Management Measures and Effect Evaluation of Industrial Air Pollutants in Weifang City During the Winter Olympics
-
摘要: 为分析探究冬奥会期间(2022年1月30日—2月20日)工业源大气污染物排放特征和变化规律,基于潍坊352家安装在线连续监测系统(CEMS)企业的大气污染源排放数据以及150个环境空气质量监测站点数据,分析了冬奥会期间空气质量与污染物排放量的关系,以及不同行业、不同管理措施企业的落实情况与减排效果. 结果表明:①采用352家安装CEMS企业的大气污染源排放数据来评估工业源管理效果是可行的. ②冬奥会管理期工业企业烟粉尘、SO2和NOx排放削减量分别为11.04、95.96和249.92 t,削减率分别为25%、31%和27%,工业企业管理效果良好;环境PM2.5、SO2和NO2浓度分别下降24%、11%和16%,空气质量改善明显. ③限产类和自主减排类企业污染物削减量占总削减量的比例接近90%,火力发电、钢铁等11个主要行业对所有行业总排放量削减贡献率为92%. ④停产类企业在管理期排放总量基本削减至0,限产类企业实际污染物削减率(23%~26%)与一般管理措施减排要求(20%~30%)基本吻合,企业管理措施落实到位. ⑤以生产余热承担居民供暖的钢铁企业建议通过减少烧结机污染物排放量达到相应的减排效果. 研究显示,潍坊市冬奥会期间工业源管理效果良好,企业CEMS数据可有效应用于工业源管理效果评估研究中.
-
关键词:
- 冬奥会 /
- 连续在线监测系统(CEMS) /
- 工业源 /
- 管理措施 /
- 效果评估
Abstract: In order to analyze the emission characteristic and the change law of atmospheric pollutants from the industrial sources during the 24th Winter Olympics, the online atmospheric pollution emission data of 352 industries from the Continuous Emission Monitoring System (CEMS) and the ambient monitoring data from 150 sites in Weifang City were used. The relationship between air quality and pollutant emissions during the Winter Olympics (30th January to 20th February 2022), and the relationship between implementation and emission reduction effectiveness of different industries and management measures were investigated. The results show that it is feasible to evaluate the effect of the industrial source control by using the air pollution emission data of 352 enterprises with CEMS. During the management period, industrial dust, sulfur dioxide (SO2), and nitrogen oxide (NOx) emissions were reduced by 11.04 t (25%), 95.96 t (31%) and 249.92 t (27%), respectively, and the ambient concentrations of fine particulate matter (PM2.5), SO2 and nitrogen dioxide (NO2) decreased by 24%, 11% and 16%, respectively. The management effect of the industrial sources was significant with an obvious improvement in air quality. The proportion of emission reductions from the limited-control and regardless-control industries accounted for nearly 90% of the total emission reduction, and 11 major pollution sectors, including thermal powerplants and iron-steel works, contributed 92% of the total reduction. During the management period, the emissions from the suspended enterprises were nearly 0, and the emissions from the limited enterprises were reduced by 23%-26%, which met the emission reduction requirements of general management measures (20%-30%). The management measures adopted by the enterprises were well implemented. It is suggested that iron-steel enterprises, which use waste heat from production to provide heating for residential heating, should achieve emission reductions by reducing the sintering machine emissions. The research showed that the management effect of the industrial sources was obvious during the Winter Olympics in Weifang City, and the CEMS data of enterprise was proved to be effective in the evaluation of the industrial source management effect. -
图 2 管理期潍坊市污染物排放削减量以及环境污染物浓度变化率的空间分布情况
注:削减量和变化率为管理期较管理前CEMS企业各污染物排放的削减量和空气污染物浓度的变化率,削减量负值代表削减,正值代表增加. 变化率负值代表污染物浓度下降,正值代表污染物浓度上升.
Figure 2. Space distribution between the concentration change ratio of contaminant of environment and the reduction of pollutant emission during management period in Weifang City
表 1 潍坊市涉气工业企业的主要行业类型及一般管理措施
Table 1. The major types and general management measures for gas-related industries in Weifang City
一般管理措施类型 行业类型 一般管理措施(阶段1-0和阶段2-0) 停产类 炭素 停产 铸造用生铁 停产 其他停产类企业1) 停产 限产类 钢铁 压减10%~30%的生产负荷(余热供暖企业根据供暖负荷决定压减比例) 焦化 压减5%~25%的生产负荷(余热供暖企业根据供暖负荷决定压减比例) 石化 压减20%~30%的生产负荷 煤制氮肥 阶段1-0,压减30%的生产负荷;阶段2-0,自主减排 燃煤锅炉 阶段1-0,压减20%~50%的产量或生产负荷;阶段2-0,自主减排 其他限产类企业 压减20%~30%的生产负荷 自主减排类 火力发电 自主减排 垃圾发电 自主减排 供热站 自主减排 燃气锅炉 自主减排 其他自主减排类企业 自主减排 注:1)其他停产类企业包含农药、石灰窑等行业. 表 2 管理前潍坊市CEMS企业分行业污染物排放量
Table 2. Pollutant emissions of air pollutants in different sectors of CEMS industries before management period in Weifang City
一般管理措施类型 行业类型 SO2排放量/t NOx排放量/t 烟粉尘排放量/t 排放总量/t 停产类 炭素 0.18 0.52 0.06 0.76 铸造用生铁 0.11 0.35 0.05 0.51 其他停产类企业 0.05 0.45 0.03 0.53 限产类 钢铁 1.84 3.76 0.55 6.15 燃煤锅炉 1.36 6.13 0.12 7.61 石化 0.47 2.37 0.09 2.93 煤制氮肥 0.41 1.32 0.05 1.78 焦化 0.35 0.68 0.04 1.07 其他限产类企业 0.31 0.89 0.04 1.24 自主减排类 火力发电 7.17 18.54 0.75 26.46 垃圾发电 0.95 4.07 0.08 5.10 供热站 0.47 1.87 0.07 2.41 燃气锅炉 0.23 0.85 0.06 1.14 其他自主减排类企业 0.07 0.45 0.02 0.54 总计 13.97 42.25 2.01 58.23 表 3 管理前和管理期潍坊市空气质量与污染物排放量变化特征
Table 3. Variation features between air quality and pollutant emission before and during the management period in Weifang City
阶段 日均浓度/(μg/m3) 日均排放量/t PM2.5 SO2 NO2 烟粉尘 SO2 NOx 排放总量 管理前 71 18 31 2.01 13.97 42.25 58.23 管理期 54 16 26 1.51 9.58 30.89 41.99 -
[1] ZHANG Y L,ZHU B,GAO J H,et al.The source apportionment of primary PM2.5 in an aerosol pollution event over Beijing-Tianjin-Hebei Region using WRF-Chem,China[J].Aerosol and Air Quality Research,2017,17(12):2966-2980. doi: 10.4209/aaqr.2016.10.0442 [2] BROITMAN D,PORTNOV B A.Forecasting health effects potentially associated with the relocation of a major air pollution source[J].Environmental Research,2020,182:109088. doi: 10.1016/j.envres.2019.109088 [3] CHENG J,SU J P,CUI T,et al.Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017:a model-based decomposition analysis[J].Atmospheric Chemistry and Physics,2019,19(9):6125-6146. doi: 10.5194/acp-19-6125-2019 [4] XUE Y F,ZHANG S H,NIE T,et al.Environmental effective assessment of control measures implemented by clean air action plan (2013-2017) in Beijing,China[J].Atmosphere,2020,11(2):189. doi: 10.3390/atmos11020189 [5] WANG Z S,LI Y T,CHEN T,et al.Science-policy interplay:improvement of air quality from 2008 to 2014 in Beijing and the scientific approach to achieve APEC blue[J].Bulletin of the American Meteorological Society,2016,97(4):553-559. doi: 10.1175/BAMS-D-15-00095.1 [6] ZHANG X Y,WANG Y Q,LIN W L,et al.Changes of atmospheric composition and optical properties over Beijing:2008 Olympic monitoring campaign[J].Bulletin of the American Meteorological Society,2009,90(11):1633-1652. doi: 10.1175/2009BAMS2804.1 [7] 杨琳,杨红龙,林楚雄,等.从大运会期间浓度变化来分析污染物削减措施效果[J].中国环境监测,2014,30(4):82-88. doi: 10.3969/j.issn.1002-6002.2014.04.014YANG L,YANG H L,LIN C X,et al.Analysis of pollutant concentrations variation and reduction measures effectiveness during 2011 Shenzhen Universiade[J].Environmental Monitoring in China,2014,30(4):82-88. doi: 10.3969/j.issn.1002-6002.2014.04.014 [8] 刘建国,谢品华,王跃思,等.APEC前后京津冀区域灰霾观测及控制措施评估[J].中国科学院院刊,2015,30(3):368-377. doi: 10.16418/j.issn.1000-3045.2015.03.011LIU J G,XIE P H,WANG Y S,et al.Haze observation and control measure evaluation in Jing-Jin-Ji (Beijing,Tianjin,Hebei) area during the period of the Asia-Pacific Economic Cooperation (APEC) meeting[J].Bulletin of Chinese Academy of Sciences,2015,30(3):368-377. doi: 10.16418/j.issn.1000-3045.2015.03.011 [9] 孙峰,张大伟,董欣,等.基于环境监测数据的APEC会议空气质量保障环境改善效果评估[J].中国环境监测,2016,32(3):1-12. doi: 10.19316/j.issn.1002-6002.2016.03.01SUN F,ZHANG D W,DONG X,et al.Research on improvement effects of assurance measures on ambient air quality during APEC based on environmental monitoring data[J].Environmental Monitoring in China,2016,32(3):1-12. doi: 10.19316/j.issn.1002-6002.2016.03.01 [10] 王浩,李轶,高健,等.APEC会议期间石家庄市大气污染特征及空气质量保障措施效果评估[J].环境科学研究,2016,29(2):164-174. doi: 10.13198/j.issn.1001-6929.2016.02.02WANG H,LI Y,GAO J,et al.Characteristics of air pollution and evaluation of the effects of air quality assurance measures in Shijiazhuang City during the 2014 APEC meeting[J].Research of Environmental Sciences,2016,29(2):164-174. doi: 10.13198/j.issn.1001-6929.2016.02.02 [11] ZHOU L H,ZHANG X Y,ZHANG J,et al.A case study of air quality control in Beijing and the surrounding area during the 2015 World Championships and Parade[J].Atmospheric and Oceanic Science Letters,2017,10(3):252-260. doi: 10.1080/16742834.2017.1304802 [12] GUO Z B,SHI L,CHEN S L,et al.Sulfur isotopic fractionation and source appointment of PM2.5 in Nanjing region around the second session of the Youth Olympic Games[J].Atmospheric Research,2016,174/175:9-17. doi: 10.1016/j.atmosres.2016.01.011 [13] XUE Y F,WANG Y,LI X F,et al.Multi-dimension apportionment of clean air ‘parade blue’ phenomenon in Beijing[J].Journal of Environmental Sciences,2018,65:29-42. doi: 10.1016/j.jes.2017.03.035 [14] LI H W,WANG D F,CUI L,et al.Characteristics of atmospheric PM2.5 composition during the implementation of stringent pollution control measures in Shanghai for the 2016 G20 summit[J].Science of the Total Environment,2019,648:1121-1129. doi: 10.1016/j.scitotenv.2018.08.219 [15] 张树宪,李洋,张众志,等.基于CMAQ/ISAM空气质量模型的北京市夏季臭氧来源解析研究[J].环境科学研究,2022,35(5):1183-1192. doi: 10.13198/j.issn.1001-6929.2021.10.11ZHANG S X,LI Y,ZHANG Z Z,et al.Source apportionment of ozone in summer in Beijing based on CMAQ/ISAM air quality model[J].Research of Environmental Sciences,2022,35(5):1183-1192. doi: 10.13198/j.issn.1001-6929.2021.10.11 [16] WANG Y,HAO J,McELROY M B,et al.Ozone air quality during the 2008 Beijing Olympics:effectiveness of emission restrictions[J].Atmospheric Chemistry and Physics,2009,9(14):5237-5251. doi: 10.5194/acp-9-5237-2009 [17] TONG P F,ZHANG Q R,LIN H M,et al.Simulation of the impact of the emergency control measures on the reduction of air pollutants:a case study of APEC blue[J].Environmental Monitoring and Assessment,2020,192(2):116. doi: 10.1007/s10661-019-8056-1 [18] WANG T,XIE S D.Assessment of traffic-related air pollution in the urban streets before and during the 2008 Beijing Olympic Games traffic control period[J].Atmospheric Environment,2009,43(35):5682-5690. doi: 10.1016/j.atmosenv.2009.07.034 [19] LIU H L,HE J,GUO J P,et al.The blue skies in Beijing during APEC 2014:a quantitative assessment of emission control efficiency and meteorological influence[J].Atmospheric Environment,2017,167:235-244. doi: 10.1016/j.atmosenv.2017.08.032 [20] 唐甲洁,陈敏东,高庆先,等.空气质量保障措施的量化评估:以杭州G20峰会为例[J].环境工程技术学报,2021,11(1):23-32. doi: 10.12153/j.issn.1674-991X.20200088TANG J J,CHEN M D,GAO Q X,et al.Quantitative assessment of air quality guarantee measures:take G20 Summit in Hangzhou as an example[J].Journal of Environmental Engineering Technology,2021,11(1):23-32. doi: 10.12153/j.issn.1674-991X.20200088 [21] 贺克斌.城市大气污染物排放清单编制技术手册[EB/OL].北京:道客巴巴,(2019-11-11)[2022-02-24].https://www.doc88.com/p-3337324265982.html. [22] WANG S X,ZHAO M,XING J,et al.Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing[J].Environmental Science & Technology,2010,44(7):2490-2496. [23] BO X,JIA M,XUE X D,et al.Effect of strengthened standards on Chinese ironmaking and steelmaking emissions[J].Nature Sustainability,2021,4(9):811-820. doi: 10.1038/s41893-021-00736-0 [24] LIU X,GAO X,WU X B,et al.Updated hourly emissions factors for Chinese power plants showing the impact of widespread ultralow emissions technology deployment[J].Environmental Science & Technology,2019,53(5):2570-2578. [25] TANG L,QU J B,MI Z F,et al.Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J].Nature Energy,2019,4(11):929-938. doi: 10.1038/s41560-019-0468-1 [26] JI D S,GAO W K,ZHANG J K,et al.Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing[J].Science of the Total Environment,2016,572:289-300. doi: 10.1016/j.scitotenv.2016.07.153 [27] BEI N F,WU J R,ELSER M,et al.Impacts of meteorological uncertainties on the haze formation in Beijing-Tianjin-Hebei (BTH) during wintertime:a case study[J].Atmospheric Chemistry and Physics,2017,17(23):14579-14591. doi: 10.5194/acp-17-14579-2017 [28] 何敏,陈军辉,龙启超,等.乐山市重污染应急措施效果评估[J].四川环境,2019,38(5):126-132.HE M,CHEN J H,LONG Q C,et al,Assessment of effects of emergency countermeasures for heavy air pollution in Leshan[J].Sichuan Environment,2019,38(5):126-132. [29] 彭楠峰.距离反比插值算法与Kriging插值算法的比较[J].大众科技,2008,10(5):57-58. doi: 10.3969/j.issn.1008-1151.2008.05.024PENG N F.Comparison between inverse distance interpolation algorithm and Kriging interpolation algorithm[J].Popular Science & Technology,2008,10(5):57-58. doi: 10.3969/j.issn.1008-1151.2008.05.024 [30] 胡京南,柴发合,段菁春,等.京津冀及周边地区秋冬季PM2.5爆发式增长成因与应急管控对策[J].环境科学研究,2019,32(10):1704-1712.HU J N,CHAI F H,DUAN J C,et al.Explosive growth of PM2.5 during the autumn and winter seasons in the Jing-Jin-Ji and surrounding area and its control measures with emergency response[J].Research of Environmental Sciences,2019,32(10):1704-1712. [31] 任鹏杰,尉鹏,赵森,等.持续鞍型场导致的西安市PM2.5重污染过程分析[J].环境科学研究,2020,33(11):2588-2598.REN P J,WEI P,ZHAO S,et al.Analysis of heavy PM2.5 pollution episode in Xi'an City caused by stable saddle pattern of pressure field[J].Research of Environmental Sciences,2020,33(11):2588-2598. [32] 刘飞,薛志钢,续鹏,等.钢铁行业典型烧结机污染物排放特征对比研究[J].环境科学研究,2020,33(4):849-858. doi: 10.13198/j.issn.1001-6929.2020.02.08LIU F,XUE Z G,XU P,et al.Comparative study on pollutant emission characteristics of typical sintering machines in iron and steel industry[J].Research of Environmental Sciences,2020,33(4):849-858. doi: 10.13198/j.issn.1001-6929.2020.02.08 [33] 郭凤艳,杨飞,邓双,等.山西省某市焦化行业大气污染物排放特征[J].环境科学研究,2021,34(12):2887-2895. doi: 10.13198/j.issn.1001-6929.2021.09.21GUO F Y,YANG F,DENG S,et al.Emission characteristics of air pollutant in coking industry of a city in Shanxi Province[J].Research of Environmental Sciences,2021,34(12):2887-2895. doi: 10.13198/j.issn.1001-6929.2021.09.21 -