Effect of β-Lactam-Based Bacterial Residue Fertilizer on Lettuce Rhizosphere Soil Bacteria and Antibiotic Resistance Genes
-
摘要: β-内酰胺类菌渣的资源化处理已成为生物制药企业急需解决的问题. 为探究β-内酰胺类菌渣资源化产物是否满足《有机肥料》(NY/T 525—2021)标准,施加后是否会对作物根际土壤微生物产生显著影响以及是否会导致ARGs(抗生素抗性基因)的富集等问题,该研究选用经水热干燥喷雾(HT+SD)处理后的头孢菌渣和板框压滤(MD)处理后的青霉素菌渣为研究对象,以空白组、化肥处理组为对照,各施肥处理均采用高施用量(1%)和低施用量(0.5%)两种肥料投加量进行盆栽试验. 通过16S rRNA及HT-qPCR方法研究了菌渣肥对生菜根际土壤细菌多样性、物种组成、ARGs以及MGEs(可移动遗传元件)的影响. 结果表明:在经过无害化处理后的菌渣中,残留抗生素远低于HPLC-MS检出限(<6.78 μg/kg),含水率降低95%,重金属、有机质等指标均能满足《有机肥料》(NY/T 525—2021)要求;相较于施肥量,施肥类型对土壤细菌群落结构的影响更明显,其中,两种菌渣处理组Shannon-Wiener指数显著高于化肥处理组(P<0.05);两种菌渣的施用均没有改变土壤细菌组成,各处理组中最丰富的菌门皆为变形菌门(相对丰度为34.8%~48.1%);高施用量青霉素菌渣组和低施用量头孢菌渣组的ARGs数目和总相对丰度均显著高于对照组(P<0.05),而低施用量的青霉素菌渣和高施用量的头孢菌素菌渣处理组中ARGs数目和相对丰度与空白对照组均无显著性差异(P>0.05),但两种菌渣的施用都没有改变土壤细菌的抗性机制;ARGs的变化与外源性DNA的引入以及土壤特征菌相关,其中假单胞菌属与mexE、ttgA和ttgB三种ARGs均表现出极强的相关性(相关系数分别为0.93、0.90、0.84). 研究显示,经HT+SD和MD技术处理后的抗生素菌渣可以资源化为安全有效的农业替代肥.Abstract: Innovative treatment of β-lactam residues has become a pressing concern for biopharmaceutical firms. This study determined whether resource-based products of β-lactam residues meet the standards of Organic Fertilizer (NY/T 525-2021) and whether the application significantly affects crop inter-root soil microorganisms and leads to the enrichment of antibiotic resistance genes (ARGs). Cephalosporin residues treated by hydrothermal spray-drying (HT+SD) and penicillin residues treated by multi-plate dryer (MD) were selected for the study. A blank group and fertilizer treatment group served as controls. High fertilizer application rate (1%) and low application rate (0.5%) were used to carry out potting experiments. Using 16S rRNA and HT-qPCR, the effects of mycorrhizal fertilization on lettuce inter-root soil bacterial diversity, species composition, ARGs, and mobile genetic elements (MGEs) were investigated. The results indicated that the residual antibiotics in the harmlessly treatment residue were well below the detection limit of HPLC-MS (<6.78 μg/kg), the water content was reduced by 95%, and the indexes of heavy metals and organic matter met the requirements of Organic Fertilizer (NY/T 525-2021). Compared with the amount of fertilizer applied, the effect of fertilizer application type on soil bacterial community structure was more significant, and the Shannon-Wiener indices of both residue treatment groups were significantly higher than those of the chemical fertilizer treatment group (P<0.05). Neither residue affected the bacterial composition of the soil, with Proteobacteria being the most abundant phylum (34.8%-48.1%) in all treatment groups. The number and total relative abundance of ARGs were significantly higher in the HP. The low application rate cephalosporin residue groups were compared to the control group (P<0.05). In contrast, the number and relative abundance of ARGs in the low application rate penicillin residue and HP treatment groups were not significantly different from the blank control group (P>0.05). However, none of the residue applications altered the soil bacterial resistance mechanisms. The changes in ARGs were associated with introducing exogenous DNA and soil characteristic bacteria, among which Pseudomonas spp. showed extremely strong correlations with three ARGs of mexE, ttgA and ttgB (correlation coefficients of 0.93, 0.90 and 0.84, respectively). The study shows that antibiotic residues treated with HT+SD and MD technologies can be repurposed as safe and effective alternative agricultural fertilizers.
-
表 1 青霉素和头孢菌渣盆栽试验施肥处理
Table 1. Fertilization treatments for penicillin and cephalosporin residue pot experiments
序号 肥料 命名 肥料质量/g 处理1 未施肥 CK 0 处理2 化肥(复合肥),施用比例为0.5% IL 2 处理3 化肥(复合肥),施用比例为1% IH 4 处理4 青霉素菌渣,施用比例为0.5% PL 10 处理5 青霉素菌渣,施用比例为1% PH 20 处理6 头孢菌渣,施用比例为0.5% CL 10 处理7 头孢菌渣,施用比例为1% CH 20 表 2 处理前后抗生素菌渣理化性质
Table 2. Physicochemical properties of antibiotic residues before and after treatment
项目 pH 含水率/% 抗生素
残留量/(mg/kg)重金属含量/(mg/kg) 有机质
含量/%总养分/% 粪大肠菌
群数/(个/kg)蛔虫卵
死亡率/%As Cd Cr Hg Pb 青霉素鲜菌渣 6.27 78.85 21.5 0.53 ND 1.28 0.01 0.28 — — — 100 青霉素无害化菌渣 5.77 3.55 ND 0.2 <0.01 <1 0.006 0.2 93.1 15.06 <3 100 头孢菌素鲜菌渣 4.1 90.68 152.3 0.19 0.03 ND ND 0.23 — — — 100 头孢菌素无害化菌渣 4.96 2.76 ND 1.3 2.8 <0.01 0.02 0.3 89 10.57 <3 100 NY/T 525—2021 5.5~8.5 ≤30 未规定 ≤15 ≤3 ≤150 ≤2 ≤50 ≥30 ≥4 ≤100 ≥95 注:—表示未检测;ND表示未检出. -
[1] 王远山,王雨薇,官佳慧,等.微生物制药菌渣处理方法研究进展[J].浙江工业大学学报,2021,49(3):318-323. doi: 10.3969/j.issn.1006-4303.2021.03.013WANG Y S,WANG Y W,GUAN J H,et al.Research progress of microbial pharmaceutical residues disposal technology[J].Journal of Zhejiang University of Technology,2021,49(3):318-323. doi: 10.3969/j.issn.1006-4303.2021.03.013 [2] ZHANG Q Q,YING G G,PAN C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis,multimedia modeling,and linkage to bacterial resistance[J].Environmental Science & Technology,2015,49(11):6772-6782. [3] 陈丙彤,关海滨,张越,等.抗生素菌渣无害化处理技术综合探究[J/OL].现代化工,2022,[2022-11-24].https://kns.cnki.net/kcms/detail/11.2172.TQ.20221123.1755.080.html.CHEN B T,GUAN H B,ZHANG Y,et al.Review on harmless treatment technology of antibiotic residue[J/OL].Modern Chemical Industry,2022,[2022-11-24].https://kns.cnki.net/kcms/detail/11.2172.TQ.20221123.1755.080.html. [4] 王勇军.抗生素菌渣无害化资源化技术研究进展[C].南京,2018:68-79. [5] 曹振华,张媛,马奔,等.南京地区污水厂、自来水厂及长江中抗性基因MCR-1和NDM-1的污染特征[J].环境科学研究,2019,32(3):406-414.CAO Z H,ZHANG Y,MA B,et al.Pollution characteristics of MCR-1 and NDM-1 in wastewater treatment plants,waterworks and Yangtze River of Nanjing section[J].Research of Environmental Sciences,2019,32(3):406-414. [6] 阮敏,吴希锴,杨朝晖,等.不同温度条件对污泥堆肥过程中抗生素抗性基因及其潜在宿主的影响[J/OL].环境工程,2022,[2022-10-31].https://kns.cnki.net/kcms/detail/11.2097.X.20221030.1707.002.html.RUAN M,WU X K,YANG Z H,et al.Effects of different temperature conditions on the abundance and potential host of ARGs during sludge composting[J/OL].Environmental Engineering,2022,[2022-10-31].https://kns.cnki.net/kcms/detail/11.2097.X.20221030.1707.002.html. [7] 宋冉冉,国晓春,卢少勇,等.东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J].环境科学研究,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27SONG R R,GUO X C,LU S Y,et al.Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of east Dongting Lake Basin[J].Research of Environmental Sciences,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27 [8] 刁纪昌.抗生素工业废渣作为饲用的价值[J].抗生素,1981,6(1):31-34.DIAO J C.The value of antibiotic industrial waste residue as feed[J].Chinese Journal of Antibiotics,1981,6(1):31-34. [9] 赵卫凤,鲍晓磊,张媛,等.河北省发酵类抗生素菌渣处置现状及存在的问题[J].安徽农业科学,2013,41(31):12417-12421. doi: 10.3969/j.issn.0517-6611.2013.31.064ZHAO W F,BAO X Ll,ZHANG Y,et al.Investigation on status of antibiotics fermentation residues and existing problems in Hebei[J].Journal of Anhui Agricultural Sciences,2013,41(31):12417-12421. doi: 10.3969/j.issn.0517-6611.2013.31.064 [10] 李再兴,田宝阔,左剑恶,等.抗生素菌渣处理处置技术进展[J].环境工程,2012,30(2):72-75. doi: 10.13205/j.hjgc.2012.02.006LI Z X,TIAN B K,ZUO J E,et al.Progress in treatment and disposal technology of antibiotic bacterial residues[J].Environmental Engineering,2012,30(2):72-75. doi: 10.13205/j.hjgc.2012.02.006 [11] SHEN Y P,CHU L B,ZHUAN R,et al.Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation:a new insight into a sustainable management of antibiotic fermentative residuals[J].Journal of Environmental Management,2019,232:171-178. [12] LIAO H P,LU X M,RENSING C,et al.Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J].Environmental Science & Technology,2018,52(1):266-276. [13] GUO J H,LI J,CHEN H,et al.Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements[J].Water Research,2017,123:468-478. doi: 10.1016/j.watres.2017.07.002 [14] ZHOU J Y,LIU H B,WU H,et al.Field tests of crop growth using hydrothermal and spray-dried cephalosporin mycelia dregs as amendments:utilization of nutrient and soil antibiotic resistome[J].Environmental Research,2021,202:111638. doi: 10.1016/j.envres.2021.111638 [15] 孙伟,匡科,严兴,等.污泥好氧堆肥对PAHs的处理效果和抗生素及抗性基因消解效果[J].环境科学研究,2021,34(7):1757-1763. doi: 10.13198/j.issn.1001-6929.2021.05.13SUN W,KUANG K,YAN X,et al.Sludge aerobic composting to treat PAHs,antibiotics and resistance genes[J].Research of Environmental Sciences,2021,34(7):1757-1763. doi: 10.13198/j.issn.1001-6929.2021.05.13 [16] GUO Z B,ZHU S N,ZHAO Y F,et al.Radiolytic decomposition of ciprofloxacin using γ irradiation in aqueous solution[J].Environmental Science and Pollution Research,2015,22(20):15772-15780. doi: 10.1007/s11356-015-4715-0 [17] BORRELY S I,CRUZ A C,del MASTRO N L,et al.Radiation processing of sewage and sludge:a review[J].Progress in Nuclear Energy,1998,33(1/2):3-21. [18] 熊强,冀东,刘迎云,等.电离辐照技术处理抗生素发酵菌渣的研究进展[J].能源环境保护,2020,34(6):21-25. doi: 10.3969/j.issn.1006-8759.2020.06.004XIONG Q,JI D,LIU Y Y,et al.Research progress on degradation of antibiotic fermentation bacterial residue by ionizing irradiation technology[J].Energy Environmental Protection,2020,34(6):21-25. doi: 10.3969/j.issn.1006-8759.2020.06.004 [19] 孙国军,李卫红,朱成刚,等.新疆伊犁河谷表层土壤容重的空间变异性分析[J].资源科学,2016,38(7):1222-1228.SUN G J,LI W H,ZHU C G,et al.Spatial variation analysis of topsoil bulk density in the Yili Valley,Xinjiang[J].Resources Science,2016,38(7):1222-1228. [20] 周睫雅.头孢菌素菌渣肥料化利用对土壤-植物系统的影响研究[D].石家庄:河北科技大学,2020. [21] 马双.青霉素菌渣肥料基料对土壤环境和油菜生长的影响研究[D].呼和浩特:内蒙古大学,2021. [22] SU J Q,WEI B,OU-YANG W Y,et al.Antibiotic resistome and its association with bacterial communities during sewage sludge composting[J].Environmental Science & Technology,2015,49(12):7356-7363. [23] 刘正洋,王若斐,乔策策,等.木霉生物有机肥对白菜和甘蓝产量及土壤微生物区系的影响[J].南京农业大学学报,2020,43(4):650-657.LIU Z Y,WANG R F,QIAO C C,et al.Effects of Trichoderma bio-organic fertilizer application on yield and soil microflora in Chinese cabbage and cabbage rotation system[J].Journal of Nanjing Agricultural University,2020,43(4):650-657. [24] MOHY-U-DIN N,FARHAN M,WAHID A,et al.Human health risk estimation of antibiotics transferred from wastewater and soil to crops[J].Environmental Science and Pollution Research,2022,60(1):1-14. [25] 张青,王辰,孙宗湜,等.土壤微生物生物量及多样性影响因素研究进展[J].北方园艺,2022(8):116-121.ZHANG Q,WANG C,SUN Z S,et al.Research progress on influencing factors of soil microbial biomass and diversity[J].Northern Horticulture,2022(8):116-121. [26] 孙倩,吴宏亮,陈阜,等.基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析[J].农业生物技术学报,2020,28(8):1490-1498.SUN Q,WU H L,CHEN F,et al.Analysis of bacterial community structure and diversity in rhizosphere soil of several different crops based on high-throughput sequencing[J].Journal of Agricultural Biotechnology,2020,28(8):1490-1498. [27] 张萌,卢杰,张新军.从微观角度浅析土壤微生物多样性的影响因素[J].四川林业科技,2022,43(4):149-154. doi: 10.12172/202109140001ZHANG M,LU J,ZHANG X J.Analysis on the influencing factors of soil microbial diversity from microscopic perspective[J].Journal of Sichuan Forestry Science and Technology,2022,43(4):149-154. doi: 10.12172/202109140001 [28] SADET-BOURGETEAU S,HOUOT S,DEQUIEDT S,et al.Lasting effect of repeated application of organic waste products on microbial communities in arable soils[J].Applied Soil Ecology,2018,125:278-287. doi: 10.1016/j.apsoil.2018.02.006 [29] 刘晓梅,苏文英,纪伟,等.施肥方式对设施番茄产量及土壤细菌多样性、群落结构的影响[J].浙江农业科学,2023,64(1):148-152. doi: 10.16178/j.issn.0528-9017.20220146LIU X M,SU W Y,JI W,et al.Effects of fertilization methods on yield,soil bacterial diversity and community structure in facility tomato[J].Journal of Zhejiang Agricultural Sciences,2023,64(1):148-152. doi: 10.16178/j.issn.0528-9017.20220146 [30] HAYAT R,ALI S,AMARA U,et al.Soil beneficial bacteria and their role in plant growth promotion:a review[J].Annals of Microbiology,2010,60(4):579-598. doi: 10.1007/s13213-010-0117-1 [31] RODRÍGUEZ H,FRAGA R,GONZALEZ T,et al.Genetics of phosphate solubilization and its potential applications[J].Plant and Soil,2006,287(1):15-21. [32] HU H W,WANG J T,LI J,et al.Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J].Environmental Science & Technology,2017,51(2):790-800. [33] MARTI R,SCOTT A,TIEN Y C,et al.Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest[J].Applied and Environmental Microbiology,2013,79(18):5701-5709. doi: 10.1128/AEM.01682-13 [34] ALLEN H K,DONATO J,WANG H H,et al.Call of the wild:antibiotic resistance genes in natural environments[J].Nature Reviews Microbiology,2010,8(4):251-259. doi: 10.1038/nrmicro2312 [35] MANSON J M,SMITH J M B,COOK G M.Persistence of vancomycin-resistant enterococci in New Zealand broilers after discontinuation of avoparcin use[J].Applied and Environmental Microbiology,2004,70(10):5764-5768. doi: 10.1128/AEM.70.10.5764-5768.2004 [36] LUAN X,HAN Z M,SHEN Y P,et al.Assessing the effect of treated erythromycin fermentation residue on antibiotic resistome in soybean planting soil:in situ field study[J].Science of the Total Environment,2021,779:146329. doi: 10.1016/j.scitotenv.2021.146329 [37] KENZAKA T,TANI K.Draft genome sequence of carbapenem-resistant Pseudomonas fluorescens strain BWKM6,isolated from feces of Mareca penelope[J].Genome Announcements,2018,6(12):e00186-e00118. [38] YAO X M,TAO F,ZHANG K Z,et al.Multiple roles for two efflux pumps in the polycyclic aromatic hydrocarbon-degrading Pseudomonas putida strain B6-2 (DSM 28064)[J].Applied and Environmental Microbiology,2017,83(24):e01882-e01817. [39] ELBADRY M,EL-BASSEL A,ELBANNA K.Occurrence and dynamics of phototrophic purple nonsulphur bacteria compared with other asymbiotic nitrogen fixers in ricefields of Egypt[J].World Journal of Microbiology and Biotechnology,1999,15(3):359-362. doi: 10.1023/A:1008971515966 -