留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河南省优先控制人为源VOCs关键物种及来源识别

姑力巴努·艾尼 郑怡 高可心 麦麦提·斯马义 谢绍东 祖力皮亚·艾尼

姑力巴努·艾尼, 郑怡, 高可心, 麦麦提·斯马义, 谢绍东, 祖力皮亚·艾尼. 河南省优先控制人为源VOCs关键物种及来源识别[J]. 环境科学研究, 2023, 36(3): 469-482. doi: 10.13198/j.issn.1001-6929.2022.12.17
引用本文: 姑力巴努·艾尼, 郑怡, 高可心, 麦麦提·斯马义, 谢绍东, 祖力皮亚·艾尼. 河南省优先控制人为源VOCs关键物种及来源识别[J]. 环境科学研究, 2023, 36(3): 469-482. doi: 10.13198/j.issn.1001-6929.2022.12.17
GULIBANU Aini, ZHENG Yi, GAO Kexin, MAIMAITI Simayi, XIE Shaodong, ZULIPIYA Aini. Identification of Key Anthropogenic VOCs and Their Sources in Henan Province[J]. Research of Environmental Sciences, 2023, 36(3): 469-482. doi: 10.13198/j.issn.1001-6929.2022.12.17
Citation: GULIBANU Aini, ZHENG Yi, GAO Kexin, MAIMAITI Simayi, XIE Shaodong, ZULIPIYA Aini. Identification of Key Anthropogenic VOCs and Their Sources in Henan Province[J]. Research of Environmental Sciences, 2023, 36(3): 469-482. doi: 10.13198/j.issn.1001-6929.2022.12.17

河南省优先控制人为源VOCs关键物种及来源识别

doi: 10.13198/j.issn.1001-6929.2022.12.17
基金项目: 大气重污染成因与治理攻关项目(No.DQGG202129);中国博士后科学基金项目(No.2022MD713808);环境模拟与污染控制国家重点联合实验室(北京大学)开放基金项目(No.22K02ESPCP)
详细信息
    作者简介:

    姑力巴努·艾尼(1992-),女(维吾尔族),新疆图木舒克人,Gulbanu905@126.com

    通讯作者:

    麦麦提·斯马义(1990-),男(维吾尔族),新疆图木舒克人,讲师,博士,主要从事区域大气污染成因及综合治理研究,mm-esmayil@pku.edu.cn

  • 中图分类号: X511

Identification of Key Anthropogenic VOCs and Their Sources in Henan Province

Funds: National Research Program for Key Issues in Air Pollution Control, China (No.DQGG202129); China Postdoctoral Science Foundation (No.2022MD713808); Special Found of State Key Joint Laboratory of Environment Simulation and Pollution Control (Peking University), China (No.22K02ESPCP)
  • 摘要: 为了解河南省人为源挥发性有机物(VOCs)的排放特征,识别以臭氧(O3)污染治理为目的的关键VOCs物种及其排放源,以五大类人为源活动水平数据为基础,采用排放因子法建立了2019年河南省县级人为源VOCs组分化排放清单,并利用最大增量反应活性(MIR)估算其臭氧生成潜势(OFP),基于OFP识别O3污染治理的关键VOCs物种及其排放源. 结果表明:①河南省2019年人为源VOCs排放总量为175.62×104 t,其中工艺过程源、移动源、生物质燃烧源、溶剂使用源和化石燃料燃烧源对VOCs排放总量的贡献率分别为28.6%、25.2%、20.8%、19.1%和6.3%. ②空间分布显示,以郑州市为中心的豫北排放量远高于豫南,呈“一高三低”的空间分布特点,郑州市排放量最高,其排放量为27.7×104 t,漯河市、三门峡市和鹤壁市排放量最低,其排放量均小于5.0×104 t. ③芳香烃是排放量最高的化学组分,其排放量为47.5×104 t,其次为烷烃(46.3×104 t)、OVOCs(40.3×104 t)和烯烃(20.9×104 t),其中甲苯、乙烯、苯等排放量高的10个物种占排放总量的42.0%. ④河南省人为源VOCs的总OFP为664.0×104 t,其中,芳香烃和烯烃对OFP的贡献最大,均占总OFP的32%,其次为OVOCs,占比为28.0%;本研究的OFP空间分布与国控点O3浓度和PM2.5-O3大气复合污染空间分布规律高度一致. 研究显示,乙烯、间/对-二甲苯、甲苯、丙烯和甲醛等对总OFP的贡献率为67.2%,其主要来源是生物质燃烧、小型客车、建筑涂装、汽车涂装、化学合成、涂料制造、建筑和农业机械等,因此这些VOCs物种和排放源是河南省O3污染治理的关键.

     

  • 图  1  河南省区域划分和国控点位置示意

    Figure  1.  Regional division of Henan Province and position of national air quality monitoring stations

    图  2  河南省2019年人为源VOCs排放源贡献比例

    注:柱状图是一级五大类排放源排放量及其在总排放量中的占比,柱状图上或下的圆环图是对应的一级排放源中各类子排放源的排放量占比.

    Figure  2.  Contribution of different sources to the total anthropogenic VOCs emissions in Henan Province in 2019

    图  3  河南省2019年人为源VOCs排放量空间分布

    Figure  3.  Spatial distribution of anthropogenic VOCs emissions in Henan Province in 2019

    图  4  河南省2019年对OFP贡献高的前20位VOCs组分

    Figure  4.  Top 20 VOCs species with high contribution to OFP in Henan Province in 2019

    图  5  河南省2019年不同VOCs组分的来源组成和各城市的OFP

    Figure  5.  Source composition of different VOCs and OFP of each city in Henan Province in 2019

    图  6  河南省2019年OFP县级空间分布和国控点MDA8-90浓度的空间分布

    Figure  6.  Spatial distribution of county-level OFP and MDA8-90 concentration from the national air quality monitoring stations in Henan Province in 2019

    表  1  市级排放量分配到县级的替代变量

    Table  1.   Substitute variables for allocating city-level emissions to the county-level

    替代变量排放源
    机动车保有量、GDP移动源、溶剂使用源
    建筑竣工面积建筑喷涂、建筑机械源
    工业产值工艺过程源
    人口、城镇人口比例居民散煤燃烧源
    工业产值工业散煤燃烧源
    土地利用类型、播种面积、火点数生物质露天焚烧、农药使用源
    农业机械总动力农业机械源
    下载: 导出CSV

    表  2  源分类及其排放因子[36-37]

    Table  2.   Source classification and emission factors[36-37]

    一级源二级源三级源排放因子一级源二级源三级源排放因子
    固定化石燃料
    燃烧源
    工商业原煤0.39 g/kg工艺过程源石油工业原油开采1.4175 g/kg
    燃料油0.35 g/kg天然气开采0.1 g/kg
    液化石油气0.19 g/kg石油精炼1.82 g/kg
    天然气0.088 g/m3基础化学原料生产乙烯0.6 g/kg
    火力发电原煤0.15 g/kg丙烯0.111 g/kg
    燃料油0.35 g/kg丙烯腈0.99 g/kg
    液化石油气0.19 g/kg0.55 g/kg
    天然气0.088 g/m3乙苯0.1 g/kg
    供热原煤0.39 g/kg丁二烯11.6 g/kg
    燃料油0.35 g/kg苯乙烯0.223 g/kg
    液化石油气0.19 g/kg药品原料药300 g/kg
    天然气0.088 g/m3农药原料药131.5 g/kg
    居民生活原煤3.34 g/kg化肥生产合成氨4.72 g/kg
    燃料油0.35 g/kg尿素0.01 g/kg
    液化石油气0.19 g/kg涂料等生产油墨60 g/kg
    天然气0.13 g/m3涂料42 g/kg
    散煤消费工业3.34 g/kg黑炭52 g/kg
    居民5.12 g/kg合成树脂生产聚氯乙烯0.7448 g/kg
    生物质燃烧源露天焚烧水稻8.45 g/kg聚苯乙烯5.4 g/kg
    小麦7.48 g/kg聚丙烯4 g/kg
    下载: 导出CSV
    续表 2 
    一级源二级源三级源排放因子一级源二级源三级源排放因子
    生物质燃烧源露天焚烧玉米10.4 g/kg工艺过程源合成树脂生产高密度聚乙烯5.7 g/kg
    其他8.45 g/kg低密度聚乙烯10 g/kg
    燃料燃烧秸秆燃烧7.97 g/kgABS1.4 g/kg
    新柴燃烧3.13 g/kg化学纤维生产合成纤维单体1 g/kg
    溶剂使用源农药使用杀虫剂567 g/kg尼龙3.75 g/kg
    除草剂316 g/kg涤纶0.7 g/kg
    除菌剂475 g/kg腈纶37.1 g/kg
    其他农药470 g/kg丙纶37.1 g/kg
    印染出版印刷4095 kg/厂维纶7.7 g/kg
    纸质包装5325 kg/厂锦纶7.7 g/kg
    塑料包装51728 kg/厂氨纶7.7 g/kg
    饮料罐涂装1 g/kg胶黏纤维14.5 g/kg
    印染布81.4 g/kg橡胶、塑料生产合成橡胶7.17 g/kg
    沥青使用30 g/kg轮胎0.28 g/条
    建筑涂装内墙100 g/kg人造革163.46 g/kg
    外墙溶剂涂料430 g/kg泡沫塑料120.0 g/kg
    外墙水性涂料40 g/kg其他工业炼铁0.053 g/kg
    家具制造水性涂料0.14 g/个炼焦1.75 g/kg
    溶剂型涂料1.16 g/个人造板制造0.3 g/m3
    车辆制造轿车3.92 kg/辆制浆造纸3.1 g/kg
    卡车10 kg/辆固废处理0.74 g/kg
    公交车60 kg/辆污水处理0.015 g/m3
    摩托车1.8 kg/辆采煤和洗煤0.196 g/kg
    自行车0.3 kg/辆建筑材料制造水泥0.177 g/kg
    其他工业溶剂使用家电喷漆0.2 g/个陶瓷0.177 g/kg
    集成电路0.234 4 kg/m2石油沥青0.432 g/kg
    漆包线11 g/kg平板玻璃220 g/重量箱
    机床制造0.66 g/个玻璃纤维3.15 g/kg
    打印机0.2 g/个食品加工植物油提炼9 g/kg
    皮革鞋1)70.56 g/kg制糖10 g/kg
    其他办公用品0.2 g/个面包3 g/kg
    居民生活消费烹饪0.6 kg/(人·a)饼干1 g/kg
    化妆品0.16 kg/(人·a)白酒0.035 kg/L
    非工业黏合剂0.032 5 kg/(人·a)啤酒0.000 35 kg/L
    干洗0.205 kg/(人·a)加油站汽油3.096 g/kg
    洗涤剂0.01 kg/(人·a)柴油0.8 g/kg
    家居用品0.43 kg/(人·a)油品运输原油0.54 g/kg
    移动源2)非道路移动源飞机1.95 kg/LTO3)汽油1.5 g/kg
    轮船6.12 g/kg4)柴油1.0 g/kg
    铁路6.14 g/kg4)油品储存原油0.045 g/kg
    农业机械18.3 g/kg4) 汽油0.295 g/kg
    建筑机械18.3 g/kg4)柴油0.175 g/kg
    注:1) 假设一双鞋子相当于1 kg;2) 由于不同排量和排放标准的汽车的排放因子不同,数据量大,因此表中未列出其排放因子;3) LTO为飞机起飞着陆循环次数;4)以柴油计.
    下载: 导出CSV

    表  3  本研究涉及的主要VOCs源成分谱

    Table  3.   Source composition spectrum of VOCs involved in this study

    二级源三级源VOCs物种数/个数据来源二级源三级源VOCs物种数/个数据来源
    固定化石燃料燃烧原煤92文献[13]石油工业原油开采14文献[27]
    燃料油54文献[13]天然气开采14文献[27]
    液化石油气59文献[13]石油精炼97文献[38]
    天然气15文献[13]基础化学原料98文献[13]
    生物质露天焚烧水稻92文献[13]药品生产14文献[13]
    小麦92文献[13]农药生产66文献[36]
    玉米92文献[13]塑料、橡胶合成橡胶91文献[13]
    其他92文献[13]轮胎87文献[13]
    生物质燃料燃烧秸秆燃料79文献[13]人造革98文献[13]
    新柴59文献[13]泡沫塑料99文献[36]
    天然气15文献[13]合成纤维6文献[13]
    农药使用20文献[13]合成树脂98文献[13]
    印染出版印刷86文献[35]涂料等生产油墨77文献[36]
    纸质包装86文献[35]涂料74文献[36]
    塑料包装38文献[35]黑炭70文献[13]
    饮料罐涂装41文献[13]化肥生产合成氨55文献[13]
    印染布81文献[13]尿素55文献[13]
    沥青使用43文献[13]其他工业炼铁58文献[13]
    建筑涂装48文献[13]炼焦67文献[37]
    家具喷涂40文献[35]人造板制造36文献[39]
    汽车制造72文献[27]制浆造纸30文献[13]
    船舶制造49文献[27]固废处理44文献[13]
    其他表面涂装37文献[35]污水处理55文献[13]
    制鞋21文献[27]采煤和洗煤15文献[13]
    居民生活消费烹饪10文献[13]建筑材料75文献[13]
    化妆品10文献[13]食品加工植物油提炼73文献[27]
    非工业黏合剂33文献[13]制糖5文献[13]
    家居用品10文献[13]面包5文献[13]
    洗涤剂31文献[13]饼干5文献[13]
    非道路移动源飞机36文献[13]白酒4文献[13]
    轮船25文献[13]啤酒73文献[13]
    铁路69文献[13]加油站汽油54文献[13]
    农业机械601)/692)文献[13]柴油54文献[13]
    建筑机械601)/692)文献[13]油品运输原油15文献[13]
    道路移动源小型客车273)/1081)文献[13]汽油57文献[13]
    大型客车108文献[13]柴油57文献[13]
    轻型货车108文献[13]油品储存原油15文献[13]
    大型货车109文献[13]汽油57文献[13]
    摩托车83文献[13]柴油57文献[13]
    注:1) 汽油机;2) 柴油机;3) 天然气机.
    下载: 导出CSV

    表  4  河南省2019年人为源VOCs组分排放量及其OFP

    Table  4.   Anthropogenic speciated VOCs emissions and their OFPs in Henan Province in 2019

    组分排放量/(104 t)对VOCs总排放量
    的贡献率/%
    OFP/(104 t)对总OFP
    的贡献率/%
    烷烃46.326.448.17.2
    烯烃20.811.8211.431.8
    炔烃3.92.23.70.6
    芳香烃47.527.1213.432.1
    卤代烃6.03.40.70.1
    OVOCs40.322.9185.828.0
    其他组分10.86.20.80.1
    下载: 导出CSV

    表  5  河南省2019年不同排放源的VOCs排放量、OFP以及关键物种

    Table  5.   VOCs emissions, OFPs, and key VOCs species from different emission sources in Henan Province in 2019

    源类子排放源VOCs排放量/(104 t)对VOCs总排放量的贡献率/%OFP/(104 t)对总OFP的贡献率/%VOCs排放量的关键物种OFP的关键物种
    固定化石燃料燃烧 散煤燃烧 3.93 2.2 16.72 2.5 乙烯(17.0%)、苯(15.6%)、乙烷(14.1%)、丙烯(7.7%)、甲苯(6.8%)、乙炔(6.2%)、丙烷(5.1%)、间/对-二甲苯(2.7%)、1-丁烯(2.2%)、正丁烷(2.2%) 乙烯(37.1%)、丙烯(21.8%)、甲苯(6.6%)、间/对-二甲苯(5.0%)、1-丁烯(4.4%)、顺-2-丁烯(3.0%)、苯(2.7%)、反-2-丁烯(2.7%)、1,2,4-三甲基苯(2.6%)、1,3-丁二烯(2.5%)
    工商业燃烧 3.9 2.2 15.77 2.4
    供电供暖燃烧 2.11 1.2 8.53 1.3
    居民燃烧 1.04 0.6 4.40 0.7
    小计 10.97 6.2 45.43 6.8
    移动源 小型汽车 26.53 15.1 109.79 16.5 甲苯(6.3%)、乙烯(5.7%)、甲醛(4.7%)、间/对-二甲苯(4.0%)、苯(3.9%)、异戊烷(3.6%)、乙醛(3.5%)、乙炔(3.2%)、丙烯(3.1%)、乙烷(3.0%) 乙烯(12.1%)、甲醛(10.5%)、丙烯(7.8%)、间/对-二甲苯(7.4%)、甲苯(6.0%)、1,2,4-三甲基苯(5.5%)、乙醛(5.0%)、邻-二甲苯(3.4%)、顺-2-丁烯(3.1%)、1-丁烯(3.0%)
    载货车 2.19 1.2 10.26 1.5
    公交车 0.50 0.3 2.27 0.3
    摩托车 1.90 1.1 7.04 1.1
    建筑机械 7.42 4.2 32.58 4.9
    农业机械 4.92 2.8 21.59 3.3
    其他 0.86 0.5 3.69 0.6
    小计 44.33 25.2 187.22 28.2
    工艺过程 石油开采和精炼 2.88 1.6 7.98 1.2 苯乙烯(8.2%)、乙醇(6.9%)、丙酮(5.6%)、甲苯(5.2%)、乙烷(4.6%)、乙酸乙酯(4.3%)、丙烷(3.9%)、甲醇(3.1%)、正己烷(2.8%)、1,2,4-三甲基苯(2.6%) 丙烯(10.0%)、1,2,4-三甲基苯(9.5%)、甲苯(8.6%)、苯乙烯(5.9%)、间/对-二甲苯(5.1%)、间乙基甲苯(4.3%)、乙醇(4.3%)、乙烯(4.2%)、1-丁烯(3.4%)、1,2,3-三甲基苯(3.1%)
    油品储运过程 3.65 2.1 13.89 2.1
    化学合成 9.72 5.5 22.78 3.4
    化学原料制造 10.08 5.7 23.27 3.5
    煤化工 5.68 3.2 20.97 3.2
    食品加工 4.60 2.6 7.63 1.1
    涂料制造 5.37 3.1 29.18 4.4
    其他工艺 8.19 4.7 10.27 1.5
    小计 50.16 28.6 135.97 20.5
    溶剂使用 建筑喷涂 7.96 4.5 34.89 5.3 正己烷(10.7%)、甲苯(9.0%)、间/对-二甲苯(8.6%)、苯乙烯(5.0%)、乙苯(4.9%)、邻二甲苯(4.1%)、环己烷(3.8%)、4-甲基-2-戊酮(3.4%)、乙醛(3.0%)、乙醇(3.0%) 间/对-二甲苯(20.1%)、甲苯(10.8%)、邻二甲苯(9.3%)、乙醛(5.7%)、乙苯(4.5%)、甲醛(4.0%)、正己烷(4.0%)、4-甲基-2-戊酮(3.9%)、丁烯醛(3.8%)、乙二醛(2.6%)
    家具喷涂 5.48 3.1 18.86 2.8
    汽车喷涂 2.74 1.6 23.93 3.6
    农药使用 5.12 2.9 7.58 1.1
    包装印刷 2.71 1.5 7.97 1.2
    生活溶剂使用 8.61 4.9 27.12 4.1
    沥青铺路 0.96 0.6 2.61 0.4
    小计 33.59 19.1 122.96 18.5
    生物质燃烧 生物质露天焚烧 24.11 13.7 125.29 18.9 乙醛(12.5%)、甲醛(12.2%)、乙烯(10.9%)、苯(8.9%)、乙炔(4.8%)、丙烯4.5%)、乙烷(3.8%)、甲苯(3.6%)、丙烷(2.5%)、丙醛(2.4%) 甲醛(21.4%)、乙烯(18.2%)、乙醛(15.2%)、丙烯(9.8%)、丙醛(3.1%)、1-丁烯(3.0%)、异戊二烯(2.7%)、丁烯醛(2.1%)、丙烯醛(2.0%)、反-2-丁烯(2.0%)
    生物燃料燃烧 12.47 7.1 47.07 7.1
    小计 36.58 20.8 172.36 26.0
    总计 175.63 100 663.93 100
    注:括号中的数值为占比.
    下载: 导出CSV

    表  6  河南省2019年人为源VOCs排放清单不确定性分析

    Table  6.   Uncertainty assessment of VOCs emission inventory in Henan for the year 2019

    排放源VOCs排放量/
    (104 t)
    95%置信区间/
    (104 t)
    相对误差
    固定化石燃料燃烧源10.97[9.02, 11.51][−25.3%, 29.5%]
    移动源44.33[36.56, 53.45][−38.1%, 43.9%]
    工艺过程源50.16[41.13, 63.52][−39.2%, 55.7%]
    溶剂使用源33.59[24.47, 44.26][−41.9%, 59.8%]
    生物质燃烧源36.58[29.97,45.84][−35.4%, 46.6%]
    合计175.63[159.97,245.84][−36.5%, 49.7%]
    下载: 导出CSV
  • [1] 胡京南,柴发合,段菁春,等.京津冀及周边地区秋冬季PM2.5爆发式增长成因与应急管控对策[J].环境科学研究,2019,32(10):1704-1712.

    HU J N,CHAI F H,DUAN J C,et al.Explosive growth of PM2.5 during the autumn and winter seasons in the JingJin-ji and surrounding area and its control measures with emergency response[J].Research of Environmental Sciences,2019,32(10):1704-1712.
    [2] 杨景朝,赵晓莉,陶勇,等.2016—2019年夏半年成都市区臭氧污染天气特征分析[J].环境科学研究,2021,34(2):254-262.

    YANG J C,ZHAO X L,TAO Y,et al.Characteristics of ozone weather in Chengdu during summer of 2016-2019[J].Research of Environmental Sciences,2021,34(2):254-262.
    [3] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(2):422-427. doi: 10.1073/pnas.1812168116
    [4] MING L L,JIN L,LI J,et al.PM2.5 in the Yangtze River Delta,China:chemical compositions,seasonal variations,and regional pollution events[J].Environmental Pollution,2017,223:200-212. doi: 10.1016/j.envpol.2017.01.013
    [5] CHAN K L,WANG S S,LIU C,et al.On the summertime air quality and related photochemical processes in the megacity Shanghai,China[J].Science of the Total Environment,2017,580:974-983. doi: 10.1016/j.scitotenv.2016.12.052
    [6] 张远航,郑君瑜.中国大气臭氧污染防治蓝皮书[M].北京:科学出版社,2020.
    [7] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究,2022,35(6):1351-1361.

    ZHAO M,SHEN H Q,CHEN T S,et al.Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J].Research of Environmental Sciences,2022,35(6):1351-1361.
    [8] 宋梦迪,冯淼,李歆,等.成都市臭氧重污染成因与来源解析[J].中国环境科学,2022,42(3):1057-1065. doi: 10.3969/j.issn.1000-6923.2022.03.008

    SONG M D,FENG M,LI X,et al.Causes and sources of heavy ozone pollution in Chengdu[J].China Environmental Science,2022,42(3):1057-1065. doi: 10.3969/j.issn.1000-6923.2022.03.008
    [9] ZHAO Q Y,BI J,LIU Q,et al.Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing,East China[J].Atmospheric Chemistry and Physics,2020,20(6):3905-3919. doi: 10.5194/acp-20-3905-2020
    [10] YANG X Y,WU K,WANG H L,et al.Summertime ozone pollution in Sichuan Basin,China:meteorological conditions,sources and process analysis[J].Atmospheric Environment,2020,226:117392. doi: 10.1016/j.atmosenv.2020.117392
    [11] 吴蓉蓉.中国人为源VOCs分组分排放清单及其O3和SOA形成潜势研究[D].北京:北京大学,2017.
    [12] CHEN P L,ZHAO X Y,WANG O,et al.Characteristics of VOCs and their potentials for O3 and SOA formation in a medium-sized city in eastern China[J].Aerosol and Air Quality Research,2022,22(1):210239. doi: 10.4209/aaqr.210239
    [13] WU R R,XIE S D.Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J].Environmental Science & Technology,2017,51(5):2574-2583.
    [14] 李琦,桂丽,刘明,等.西安人为源VOCs排放特征及其对O3和SOA生成潜势的影响[J].环境科学研究,2019,32(2):253-262.

    LI Q,GUI L,LIU M,et al.Emission characteristics of anthropogenic VOCs in Xi'an City and its contribution to ozone formation potential and secondary organic aerosols formation potential[J].Research of Environmental Sciences,2019,32(2):253-262.
    [15] AN J L,ZOU J N,WANG J X,et al.Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings,Yangtze River Delta,China[J].Environmental Science and Pollution Research,2015,22(24):19607-19617. doi: 10.1007/s11356-015-5177-0
    [16] 华倩雯,冯菁,杨珏,等.苏州市人为源挥发性有机物排放清单及特征[J].环境科学学报,2019,39(8):2690-2698. doi: 10.13671/j.hjkxxb.2019.0104

    HUA Q W,FENG J,YANG J,et al.Emission inventory and characteristics of volatile organic compounds from anthropogenic sources in Suzhou City[J].Acta Scientiae Circumstantiae,2019,39(8):2690-2698. doi: 10.13671/j.hjkxxb.2019.0104
    [17] LI M,ZHANG Q,ZHENG B,et al.Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017:drivers,speciation and ozone formation potential[J].Atmospheric Chemistry and Physics,2019,19(13):8897-8913. doi: 10.5194/acp-19-8897-2019
    [18] BO Y,CAI H,XIE S.Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China[J].Atmospheric Chemistry and Physics,2008,8:7297-7316. doi: 10.5194/acp-8-7297-2008
    [19] 吴琳.黄河三角洲地区油田挥发性有机物排放及其对区域臭氧污染的影响[D].济南:山东大学,2019.
    [20] LI L Y,XIE S D,ZENG L M,et al.Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei Region,China[J].Atmospheric Environment,2015,113:247-254. doi: 10.1016/j.atmosenv.2015.05.021
    [21] WANG H L,LOU S R,HUANG C,et al.Source profiles of volatile organic compounds from biomass burning in Yangtze River Delta,China[J].Aerosol and Air Quality Research,2014,14(3):818-828. doi: 10.4209/aaqr.2013.05.0174
    [22] 夏思佳,赵秋月,李冰,等.江苏省人为源挥发性有机物排放清单[J].环境科学研究,2014,27(2):120-126.

    XIA S J,ZHAO Q Y,LI B,et al.Anthropogenic source VOCs emission inventory of Jiangsu Province[J].Research of Environmental Sciences,2014,27(2):120-126.
    [23] JIANG P Y,CHEN X L,LI Q Y,et al.High-resolution emission inventory of gaseous and particulate pollutants in Shandong Province,eastern China[J].Journal of Cleaner Production,2020,259:120806. doi: 10.1016/j.jclepro.2020.120806
    [24] 周子航,邓也,谭钦文,等.四川省人为源挥发性有机物组分清单及其臭氧生成潜势[J].环境科学,2019,40(4):1613-1626.

    ZHOU Z H,DENG Y,TAN Q W,et al.Speciated VOCs emission inventory and ozone formation potential in Sichuan Province[J].Environmental Science,2019,40(4):1613-1626.
    [25] WANG Q L,LI S J,DONG M L,et al.VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan[J].Atmospheric Environment,2018,182:234-241. doi: 10.1016/j.atmosenv.2018.03.034
    [26] 蒋美青,陆克定,苏榕,等.我国典型城市群O3污染成因和关键VOCs活性解析[J].科学通报,2018,63(12):1130-1141. doi: 10.1360/N972017-01241

    JIANG M Q,LU K D,SU R,et al.Ozone formation and key VOCs in typical Chinese city clusters[J].Chinese Science Bulletin,2018,63(12):1130-1141. doi: 10.1360/N972017-01241
    [27] LIANG X M,SUN X B,XU J T,et al.Improved emissions inventory and VOCs speciation for industrial OFP estimation in China[J].Science of the Total Environment,2020,745:140838. doi: 10.1016/j.scitotenv.2020.140838
    [28] SHI Y Q,LIU C,ZHANG B S,et al.Accurate identification of key VOCs sources contributing to O3 formation along the Liaodong Bay based on emission inventories and ambient observations[J].Science of the Total Environment,2022,844:156998. doi: 10.1016/j.scitotenv.2022.156998
    [29] SIMAYI M,SHI Y Q,XI Z Y,et al.Understanding the sources and spatiotemporal characteristics of VOCs in the Chengdu Plain,China,through measurement and emission inventory[J].Science of the Total Environment,2020,714:136692. doi: 10.1016/j.scitotenv.2020.136692
    [30] 王笑哲,赵莎,郭灵辉,等.京津冀及周边地区“2+26”城市臭氧的季节性变化规律[J].环境科学研究,2022,35(8):1786-1797.

    WANG X Z,ZHAO S,GUO L H,et al.Seasonal variation of ozone in ‘2+26’ cities in Beijing-Tianjin-Hebei Region and surrounding areas[J].Research of Environmental Sciences,2022,35(8):1786-1797.
    [31] 全澍,刘淼晗,陈博轩,等.河南省近地表O3污染特征及其与气象因素之间的关系[J].环境科学研究,2022,35(12):2666-2676.

    QUAN S,LIU M H,CHEN B X,et al.Characteristics of near-surface O3 pollution in Henan Province and its relationship with meteorological factors[J].Research of Environmental Sciences,2022,35(12):2666-2676.
    [32] 何向东,黄兴宇,张传兵,等.焦作市人为源挥发性有机物排放清单[J].环境化学,2019,38(9):1998-2007. doi: 10.7524/j.issn.0254-6108.2018111004

    HE X D,HUANG X Y,ZHANG C B,et al.Emission inventories of anthropogenic VOCs in Jiaozuo City[J].Environmental Chemistry,2019,38(9):1998-2007. doi: 10.7524/j.issn.0254-6108.2018111004
    [33] 范西彩,张新民,张晓红,等.鹤壁市大气挥发性有机物源排放清单研究[J].中国环境科学,2021,41(2):558-565. doi: 10.3969/j.issn.1000-6923.2021.02.007

    FAN X C,ZHANG X M,ZHANG X H,et al.Research on the emission inventory of volatile organic compounds in Hebi City,Henan Province[J].China Environmental Science,2021,41(2):558-565. doi: 10.3969/j.issn.1000-6923.2021.02.007
    [34] GU X K,YIN S S,LU X,et al.Recent development of a refined multiple air pollutant emission inventory of vehicles in the Central Plains of China[J].Journal of Environmental Sciences,2019,84:80-96. doi: 10.1016/j.jes.2019.04.010
    [35] WU R R,BO Y,LI J,et al.Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008-2012[J].Atmospheric Environment,2016,127:244-254. doi: 10.1016/j.atmosenv.2015.12.015
    [36] SIMAYI M,SHI Y Q,XI Z Y,et al.Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives[J].Science of the Total Environment,2022,826:153994. doi: 10.1016/j.scitotenv.2022.153994
    [37] 李晶.京津冀地区人为源挥发性有机物排放清单建立与校验[D].北京:北京大学,2017.
    [38] 吕大器,陆思华,谭鑫,等.典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献[J].环境科学研究,2021,34(1):103-113.

    LU D Q,LU S H,TAN X,et al.Emission characteristics of VOCs from typical local refineries and associated contributions to secondary pollution[J].Research of Environmental Sciences,2021,34(1):103-113.
    [39] 吕大器,陆思华,邵敏,等.典型胶合板制造企业VOCs排放特征[J].中国环境科学,2020,40(5):1924-1931. doi: 10.3969/j.issn.1000-6923.2020.05.008

    LÜ D Q,LU S H,SHAO M,et al.Emission characteristics of volatile organic compounds (VOCs) from typical plywood industry[J].China Environmental Science,2020,40(5):1924-1931. doi: 10.3969/j.issn.1000-6923.2020.05.008
    [40] CARTER W P L.Estimation of ozone reactivities for volatile organiccompound speciation profiles in the speciate 4.2 database[EB/OL].California CA:University of California,(2013-11-21)[2022-12-19].https://intra.engr.ucr.edu/~carter/emitdb/Speciate-Reactivity.pdf.
    [41] 叶代启,刘锐源,田俊泰.我国挥发性有机物排放量变化趋势及政策研究[J].环境保护,2020,48(15):23-26.

    YE D Q,LIU R Y,TIAN J T.Trends of volatile organic compounds emissions and research on policy in China[J].Environmental Protection,2020,48(15):23-26.
    [42] 代伶文,孟晶,李倩倩,等.长江经济带湖北省人为源VOCs排放清单及变化特征[J].环境科学,2021,42(3):1039-1052.

    DAI L W,MENG J,LI Q Q,et al.VOCs emission inventory and variation characteristics of artificial sources in Hubei Province in the Yangtze River Economic Belt[J].Environmental Science,2021,42(3):1039-1052.
    [43] LI J,HAO Y F,SIMAYI M,et al.Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals[J].Atmospheric Chemistry and Physics,2019,19(9):5905-5921. doi: 10.5194/acp-19-5905-2019
    [44] ZHAO Y,MAO P,ZHOU Y D,et al.Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds:a case study for Jiangsu,China[J].Atmospheric Chemistry and Physics,2017,17(12):7733-7756. doi: 10.5194/acp-17-7733-2017
    [45] 赵大地,张宇,史旭荣,等.河南省1 km分辨率机动车大气污染物排放清单[J].环境污染与防治,2022,44(4):469-475.

    ZHAO D D,ZHANG Y,SHI X R,et al.Vehicles emission inventory of air pollutants with 1 km resolution in Henan Province[J].Environmental Pollution & Control,2022,44(4):469-475.
    [46] 刘桓嘉,贾梦珂,刘永丽,等.河南省2015—2019年大气污染时空变化特征研究[J].环境科学学报,2022,42(2):271-282.

    LIU H J,JIA M K,LIU Y L,et al.Spatial and temporal variation analysis of air pollution in Henan Province during 2015-2019[J].Acta Scientiae Circumstantiae,2022,42(2):271-282.
    [47] 刘淼晗,于宸涛,房祥玉,等.2014—2020年河南省PM2.5-O3复合污染特征及气象成因分析[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.11.06.

    LIU M H,YU C T,FANG X Y,et al.Analysis on characteristics of PM2.5-O3 compound pollution and meteorological causes in Henan Province from 2014 to 2020[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.11.06.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  80
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-02
  • 修回日期:  2022-12-23

目录

    /

    返回文章
    返回