Circumstantiae,2016,36(4):1383-1392. [34] 董赵鑫,邢佳,丁点,等.长江三角洲区域细颗粒物和臭氧对前体物减排的响应及政策启示[J].科学通报,2022,67(18):2079-2088. doi: 10.1360/TB-2021-0615DONG Z X,XING J,DING D,et al.Response of fine particulate matter and ozone to precursors emission reduction in the Yangtze River Delta and its policy implications[J].Chinese Science Bulletin,2022,67(18):2079-2088. doi: 10.1360/TB-2021-0615 [35] WANG P F,GUO H,HU J L,et al.Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J].Science of the Total Environment,2019,662:297-306. doi: 10.1016/j.scitotenv.2019.01.227 [36] 谢绍东,田晓雪.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J].化学进展,2010,22(4):727-733.XIE S D,TIAN X X.Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J].Progress in Chemistry,2010,22(4):727-733. [37] DONG X Y,LI J,FU J S,et al.Inorganic aerosols responses to emission changes in Yangtze River Delta,China[J].Science of the Total Environment,2014,481:522-532. doi: 10.1016/j.scitotenv.2014.02.076 -