Identification of Key Anthropogenic VOCs and Their Sources in Henan Province
-
摘要: 为了解河南省人为源挥发性有机物(VOCs)的排放特征,识别以臭氧(O3)污染治理为目的的关键VOCs物种及其排放源,以五大类人为源活动水平数据为基础,采用排放因子法建立了2019年河南省县级人为源VOCs组分化排放清单,并利用最大增量反应活性(MIR)估算其臭氧生成潜势(OFP),基于OFP识别O3污染治理的关键VOCs物种及其排放源. 结果表明:①河南省2019年人为源VOCs排放总量为175.62×104 t,其中工艺过程源、移动源、生物质燃烧源、溶剂使用源和化石燃料燃烧源对VOCs排放总量的贡献率分别为28.6%、25.2%、20.8%、19.1%和6.3%. ②空间分布显示,以郑州市为中心的豫北排放量远高于豫南,呈“一高三低”的空间分布特点,郑州市排放量最高,其排放量为27.7×104 t,漯河市、三门峡市和鹤壁市排放量最低,其排放量均小于5.0×104 t. ③芳香烃是排放量最高的化学组分,其排放量为47.5×104 t,其次为烷烃(46.3×104 t)、OVOCs(40.3×104 t)和烯烃(20.9×104 t),其中甲苯、乙烯、苯等排放量高的10个物种占排放总量的42.0%. ④河南省人为源VOCs的总OFP为664.0×104 t,其中,芳香烃和烯烃对OFP的贡献最大,均占总OFP的32%,其次为OVOCs,占比为28.0%;本研究的OFP空间分布与国控点O3浓度和PM2.5-O3大气复合污染空间分布规律高度一致. 研究显示,乙烯、间/对-二甲苯、甲苯、丙烯和甲醛等对总OFP的贡献率为67.2%,其主要来源是生物质燃烧、小型客车、建筑涂装、汽车涂装、化学合成、涂料制造、建筑和农业机械等,因此这些VOCs物种和排放源是河南省O3污染治理的关键.
-
关键词:
- 人为源VOCs /
- 组分清单 /
- 臭氧生成潜势(OFP) /
- 关键物种和排放源
Abstract: In order to understand the characteristics of VOCs emissions from anthropogenic sources in Henan Province, and to identify key VOCs types and their emission sources for O3 pollution control, the county-level anthropogenic speciated VOCs emission inventory was established using the emission factor methods in 2019. Furthermore, the ozone formation potentials (OFP) of VOCs were estimated by Maximum Incremental Reactivity (MIR), and the key species and emission sources were identified based on OFPs. The results showed that: (1) The total anthropogenic VOCs emissions in Henan Province in 2019 were 175.62×104 t, of which industrial sources, mobile sources, biomass combustion sources, solvent utilization sources, and fossil fuel combustion sources contributed 28.6%, 25.2%, 20.8%, 19.1%, and 6.3% to the total VOCs emissions, respectively. (2) The spatial distribution showed that the emissions in northern Henan were much higher than those in southern Henan, and the spatial distribution of municipal emissions was characterized by ‘one high and three low’, with the highest emission of 27.6×104 t in Zhengzhou City, the lowest emissions in Luohe, Sanmenxia, and less than 5.0×104 t in Hebi. (3) Aromatic hydrocarbons were the highest emitted chemical component at 47.5×104 t, followed by alkanes (46.3×104 t), OVOCs (40.3×104 t), and alkenes (20.9×104 t), of which 10 species had high emissions, such as toluene, ethylene, and benzene accounted for 42.0% of the total emissions. (4) The total OFP of anthropogenic VOCs in Henan Province was 664.0×104 t, among which aromatic hydrocarbons and alkenes contributed the most to OFP, each accounting for 32% of the total OFP, followed by OVOCs (28.0%). The spatial distribution of OFP in this study is highly consistent with the spatial distribution of O3 concentration and PM2.5-O3 air compound pollution obtained from National Air Quality Monitoring Stations. In summary, ethylene, m/p-xylene, toluene, propylene, and formaldehyde contributed for 67.2% of the total OFP, and they mainly came from biomass combustion, passenger cars, architectural painting, car painting, chemical synthesis, paint manufacturing, construction and agricultural machinery. These species and emission sources are the focus of ozone pollution control in Henan. -
表 1 市级排放量分配到县级的替代变量
Table 1. Substitute variables for allocating city-level emissions to the county-level
替代变量 排放源 机动车保有量、GDP 移动源、溶剂使用源 建筑竣工面积 建筑喷涂、建筑机械源 工业产值 工艺过程源 人口、城镇人口比例 居民散煤燃烧源 工业产值 工业散煤燃烧源 土地利用类型、播种面积、火点数 生物质露天焚烧、农药使用源 农业机械总动力 农业机械源 一级源 二级源 三级源 排放因子 一级源 二级源 三级源 排放因子 固定化石燃料
燃烧源工商业 原煤 0.39 g/kg 工艺过程源 石油工业 原油开采 1.4175 g/kg 燃料油 0.35 g/kg 天然气开采 0.1 g/kg 液化石油气 0.19 g/kg 石油精炼 1.82 g/kg 天然气 0.088 g/m3 基础化学原料生产 乙烯 0.6 g/kg 火力发电 原煤 0.15 g/kg 丙烯 0.111 g/kg 燃料油 0.35 g/kg 丙烯腈 0.99 g/kg 液化石油气 0.19 g/kg 苯 0.55 g/kg 天然气 0.088 g/m3 乙苯 0.1 g/kg 供热 原煤 0.39 g/kg 丁二烯 11.6 g/kg 燃料油 0.35 g/kg 苯乙烯 0.223 g/kg 液化石油气 0.19 g/kg 药品原料药 300 g/kg 天然气 0.088 g/m3 农药原料药 131.5 g/kg 居民生活 原煤 3.34 g/kg 化肥生产 合成氨 4.72 g/kg 燃料油 0.35 g/kg 尿素 0.01 g/kg 液化石油气 0.19 g/kg 涂料等生产 油墨 60 g/kg 天然气 0.13 g/m3 涂料 42 g/kg 散煤消费 工业 3.34 g/kg 黑炭 52 g/kg 居民 5.12 g/kg 合成树脂生产 聚氯乙烯 0.7448 g/kg 生物质燃烧源 露天焚烧 水稻 8.45 g/kg 聚苯乙烯 5.4 g/kg 小麦 7.48 g/kg 聚丙烯 4 g/kg 续表 2 一级源 二级源 三级源 排放因子 一级源 二级源 三级源 排放因子 生物质燃烧源 露天焚烧 玉米 10.4 g/kg 工艺过程源 合成树脂生产 高密度聚乙烯 5.7 g/kg 其他 8.45 g/kg 低密度聚乙烯 10 g/kg 燃料燃烧 秸秆燃烧 7.97 g/kg ABS 1.4 g/kg 新柴燃烧 3.13 g/kg 化学纤维生产 合成纤维单体 1 g/kg 溶剂使用源 农药使用 杀虫剂 567 g/kg 尼龙 3.75 g/kg 除草剂 316 g/kg 涤纶 0.7 g/kg 除菌剂 475 g/kg 腈纶 37.1 g/kg 其他农药 470 g/kg 丙纶 37.1 g/kg 印染 出版印刷 4095 kg/厂 维纶 7.7 g/kg 纸质包装 5325 kg/厂 锦纶 7.7 g/kg 塑料包装 51728 kg/厂 氨纶 7.7 g/kg 饮料罐涂装 1 g/kg 胶黏纤维 14.5 g/kg 印染布 81.4 g/kg 橡胶、塑料生产 合成橡胶 7.17 g/kg 沥青使用 30 g/kg 轮胎 0.28 g/条 建筑涂装 内墙 100 g/kg 人造革 163.46 g/kg 外墙溶剂涂料 430 g/kg 泡沫塑料 120.0 g/kg 外墙水性涂料 40 g/kg 其他工业 炼铁 0.053 g/kg 家具制造 水性涂料 0.14 g/个 炼焦 1.75 g/kg 溶剂型涂料 1.16 g/个 人造板制造 0.3 g/m3 车辆制造 轿车 3.92 kg/辆 制浆造纸 3.1 g/kg 卡车 10 kg/辆 固废处理 0.74 g/kg 公交车 60 kg/辆 污水处理 0.015 g/m3 摩托车 1.8 kg/辆 采煤和洗煤 0.196 g/kg 自行车 0.3 kg/辆 建筑材料制造 水泥 0.177 g/kg 其他工业溶剂使用 家电喷漆 0.2 g/个 陶瓷 0.177 g/kg 集成电路 0.234 4 kg/m2 石油沥青 0.432 g/kg 漆包线 11 g/kg 平板玻璃 220 g/重量箱 机床制造 0.66 g/个 玻璃纤维 3.15 g/kg 打印机 0.2 g/个 食品加工 植物油提炼 9 g/kg 皮革鞋1) 70.56 g/kg 制糖 10 g/kg 其他办公用品 0.2 g/个 面包 3 g/kg 居民生活消费 烹饪 0.6 kg/(人·a) 饼干 1 g/kg 化妆品 0.16 kg/(人·a) 白酒 0.035 kg/L 非工业黏合剂 0.032 5 kg/(人·a) 啤酒 0.000 35 kg/L 干洗 0.205 kg/(人·a) 加油站 汽油 3.096 g/kg 洗涤剂 0.01 kg/(人·a) 柴油 0.8 g/kg 家居用品 0.43 kg/(人·a) 油品运输 原油 0.54 g/kg 移动源2) 非道路移动源 飞机 1.95 kg/LTO3) 汽油 1.5 g/kg 轮船 6.12 g/kg4) 柴油 1.0 g/kg 铁路 6.14 g/kg4) 油品储存 原油 0.045 g/kg 农业机械 18.3 g/kg4) 汽油 0.295 g/kg 建筑机械 18.3 g/kg4) 柴油 0.175 g/kg 注:1) 假设一双鞋子相当于1 kg;2) 由于不同排量和排放标准的汽车的排放因子不同,数据量大,因此表中未列出其排放因子;3) LTO为飞机起飞着陆循环次数;4)以柴油计. 表 3 本研究涉及的主要VOCs源成分谱
Table 3. Source composition spectrum of VOCs involved in this study
二级源 三级源 VOCs物种数/个 数据来源 二级源 三级源 VOCs物种数/个 数据来源 固定化石燃料燃烧 原煤 92 文献[13] 石油工业 原油开采 14 文献[27] 燃料油 54 文献[13] 天然气开采 14 文献[27] 液化石油气 59 文献[13] 石油精炼 97 文献[38] 天然气 15 文献[13] 基础化学原料 98 文献[13] 生物质露天焚烧 水稻 92 文献[13] 药品生产 14 文献[13] 小麦 92 文献[13] 农药生产 66 文献[36] 玉米 92 文献[13] 塑料、橡胶 合成橡胶 91 文献[13] 其他 92 文献[13] 轮胎 87 文献[13] 生物质燃料燃烧 秸秆燃料 79 文献[13] 人造革 98 文献[13] 新柴 59 文献[13] 泡沫塑料 99 文献[36] 天然气 15 文献[13] 合成纤维 6 文献[13] 农药使用 20 文献[13] 合成树脂 98 文献[13] 印染 出版印刷 86 文献[35] 涂料等生产 油墨 77 文献[36] 纸质包装 86 文献[35] 涂料 74 文献[36] 塑料包装 38 文献[35] 黑炭 70 文献[13] 饮料罐涂装 41 文献[13] 化肥生产 合成氨 55 文献[13] 印染布 81 文献[13] 尿素 55 文献[13] 沥青使用 43 文献[13] 其他工业 炼铁 58 文献[13] 建筑涂装 48 文献[13] 炼焦 67 文献[37] 家具喷涂 40 文献[35] 人造板制造 36 文献[39] 汽车制造 72 文献[27] 制浆造纸 30 文献[13] 船舶制造 49 文献[27] 固废处理 44 文献[13] 其他表面涂装 37 文献[35] 污水处理 55 文献[13] 制鞋 21 文献[27] 采煤和洗煤 15 文献[13] 居民生活消费 烹饪 10 文献[13] 建筑材料 75 文献[13] 化妆品 10 文献[13] 食品加工 植物油提炼 73 文献[27] 非工业黏合剂 33 文献[13] 制糖 5 文献[13] 家居用品 10 文献[13] 面包 5 文献[13] 洗涤剂 31 文献[13] 饼干 5 文献[13] 非道路移动源 飞机 36 文献[13] 白酒 4 文献[13] 轮船 25 文献[13] 啤酒 73 文献[13] 铁路 69 文献[13] 加油站 汽油 54 文献[13] 农业机械 601)/692) 文献[13] 柴油 54 文献[13] 建筑机械 601)/692) 文献[13] 油品运输 原油 15 文献[13] 道路移动源 小型客车 273)/1081) 文献[13] 汽油 57 文献[13] 大型客车 108 文献[13] 柴油 57 文献[13] 轻型货车 108 文献[13] 油品储存 原油 15 文献[13] 大型货车 109 文献[13] 汽油 57 文献[13] 摩托车 83 文献[13] 柴油 57 文献[13] 注:1) 汽油机;2) 柴油机;3) 天然气机. 表 4 河南省2019年人为源VOCs组分排放量及其OFP
Table 4. Anthropogenic speciated VOCs emissions and their OFPs in Henan Province in 2019
组分 排放量/(104 t) 对VOCs总排放量
的贡献率/%OFP/(104 t) 对总OFP
的贡献率/%烷烃 46.3 26.4 48.1 7.2 烯烃 20.8 11.8 211.4 31.8 炔烃 3.9 2.2 3.7 0.6 芳香烃 47.5 27.1 213.4 32.1 卤代烃 6.0 3.4 0.7 0.1 OVOCs 40.3 22.9 185.8 28.0 其他组分 10.8 6.2 0.8 0.1 表 5 河南省2019年不同排放源的VOCs排放量、OFP以及关键物种
Table 5. VOCs emissions, OFPs, and key VOCs species from different emission sources in Henan Province in 2019
源类 子排放源 VOCs排放量/(104 t) 对VOCs总排放量的贡献率/% OFP/(104 t) 对总OFP的贡献率/% VOCs排放量的关键物种 OFP的关键物种 固定化石燃料燃烧 散煤燃烧 3.93 2.2 16.72 2.5 乙烯(17.0%)、苯(15.6%)、乙烷(14.1%)、丙烯(7.7%)、甲苯(6.8%)、乙炔(6.2%)、丙烷(5.1%)、间/对-二甲苯(2.7%)、1-丁烯(2.2%)、正丁烷(2.2%) 乙烯(37.1%)、丙烯(21.8%)、甲苯(6.6%)、间/对-二甲苯(5.0%)、1-丁烯(4.4%)、顺-2-丁烯(3.0%)、苯(2.7%)、反-2-丁烯(2.7%)、1,2,4-三甲基苯(2.6%)、1,3-丁二烯(2.5%) 工商业燃烧 3.9 2.2 15.77 2.4 供电供暖燃烧 2.11 1.2 8.53 1.3 居民燃烧 1.04 0.6 4.40 0.7 小计 10.97 6.2 45.43 6.8 移动源 小型汽车 26.53 15.1 109.79 16.5 甲苯(6.3%)、乙烯(5.7%)、甲醛(4.7%)、间/对-二甲苯(4.0%)、苯(3.9%)、异戊烷(3.6%)、乙醛(3.5%)、乙炔(3.2%)、丙烯(3.1%)、乙烷(3.0%) 乙烯(12.1%)、甲醛(10.5%)、丙烯(7.8%)、间/对-二甲苯(7.4%)、甲苯(6.0%)、1,2,4-三甲基苯(5.5%)、乙醛(5.0%)、邻-二甲苯(3.4%)、顺-2-丁烯(3.1%)、1-丁烯(3.0%) 载货车 2.19 1.2 10.26 1.5 公交车 0.50 0.3 2.27 0.3 摩托车 1.90 1.1 7.04 1.1 建筑机械 7.42 4.2 32.58 4.9 农业机械 4.92 2.8 21.59 3.3 其他 0.86 0.5 3.69 0.6 小计 44.33 25.2 187.22 28.2 工艺过程 石油开采和精炼 2.88 1.6 7.98 1.2 苯乙烯(8.2%)、乙醇(6.9%)、丙酮(5.6%)、甲苯(5.2%)、乙烷(4.6%)、乙酸乙酯(4.3%)、丙烷(3.9%)、甲醇(3.1%)、正己烷(2.8%)、1,2,4-三甲基苯(2.6%) 丙烯(10.0%)、1,2,4-三甲基苯(9.5%)、甲苯(8.6%)、苯乙烯(5.9%)、间/对-二甲苯(5.1%)、间乙基甲苯(4.3%)、乙醇(4.3%)、乙烯(4.2%)、1-丁烯(3.4%)、1,2,3-三甲基苯(3.1%) 油品储运过程 3.65 2.1 13.89 2.1 化学合成 9.72 5.5 22.78 3.4 化学原料制造 10.08 5.7 23.27 3.5 煤化工 5.68 3.2 20.97 3.2 食品加工 4.60 2.6 7.63 1.1 涂料制造 5.37 3.1 29.18 4.4 其他工艺 8.19 4.7 10.27 1.5 小计 50.16 28.6 135.97 20.5 溶剂使用 建筑喷涂 7.96 4.5 34.89 5.3 正己烷(10.7%)、甲苯(9.0%)、间/对-二甲苯(8.6%)、苯乙烯(5.0%)、乙苯(4.9%)、邻二甲苯(4.1%)、环己烷(3.8%)、4-甲基-2-戊酮(3.4%)、乙醛(3.0%)、乙醇(3.0%) 间/对-二甲苯(20.1%)、甲苯(10.8%)、邻二甲苯(9.3%)、乙醛(5.7%)、乙苯(4.5%)、甲醛(4.0%)、正己烷(4.0%)、4-甲基-2-戊酮(3.9%)、丁烯醛(3.8%)、乙二醛(2.6%) 家具喷涂 5.48 3.1 18.86 2.8 汽车喷涂 2.74 1.6 23.93 3.6 农药使用 5.12 2.9 7.58 1.1 包装印刷 2.71 1.5 7.97 1.2 生活溶剂使用 8.61 4.9 27.12 4.1 沥青铺路 0.96 0.6 2.61 0.4 小计 33.59 19.1 122.96 18.5 生物质燃烧 生物质露天焚烧 24.11 13.7 125.29 18.9 乙醛(12.5%)、甲醛(12.2%)、乙烯(10.9%)、苯(8.9%)、乙炔(4.8%)、丙烯4.5%)、乙烷(3.8%)、甲苯(3.6%)、丙烷(2.5%)、丙醛(2.4%) 甲醛(21.4%)、乙烯(18.2%)、乙醛(15.2%)、丙烯(9.8%)、丙醛(3.1%)、1-丁烯(3.0%)、异戊二烯(2.7%)、丁烯醛(2.1%)、丙烯醛(2.0%)、反-2-丁烯(2.0%) 生物燃料燃烧 12.47 7.1 47.07 7.1 小计 36.58 20.8 172.36 26.0 总计 175.63 100 663.93 100 注:括号中的数值为占比. 表 6 河南省2019年人为源VOCs排放清单不确定性分析
Table 6. Uncertainty assessment of VOCs emission inventory in Henan for the year 2019
排放源 VOCs排放量/
(104 t)95%置信区间/
(104 t)相对误差 固定化石燃料燃烧源 10.97 [9.02, 11.51] [−25.3%, 29.5%] 移动源 44.33 [36.56, 53.45] [−38.1%, 43.9%] 工艺过程源 50.16 [41.13, 63.52] [−39.2%, 55.7%] 溶剂使用源 33.59 [24.47, 44.26] [−41.9%, 59.8%] 生物质燃烧源 36.58 [29.97,45.84] [−35.4%, 46.6%] 合计 175.63 [159.97,245.84] [−36.5%, 49.7%] -
[1] 胡京南,柴发合,段菁春,等.京津冀及周边地区秋冬季PM2.5爆发式增长成因与应急管控对策[J].环境科学研究,2019,32(10):1704-1712.HU J N,CHAI F H,DUAN J C,et al.Explosive growth of PM2.5 during the autumn and winter seasons in the JingJin-ji and surrounding area and its control measures with emergency response[J].Research of Environmental Sciences,2019,32(10):1704-1712. [2] 杨景朝,赵晓莉,陶勇,等.2016—2019年夏半年成都市区臭氧污染天气特征分析[J].环境科学研究,2021,34(2):254-262.YANG J C,ZHAO X L,TAO Y,et al.Characteristics of ozone weather in Chengdu during summer of 2016-2019[J].Research of Environmental Sciences,2021,34(2):254-262. [3] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(2):422-427. doi: 10.1073/pnas.1812168116 [4] MING L L,JIN L,LI J,et al.PM2.5 in the Yangtze River Delta,China:chemical compositions,seasonal variations,and regional pollution events[J].Environmental Pollution,2017,223:200-212. doi: 10.1016/j.envpol.2017.01.013 [5] CHAN K L,WANG S S,LIU C,et al.On the summertime air quality and related photochemical processes in the megacity Shanghai,China[J].Science of the Total Environment,2017,580:974-983. doi: 10.1016/j.scitotenv.2016.12.052 [6] 张远航,郑君瑜.中国大气臭氧污染防治蓝皮书[M].北京:科学出版社,2020. [7] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究,2022,35(6):1351-1361.ZHAO M,SHEN H Q,CHEN T S,et al.Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J].Research of Environmental Sciences,2022,35(6):1351-1361. [8] 宋梦迪,冯淼,李歆,等.成都市臭氧重污染成因与来源解析[J].中国环境科学,2022,42(3):1057-1065. doi: 10.3969/j.issn.1000-6923.2022.03.008SONG M D,FENG M,LI X,et al.Causes and sources of heavy ozone pollution in Chengdu[J].China Environmental Science,2022,42(3):1057-1065. doi: 10.3969/j.issn.1000-6923.2022.03.008 [9] ZHAO Q Y,BI J,LIU Q,et al.Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing,East China[J].Atmospheric Chemistry and Physics,2020,20(6):3905-3919. doi: 10.5194/acp-20-3905-2020 [10] YANG X Y,WU K,WANG H L,et al.Summertime ozone pollution in Sichuan Basin,China:meteorological conditions,sources and process analysis[J].Atmospheric Environment,2020,226:117392. doi: 10.1016/j.atmosenv.2020.117392 [11] 吴蓉蓉.中国人为源VOCs分组分排放清单及其O3和SOA形成潜势研究[D].北京:北京大学,2017. [12] CHEN P L,ZHAO X Y,WANG O,et al.Characteristics of VOCs and their potentials for O3 and SOA formation in a medium-sized city in eastern China[J].Aerosol and Air Quality Research,2022,22(1):210239. doi: 10.4209/aaqr.210239 [13] WU R R,XIE S D.Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J].Environmental Science & Technology,2017,51(5):2574-2583. [14] 李琦,桂丽,刘明,等.西安人为源VOCs排放特征及其对O3和SOA生成潜势的影响[J].环境科学研究,2019,32(2):253-262.LI Q,GUI L,LIU M,et al.Emission characteristics of anthropogenic VOCs in Xi'an City and its contribution to ozone formation potential and secondary organic aerosols formation potential[J].Research of Environmental Sciences,2019,32(2):253-262. [15] AN J L,ZOU J N,WANG J X,et al.Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings,Yangtze River Delta,China[J].Environmental Science and Pollution Research,2015,22(24):19607-19617. doi: 10.1007/s11356-015-5177-0 [16] 华倩雯,冯菁,杨珏,等.苏州市人为源挥发性有机物排放清单及特征[J].环境科学学报,2019,39(8):2690-2698. doi: 10.13671/j.hjkxxb.2019.0104HUA Q W,FENG J,YANG J,et al.Emission inventory and characteristics of volatile organic compounds from anthropogenic sources in Suzhou City[J].Acta Scientiae Circumstantiae,2019,39(8):2690-2698. doi: 10.13671/j.hjkxxb.2019.0104 [17] LI M,ZHANG Q,ZHENG B,et al.Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017:drivers,speciation and ozone formation potential[J].Atmospheric Chemistry and Physics,2019,19(13):8897-8913. doi: 10.5194/acp-19-8897-2019 [18] BO Y,CAI H,XIE S.Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China[J].Atmospheric Chemistry and Physics,2008,8:7297-7316. doi: 10.5194/acp-8-7297-2008 [19] 吴琳.黄河三角洲地区油田挥发性有机物排放及其对区域臭氧污染的影响[D].济南:山东大学,2019. [20] LI L Y,XIE S D,ZENG L M,et al.Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei Region,China[J].Atmospheric Environment,2015,113:247-254. doi: 10.1016/j.atmosenv.2015.05.021 [21] WANG H L,LOU S R,HUANG C,et al.Source profiles of volatile organic compounds from biomass burning in Yangtze River Delta,China[J].Aerosol and Air Quality Research,2014,14(3):818-828. doi: 10.4209/aaqr.2013.05.0174 [22] 夏思佳,赵秋月,李冰,等.江苏省人为源挥发性有机物排放清单[J].环境科学研究,2014,27(2):120-126.XIA S J,ZHAO Q Y,LI B,et al.Anthropogenic source VOCs emission inventory of Jiangsu Province[J].Research of Environmental Sciences,2014,27(2):120-126. [23] JIANG P Y,CHEN X L,LI Q Y,et al.High-resolution emission inventory of gaseous and particulate pollutants in Shandong Province,eastern China[J].Journal of Cleaner Production,2020,259:120806. doi: 10.1016/j.jclepro.2020.120806 [24] 周子航,邓也,谭钦文,等.四川省人为源挥发性有机物组分清单及其臭氧生成潜势[J].环境科学,2019,40(4):1613-1626.ZHOU Z H,DENG Y,TAN Q W,et al.Speciated VOCs emission inventory and ozone formation potential in Sichuan Province[J].Environmental Science,2019,40(4):1613-1626. [25] WANG Q L,LI S J,DONG M L,et al.VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan[J].Atmospheric Environment,2018,182:234-241. doi: 10.1016/j.atmosenv.2018.03.034 [26] 蒋美青,陆克定,苏榕,等.我国典型城市群O3污染成因和关键VOCs活性解析[J].科学通报,2018,63(12):1130-1141. doi: 10.1360/N972017-01241JIANG M Q,LU K D,SU R,et al.Ozone formation and key VOCs in typical Chinese city clusters[J].Chinese Science Bulletin,2018,63(12):1130-1141. doi: 10.1360/N972017-01241 [27] LIANG X M,SUN X B,XU J T,et al.Improved emissions inventory and VOCs speciation for industrial OFP estimation in China[J].Science of the Total Environment,2020,745:140838. doi: 10.1016/j.scitotenv.2020.140838 [28] SHI Y Q,LIU C,ZHANG B S,et al.Accurate identification of key VOCs sources contributing to O3 formation along the Liaodong Bay based on emission inventories and ambient observations[J].Science of the Total Environment,2022,844:156998. doi: 10.1016/j.scitotenv.2022.156998 [29] SIMAYI M,SHI Y Q,XI Z Y,et al.Understanding the sources and spatiotemporal characteristics of VOCs in the Chengdu Plain,China,through measurement and emission inventory[J].Science of the Total Environment,2020,714:136692. doi: 10.1016/j.scitotenv.2020.136692 [30] 王笑哲,赵莎,郭灵辉,等.京津冀及周边地区“2+26”城市臭氧的季节性变化规律[J].环境科学研究,2022,35(8):1786-1797.WANG X Z,ZHAO S,GUO L H,et al.Seasonal variation of ozone in ‘2+26’ cities in Beijing-Tianjin-Hebei Region and surrounding areas[J].Research of Environmental Sciences,2022,35(8):1786-1797. [31] 全澍,刘淼晗,陈博轩,等.河南省近地表O3污染特征及其与气象因素之间的关系[J].环境科学研究,2022,35(12):2666-2676.QUAN S,LIU M H,CHEN B X,et al.Characteristics of near-surface O3 pollution in Henan Province and its relationship with meteorological factors[J].Research of Environmental Sciences,2022,35(12):2666-2676. [32] 何向东,黄兴宇,张传兵,等.焦作市人为源挥发性有机物排放清单[J].环境化学,2019,38(9):1998-2007. doi: 10.7524/j.issn.0254-6108.2018111004HE X D,HUANG X Y,ZHANG C B,et al.Emission inventories of anthropogenic VOCs in Jiaozuo City[J].Environmental Chemistry,2019,38(9):1998-2007. doi: 10.7524/j.issn.0254-6108.2018111004 [33] 范西彩,张新民,张晓红,等.鹤壁市大气挥发性有机物源排放清单研究[J].中国环境科学,2021,41(2):558-565. doi: 10.3969/j.issn.1000-6923.2021.02.007FAN X C,ZHANG X M,ZHANG X H,et al.Research on the emission inventory of volatile organic compounds in Hebi City,Henan Province[J].China Environmental Science,2021,41(2):558-565. doi: 10.3969/j.issn.1000-6923.2021.02.007 [34] GU X K,YIN S S,LU X,et al.Recent development of a refined multiple air pollutant emission inventory of vehicles in the Central Plains of China[J].Journal of Environmental Sciences,2019,84:80-96. doi: 10.1016/j.jes.2019.04.010 [35] WU R R,BO Y,LI J,et al.Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008-2012[J].Atmospheric Environment,2016,127:244-254. doi: 10.1016/j.atmosenv.2015.12.015 [36] SIMAYI M,SHI Y Q,XI Z Y,et al.Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives[J].Science of the Total Environment,2022,826:153994. doi: 10.1016/j.scitotenv.2022.153994 [37] 李晶.京津冀地区人为源挥发性有机物排放清单建立与校验[D].北京:北京大学,2017. [38] 吕大器,陆思华,谭鑫,等.典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献[J].环境科学研究,2021,34(1):103-113.LU D Q,LU S H,TAN X,et al.Emission characteristics of VOCs from typical local refineries and associated contributions to secondary pollution[J].Research of Environmental Sciences,2021,34(1):103-113. [39] 吕大器,陆思华,邵敏,等.典型胶合板制造企业VOCs排放特征[J].中国环境科学,2020,40(5):1924-1931. doi: 10.3969/j.issn.1000-6923.2020.05.008LÜ D Q,LU S H,SHAO M,et al.Emission characteristics of volatile organic compounds (VOCs) from typical plywood industry[J].China Environmental Science,2020,40(5):1924-1931. doi: 10.3969/j.issn.1000-6923.2020.05.008 [40] CARTER W P L.Estimation of ozone reactivities for volatile organiccompound speciation profiles in the speciate 4.2 database[EB/OL].California CA:University of California,(2013-11-21)[2022-12-19].https://intra.engr.ucr.edu/~carter/emitdb/Speciate-Reactivity.pdf. [41] 叶代启,刘锐源,田俊泰.我国挥发性有机物排放量变化趋势及政策研究[J].环境保护,2020,48(15):23-26.YE D Q,LIU R Y,TIAN J T.Trends of volatile organic compounds emissions and research on policy in China[J].Environmental Protection,2020,48(15):23-26. [42] 代伶文,孟晶,李倩倩,等.长江经济带湖北省人为源VOCs排放清单及变化特征[J].环境科学,2021,42(3):1039-1052.DAI L W,MENG J,LI Q Q,et al.VOCs emission inventory and variation characteristics of artificial sources in Hubei Province in the Yangtze River Economic Belt[J].Environmental Science,2021,42(3):1039-1052. [43] LI J,HAO Y F,SIMAYI M,et al.Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals[J].Atmospheric Chemistry and Physics,2019,19(9):5905-5921. doi: 10.5194/acp-19-5905-2019 [44] ZHAO Y,MAO P,ZHOU Y D,et al.Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds:a case study for Jiangsu,China[J].Atmospheric Chemistry and Physics,2017,17(12):7733-7756. doi: 10.5194/acp-17-7733-2017 [45] 赵大地,张宇,史旭荣,等.河南省1 km分辨率机动车大气污染物排放清单[J].环境污染与防治,2022,44(4):469-475.ZHAO D D,ZHANG Y,SHI X R,et al.Vehicles emission inventory of air pollutants with 1 km resolution in Henan Province[J].Environmental Pollution & Control,2022,44(4):469-475. [46] 刘桓嘉,贾梦珂,刘永丽,等.河南省2015—2019年大气污染时空变化特征研究[J].环境科学学报,2022,42(2):271-282.LIU H J,JIA M K,LIU Y L,et al.Spatial and temporal variation analysis of air pollution in Henan Province during 2015-2019[J].Acta Scientiae Circumstantiae,2022,42(2):271-282. [47] 刘淼晗,于宸涛,房祥玉,等.2014—2020年河南省PM2.5-O3复合污染特征及气象成因分析[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.11.06.LIU M H,YU C T,FANG X Y,et al.Analysis on characteristics of PM2.5-O3 compound pollution and meteorological causes in Henan Province from 2014 to 2020[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.11.06. -