留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境规制视角下长三角地区碳排放的时空效应

梁归 林跃胜 方凤满

梁归, 林跃胜, 方凤满. 环境规制视角下长三角地区碳排放的时空效应[J]. 环境科学研究, 2023, 36(4): 848-856. doi: 10.13198/j.issn.1001-6929.2023.01.03
引用本文: 梁归, 林跃胜, 方凤满. 环境规制视角下长三角地区碳排放的时空效应[J]. 环境科学研究, 2023, 36(4): 848-856. doi: 10.13198/j.issn.1001-6929.2023.01.03
LIANG Gui, LIN Yuesheng, FANG Fengman. Temporal and Spatial Effects of Carbon Emissions in the Yangtze River Delta from the Perspective of Environmental Regulation[J]. Research of Environmental Sciences, 2023, 36(4): 848-856. doi: 10.13198/j.issn.1001-6929.2023.01.03
Citation: LIANG Gui, LIN Yuesheng, FANG Fengman. Temporal and Spatial Effects of Carbon Emissions in the Yangtze River Delta from the Perspective of Environmental Regulation[J]. Research of Environmental Sciences, 2023, 36(4): 848-856. doi: 10.13198/j.issn.1001-6929.2023.01.03

环境规制视角下长三角地区碳排放的时空效应

doi: 10.13198/j.issn.1001-6929.2023.01.03
基金项目: 国家自然科学基金面上项目(No.41977402);安徽省教育厅科学研究项目(No.yjs20210185);2021年安徽省领军人才团队项目
详细信息
    作者简介:

    梁归(1997-),男,安徽六安人,fylg1997@163.com

    通讯作者:

    方凤满(1974-),女,安徽池州人,教授,博士,博导,主要从事资源环境影响评价及规划、环境健康地理研究,ffm1974@mail.ahnu.edu.cn

  • 中图分类号: X321

Temporal and Spatial Effects of Carbon Emissions in the Yangtze River Delta from the Perspective of Environmental Regulation

Funds: National Natural Science Foundation of China (No.41977402); Scientific Research Project of Anhui Provincial Education Department, China (No.yjs20210185); 2021 Leading Talents Team Project of Anhui Province, China
  • 摘要: 在“双碳”目标背景下,环境规制与CO2排放的关系逐渐成为学界热点. 本文基于长三角地区41城市的面板数据,利用CO2排放系数法、环境规制强度综合指数对长三角41城市2006—2019年的CO2排放、环境规制强度进行定量测度,通过核密度分析、GIS空间分析等方法揭示长三角地区41城市环境规制强度和CO2排放水平的时空格局,并运用动态空间杜宾模型(DSDM)探讨环境规制对CO2排放的时空影响效应. 结果表明:①长三角地区环境规制强度指数呈增强态势,由2006年的0.15升至2019年的1.25. 核密度曲线显示,环境规制强度存在空间极化现象,在空间上呈现由东南向西北转移的演变态势. ②2006—2019年长三角地区CO2排放水平整体呈波动上升趋势,2006—2013年CO2排放增幅为65.07%,2013—2019年增幅仅为4.20%. CO2排放在空间上总体呈东高西低的分布格局,2006年在沪苏地区形成CO2排放高值集聚区,随后空间范围扩大并向西北方向蔓延,2013—2019年呈中心城市向外围扩散的格局. ③从短期效应看,环境规制强度每提升1%,将抑制本城市0.152%的CO2排放量,但促进邻近城市0.062%的CO2排放量;从长期效应看,环境规制强度每提升1%,将抑制本城市0.254%的CO2排放量,并促进邻近城市0.110%的CO2排放量,即环境规制的长期效应大于短期效应. ④长三角各城市要充分考虑自身特质,制定合理的环境规制和差异化的低碳减排策略,以提高资源环境承载力,实现人地关系的协调发展. 研究显示,长三角地区CO2排放的增速整体变缓,环境规制强度的提高对CO2排放的影响存在空间异质性.

     

  • 图  1  长三角地区环境规制强度的时序演化

    Figure  1.  Changes in environmental regulation intensity throughout time in the Yangtze River Delta

    图  2  长三角地区CO2排放量的空间格局

    Figure  2.  Carbon dioxide emissions spatial distribution in the Yangtze River Delta

    图  3  长三角地区环境规制强度的空间格局

    Figure  3.  Spatial pattern of environmental regulation intensity in the Yangtze River Delta

    图  4  时空效应分解结果分布

    注:*表示在0.1水平(双侧)上显著相关;**表示在0.05水平(双侧)上显著相关;***表示在0.01水平(双侧)上显著相关. 下同.

    Figure  4.  Distribution of spatial and temporal effect decomposition outcomes

    图  5  时空效应的稳健性检验结果

    Figure  5.  The results of a test of the robustness of spatiotemporal effects

    表  1  变量选择和表征方法

    Table  1.   Methods for variable selection and characterization

    类型名称简写计算或表征方法
    被解释变量碳排放CE见式(1)
    核心解释变量环境规制强度ER见式(3)~(5)
    控制变量经济发展水平Pgdp人均GDP
    人口规模Pop年末总人口
    产业结构IS第二产业总值/GDP生产总值
    技术创新TI发明专利申请量
    外商直接投资FDI实际利用外资
    受教育水平Edu每万人大学生数
    能源消耗强度EN能源消耗总量/GDP
    下载: 导出CSV

    表  2  2006—2019年长三角地区CO2排放全局Moran's I指数

    Table  2.   Global Moran's I carbon dioxide emissions index for the Yangtze River Delta from 2006 to 2019

    年份Moran's I年份Moran's I
    20060.411***20130.388***
    20070.420***20140.380***
    20080.416***20150.385***
    20090.410***20160.379***
    20100.408***20170.379***
    20110.396***20180.375***
    20120.396***20190.368***
    注:*表示在0.1水平(双侧)上显著相关;**表示在0.05水平(双侧)上显著相关;***表示在0.01水平(双侧)上显著相关. 下同.
    下载: 导出CSV

    表  3  空间面板计量模型检验结果

    Table  3.   Spatial panel econometric model test results

    检验类型统计值检验类型统计值
    LM-spatial error38.62***Wald-spatial error51.01***
    Robust LM-spatial error211.71***Wald-spatial lag48.42***
    LM-spatial lag35.53***LR-spatial error49.83***
    Robust LM-spatial lag5.79***LR-spatial lag71.36***
    Hausman检验416.82***
    下载: 导出CSV

    表  4  动态空间杜宾模型计量回归结果

    Table  4.   Dynamic Spatial Durbin Model econometric regression results

    变量回归系数变量回归系数
    Lw×C0.452***Wx×ln ER0.061***
    ln ER−0.156**Wx×ln Pgdp0.302***
    ln Pgdp0.053**Wx×ln Pgdp2−0.116***
    ln Pgdp2−0.032**Wx×ln pop0.116***
    ln pop0.027Wx×ln IS0.042*
    ln IS0.166***Wx×ln TI0.071***
    ln TI−0.025***Wx×ln FDI−0.011
    ln FDI−0.007Wx×ln Edu0.045
    ln Edu−0.015**Wx×ln En0.085**
    ln En0.244**R20.912
    下载: 导出CSV
  • [1] TOLLEFSON J.IPCC climate report:earth is warmer than it's been in 125,000 years[J].Nature,2021,596(7871):171-172. doi: 10.1038/d41586-021-02179-1
    [2] MEEHL G A,TENG H Y,ARBLASTER J M.Climate model simulations of the observed early-2000s hiatus of global warming[J].Nature Climate Change,2014,4(10):898-902. doi: 10.1038/nclimate2357
    [3] ZHENG J L,MI Z F,COFFMAN D,et al.The slowdown in China's carbon emissions growth in the new phase of economic development[J].One Earth,2019,1(2):240-253. doi: 10.1016/j.oneear.2019.10.007
    [4] 彭水军,张文城,孙传旺.中国生产侧和消费侧碳排放量测算及影响因素研究[J].经济研究,2015,50(1):168-182.

    PENG S J,ZHANG W C,SUN C W.China's production-based and consumption-based carbon emissions and their determinants[J].Economic Research Journal,2015,50(1):168-182.
    [5] WEN L,LI Z K.Provincial-level industrial CO2 emission drivers and emission reduction strategies in China:combining two-layer LMDI method with spectral clustering[J].Science of the Total Environment,2020,700:134374. doi: 10.1016/j.scitotenv.2019.134374
    [6] 唐湘博,张野,曹利珍,等.中国减污降碳协同效应的时空特征及其影响机制分析[J].环境科学研究,2022,35(10):2252-2263.

    TANG X B,ZHANG Y,CAO L Z,et al.Spatio-temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J].Research of Environmental Sciences,2022,35(10):2252-2263.
    [7] 王兆峰,李竹,吴卫.长江经济带不同等级城市碳排放的时空演变及其影响因素[J].环境科学研究,2022,35(10):2273-2281.

    WAMG Z F,LI Z,WU W.Spatio-temporal evolution and influencing factors of carbon emissions in different grade cities in the Yangtze River Economic Belt[J].Research of Environmental Sciences,2022,35(10):2273-2281.
    [8] LIU L W,CHEN C X,ZHAO Y F,et al.China's carbon-emissions trading:overview,challenges and future[J].Renewable and Sustainable Energy Reviews,2015,49:254-266. doi: 10.1016/j.rser.2015.04.076
    [9] 王少剑,高爽,黄永源,等.基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J].地理学报,2020,75(6):1316-1330. doi: 10.11821/dlxb202006016

    WANG S J,GAO S,HUANG Y Y,et al.Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J].Acta Geographica Sinica,2020,75(6):1316-1330. doi: 10.11821/dlxb202006016
    [10] ZHOU B,ZHANG C,SONG H Y,et al.How does emission trading reduce China's carbon intensity?an exploration using a decomposition and difference-in-differences approach[J].Science of the Total Environment,2019,676:514-523. doi: 10.1016/j.scitotenv.2019.04.303
    [11] ZHANG W,LI G X,UDDIN M K,et al.Environmental regulation,foreign investment behavior,and carbon emissions for 30 provinces in China[J].Journal of Cleaner Production,2020,248:119208. doi: 10.1016/j.jclepro.2019.119208
    [12] NIE X,WU J X,CHEN Z P,et al.Can environmental regulation stimulate the regional Porter effect?double test from quasi-experiment and dynamic panel data models[J].Journal of Cleaner Production,2021,314:128027. doi: 10.1016/j.jclepro.2021.128027
    [13] 蒋培培,王远,罗进,等.长江与黄河流域碳排放效率时空演变特征及路径识别探究[J].环境科学研究,2022,35(7):1743-1751.

    JIANG P P,WANG Y,LUO J,et al.Comparative study of spatial-temporal evolution and growth path of carbon emissions efficiency in Yangtze River Basin and Yellow River Basin[J].Research of Environmental Sciences,2022,35(7):1743-1751.
    [14] 李菁,李小平,郝良峰.技术创新约束下双重环境规制对碳排放强度的影响[J].中国人口·资源与环境,2021,31(9):34-44.

    LI J,LI X P,HAO L F.Impact of dual environmental regulations on carbon emission intensity under the constraint of technological innovation[J].China Population,Resources and Environment,2021,31(9):34-44.
    [15] 王雅楠,左艺辉,陈伟,等.环境规制对碳排放的门槛效应及其区域差异[J].环境科学研究,2018,31(4):601-608. doi: 10.13198/j.issn.1001-6929.2017.03.92

    WANG Y N,ZUO Y H,CHEN W,et al.Threshold effect and regional differences of environmental regulation on carbon emission[J].Research of Environmental Sciences,2018,31(4):601-608. doi: 10.13198/j.issn.1001-6929.2017.03.92
    [16] 李莉,董棒棒,敬盼.环境规制背景下新疆能源碳排放峰值预测与情景模拟研究[J].生态与农村环境学报,2020,36(11):1444-1452. doi: 10.19741/j.issn.1673-4831.2019.0903

    LI L,DONG B B,JING P.Prediction and scenario simulation of energy carbon emission peak in Xinjiang under the background of environmental regulation[J].Journal of Ecology and Rural Environment,2020,36(11):1444-1452. doi: 10.19741/j.issn.1673-4831.2019.0903
    [17] XU Q,DONG Y X,YANG R,et al.Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling[J].Journal of Cleaner Production,2019,214:615-622. doi: 10.1016/j.jclepro.2018.12.280
    [18] 潘栋,李楠,李锋,等.基于能源碳排放预测的中国东部地区达峰策略制定[J].环境科学学报,2021,41(3):1142-1152. doi: 10.13671/j.hjkxxb.2020.0325

    PAN D,LI N,LI F,et al.Mitigation strategy of eastern China based on energy-source carbon emission estimation[J].Acta Scientiae Circumstantiae,2021,41(3):1142-1152. doi: 10.13671/j.hjkxxb.2020.0325
    [19] 万文玉,赵雪雁,王伟军,等.我国农村居民生活能源碳排放的时空特征分析[J].生态学报,2017,37(19):6390-6401.

    WAN W Y,ZHAO X Y,WANG W J,et al.Analysis of spatio-temporal patterns of carbon emission from energy consumption by rural residents in China[J].Acta Ecologica Sinica,2017,37(19):6390-6401.
    [20] 尹章才,康自强.时间地理支持下的核密度估计研究进展[J].地理科学进展,2022,41(1):64-72. doi: 10.18306/dlkxjz.2022.01.006

    YIN Z C,KANG Z Q.Advances in kernel density estimation supported by time geography[J].Progress in Geography,2022,41(1):64-72. doi: 10.18306/dlkxjz.2022.01.006
    [21] 于斌斌,苏宜梅.土地财政如何影响土地利用效率?:基于规模与技术视角的动态空间杜宾模型检验[J].地理研究,2022,41(2):527-545. doi: 10.11821/dlyj020210006

    YU B B,SU Y M.How does land finance affect land use efficiency?dynamic space Durbin model test based on the perspective of scale and technology[J].Geographical Research,2022,41(2):527-545. doi: 10.11821/dlyj020210006
    [22] WANG S J,ZENG J Y,HUANG Y Y,et al.The effects of urbanization on CO2 emissions in the Pearl River Delta:a comprehensive assessment and panel data analysis[J].Applied Energy,2018,228:1693-1706. doi: 10.1016/j.apenergy.2018.06.155
    [23] WEN L,SHAO H Y.Influencing factors of the carbon dioxide emissions in China's commercial department:a non-parametric additive regression model[J].Science of the Total Environment,2019,668:1-12. doi: 10.1016/j.scitotenv.2019.02.412
    [24] 贺灿飞,周沂.环境经济地理研究[M].北京:科学出版社,2016:175-176.
    [25] 赵霄伟.环境规制、环境规制竞争与地区工业经济增长:基于空间Durbin面板模型的实证研究[J].国际贸易问题,2014(7):82-92.

    ZHAO X W.Environmental regulation,environmental regulation competition and regional industrial economic growth:an empirical study based on spatial panel durbin model[J].Journal of International Trade,2014(7):82-92.
    [26] 黄莘绒,管卫华,陈明星,等.长三角城市群城镇化与生态环境质量优化研究[J].地理科学,2021,41(1):64-73. doi: 10.13249/j.cnki.sgs.2021.01.007

    HUANG X R,GUAN W H,CHEN M X,et al.Urbanization and optimization of the Yangtze River Delta urban agglomeration[J].Scientia Geographica Sinica,2021,41(1):64-73. doi: 10.13249/j.cnki.sgs.2021.01.007
    [27] 仇方道,蒋涛,张纯敏,等.江苏省污染密集型产业空间转移及影响因素[J].地理科学,2013,33(7):789-796. doi: 10.13249/j.cnki.sgs.2013.07.003

    QIU F D,JIANG T,ZHANG C M,et al.Spatial relocation and mechanism of pollution-intensive industries in Jiangsu Province[J].Scientia Geographica Sinica,2013,33(7):789-796. doi: 10.13249/j.cnki.sgs.2013.07.003
    [28] CHEN J D,XU C,LI K,et al.A gravity model and exploratory spatial data analysis of prefecture-scale pollutant and CO2 emissions in China[J].Ecological Indicators,2018,90:554-563. doi: 10.1016/j.ecolind.2018.03.057
    [29] ZHAO W,LIU Y S,HUANG L H.Estimating environmental Kuznets Curve in the presence of eco-innovation and solar energy:an analysis of G-7 economies[J].Renewable Energy,2022,189:304-314. doi: 10.1016/j.renene.2022.02.120
    [30] SHEN J,DENNIS WEI Y,YANG Z.The impact of environmental regulations on the location of pollution-intensive industries in China[J].Journal of Cleaner Production,2017,148:785-794. doi: 10.1016/j.jclepro.2017.02.050
    [31] 崔建鑫,赵海霞.长江三角洲地区污染密集型产业转移及驱动机理[J].地理研究,2015,34(3):504-512.

    CUI J X,ZHAO H X.Spatial relocation of pollution-intensive industry and the mechanism in Yangtze River Delta[J].Geographical Research,2015,34(3):504-512.
    [32] 孙荪,姚丽,李杏,等.环境规制对FDI区位选择的影响研究:以江苏为例[J].工业技术经济,2012,31(3):145-150. doi: 10.3969/j.issn.1004-910X.2012.03.021

    SUN S,YAO L,LI X,et al.Study on effect of enviromental regulation on location choice of FDI:a case study of Jiangsu Province[J].Journal of Industrial Technological Economics,2012,31(3):145-150. doi: 10.3969/j.issn.1004-910X.2012.03.021
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  18
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-22
  • 修回日期:  2022-12-27
  • 网络出版日期:  2023-04-18

目录

    /

    返回文章
    返回