Chemical Composition Characteristics and Source Apportionment of PM2.5 in the Fenwei Plain in Autumn and Winter
-
摘要: 汾渭平原是我国空气污染最严重的区域之一,2018年被列为重点区域. 本研究针对汾渭平原11城市开展PM2.5化学组分连续观测,分析PM2.5浓度和主要化学组分的时空分布规律,并利用PMF模型解析PM2.5污染来源. 结果表明:①2018—2019年秋冬季汾渭平原11城市ρ(PM2.5)平均值为(101.4±65.4)μg/m3,是京津冀及周边地区“2+26”城市的1.1倍. 临汾市ρ(PM2.5)最高(216.8 μg/m3),是汾渭平原的2.1倍. ②2018—2019年秋冬季汾渭平原PM2.5的主要化学组分是有机物、硝酸根离子、地壳物质和硫酸根离子,其中地壳物质占比是京津冀及周边地区的1.6倍. ③受污染物排放、气象条件以及地理位置的影响,汾渭平原PM2.5中有机物、硝酸根离子、地壳物质、硫酸根离子、铵根离子和氯离子的空间分布具有明显的差异性. ④随着污染的加重,硝酸根离子、硫酸根离子和氯离子在PM2.5中的占比均逐渐增加,地壳物质、元素碳、微量元素等与一次排放相关的组分占比随污染加重逐渐减少,表明污染期间燃煤源管控仍需进一步加严,而对扬尘源和机动车等污染源的管控起到了良好的效果. ⑤重污染过程期间,相对湿度增加、风速减小是影响PM2.5浓度上升的客观因素,二次组分以及与燃煤源和生物质燃烧源有关的化学组分的增长是影响PM2.5浓度上升的重要原因,二次源和燃烧源是PM2.5的主要来源. 研究显示,汾渭平原秋冬季PM2.5污染较重,尤其需要关注燃烧源的管控.Abstract: The Fenwei Plain was one of the areas with the most serious air pollution issue in China, and was listed as the key air pollution control area in 2018. This study carried out continuous observation of PM2.5 chemical components in 11 cities in the Fenwei Plain, analyzed the temporal and spatial distribution of PM2.5 concentration and main chemical components, and used PMF model to analyze the source of PM2.5 pollution. It showed that the average concentration of PM2.5 was (101.4±65.4) μg/m3 in the Fenwei Plain in autumn and winter of 2018-2019, which was 1.1 times higher than that in the Beijing-Tianjin-Hebei and its surrounding areas. The average concentration of PM2.5 in Linfen City was the highest, the concentration value reached 216.8 μg/m3, which was 2.1 times higher than that of the Fenwei Plain. The main chemical components of PM2.5 in the Fenwei Plain in autumn and winter were organic matter, nitrate, crustal materials and sulfate. And the proportion of the crustal materials was 1.6 times of the Beijing-Tianjin-Hebei and its surrounding areas. Affected by pollutant emissions, meteorological conditions and geographical location, the spatial distribution of organic matter, nitrate, crustal materials, sulfate, ammonium and chloride ions in PM2.5 in the Fenwei Plain were obviously different. With the aggravation of pollution level, the proportion of nitrate, sulfate and chloride ions in PM2.5 gradually increased, and the proportion of crustal materials, elemental carbon, trace elements and other components related to primary emissions gradually decreased with the aggravation of pollution. It showed that the control of coal combustion sources still needed to be further tightened during the pollution period, and the control of dust sources, motor vehicles and other pollution sources had achieved good results. In the heavy pollution process, the increase of relative humidity and the decrease of wind speed were the objective factors leading to PM2.5 concentration increase, and the increase of secondary components and chemical components related to coal combustion sources and biomass combustion sources were the important reasons for the increase in PM2.5 concentration. Secondary source of pollution and combustion were the main source of PM2.5 during heavy pollution. The research showed that PM2.5 pollution in the Fenwei Plain was heavy in autumn and winter, and special attention should be paid to the control of combustion sources and dust sources.
-
Key words:
- Feiwei Plain /
- autumn and winter /
- source of PM2.5 /
- chemical composition /
- heavy pollution
-
表 1 汾渭平原11城市采样点及采样仪器信息
Table 1. Information of sampling points and sampling instruments of each city in the Fenwei Plain
城市 采样点名称 地理位置 采样点类型 采样仪器厂家(型号) 运城市 技校站点 35°03′03′′N、110°96′86′′E 城市区 武汉市天虹仪表有限责任公司(TH-16A型) 临汾市 襄汾站点 35°53′08″N、111°26′12″E 文教、交通、商业混合区 青岛崂应环境科技有限公司(2050型) 三门峡市 市政府站点 34°41′57″N、111°04′14″E 文教、交通、商业混合区 青岛众瑞智能仪器有限公司(ZR-3930D型) 铜川市 矿山救援中心站点 34°52′54″N、108°58′20″E 文教、交通、商业混合区 武汉市天虹仪表有限责任公司(TH-16A型) 宝鸡市 环境监测中心站站点 34°21′35″N、107°09′14″E 生活区 武汉市天虹仪表有限责任公司(TH-16A型) 晋中市 晋中市生态环境局榆次分局站点 37°42′47″N、112°44′17″E 文教、交通、商业混合区 武汉市天虹仪表有限责任公司(TH-16A型) 西安市 中科院地环所站点 34°13′43″N、108°53′15″E 文教、交通、商业混合区 武汉市天虹仪表有限责任公司(TH-16A型) 洛阳市 凯旋路小学站点 34°40′06″N、112°26′35″E 交通区 武汉市天虹仪表有限责任公司(TH-16A型) 吕梁市 生态环境局站点 37°31′47″N、111°10′57″E 文教、交通、商业混合区 青岛崂应环境科技有限公司(2050型) 咸阳市 咸阳市实验中学站点 34°19′08″N、108°41′02″E 文教、交通、商业混合区 美国AIRMETRICS便携式空气采样器(Mini-Vol型) 渭南市 市监测站站点 34°29′31″N、109°30′32″E 文教、交通、商业混合区 武汉市天虹仪表有限责任公司(TH-16A型) 表 2 汾渭平原11城市PM2.5浓度实测值及其化学组分浓度质控结果
Table 2. Quality control results of PM2.5 concentration and chemical component concentration of each city in the Fenwei Plain
城市 PM2.5浓度
实测值与在线
监测值的相关性PM2.5浓度
重构值与实
测值的相关性阳离子当量
浓度/阴离子
当量浓度质控后有效
样品个数运城市 0.73 0.89 0.72 139 临汾市 0.70 0.92 1.53 94 三门峡市 0.72 0.92 1.20 126 铜川市 0.71 0.89 1.52 151 宝鸡市 0.78 0.80 0.98 141 晋中市 0.79 0.96 1.21 65 西安市 0.78 0.93 1.63 165 洛阳市 0.80 0.93 1.64 138 吕梁市 0.71 0.89 0.81 72 咸阳市 0.78 0.92 0.40 155 渭南市 0.87 0.96 0.86 106 表 3 不同污染等级下汾渭平原PM2.5及其化学组分浓度
Table 3. The variations of the concentration of PM2.5 and its main chemical compositions under different pollution levels in autumn and winter of 2018
项目 优、良天 轻度和中度污染 重度及以上污染 浓度/(μg/m3) 浓度/(μg/m3) 与优-良天相比
浓度增幅/%浓度/(μg/m3) 与轻度和中度污染
相比浓度增幅/%与优-良天相比
浓度增幅/%PM2.5 66.2 117.6 79.5 177.9 49.2 168.7 有机物 13.9(20.8%) 25.5(21.4%) 84.1 37.2(20.9%) 46.0 168.7 硝酸根离子 9.5(14.3%) 21.6(18.1%) 127.9 35.0(19.6%) 61.9 268.8 地壳物质 8.7(13.1%) 7.5(6.3%) −13.8 9.5(5.3%) 26.7 9.2 硫酸根离子 6.0(9.0%) 12.0(10.1%) 101.2 18.8(10.5%) 56.4 214.6 铵根离子 3.8(5.7%) 8.0(6.7%) 112.9 10.6(6.0%) 32.8 182.7 元素碳 3.1(4.7%) 5.5(4.6%) 76.3 7.6(4.3%) 39.6 146.1 氯离子 2.1(3.2%) 4.8(4.0%) 126.5 8.0(4.5%) 65.9 275.7 微量元素 1.8(2.7%) 2.9(2.4%) 63.0 3.6(2.0%) 23.2 100.9 注:括号中数值为化学组分在PM2.5中的占比. -
[1] 王文兴,柴发合,任阵海,等.新中国成立70年来我国大气污染防治历程、成就与经验[J].环境科学研究,2019,32(10):1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15WANG W X,CHAI F H,REN Z H,et al.Process,achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago[J].Research of Environmental Sciences,2019,32(10):1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15 [2] 武卫玲,薛文博,王燕丽,等.《大气污染防治行动计划》实施的环境健康效果评估[J].环境科学,2019,40(7):2961-2966.WU W L,XUE W B,WANG Y L,et al.Health benefit evaluation for Air Pollution Prevention and Control Action Plan in China[J].Environmental Science,2019,40(7):2961-2966. [3] 生态环境部.中国空气质量改善报告(2013—2018)年[R].北京:生态环境部,2019:1-5. [4] 王韵杰,张少君,郝吉明.中国大气污染治理:进展·挑战·路径[J].环境科学研究,2019,32(10):1755-1762. doi: 10.13198/j.issn.1001-6929.2019.08.22WANG Y J,ZHANG S J,HAO J M.Air pollution control in China:progress,challenges and future pathways[J].Research of Environmental Sciences,2019,32(10):1755-1762. doi: 10.13198/j.issn.1001-6929.2019.08.22 [5] 何伟,张文杰,王淑兰,等.京津冀地区大气污染联防联控机制实施效果及完善建议[J].环境科学研究,2019,32(10):1696-1703. doi: 10.13198/j.issn.1001-6929.2019.09.06HE W,ZHANG W J,WANG S L,et al.Effects and improvement suggestions on air pollution joint prevention and control mechanism in Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2019,32(10):1696-1703. doi: 10.13198/j.issn.1001-6929.2019.09.06 [6] 生态环境部.2021年中国生态环境状况公报[R].北京:生态环境部,2021. [7] 刘旻霞,李亮,于瑞新,等.汾渭平原吸收性气溶胶时空演化及潜在源区分析[J].环境科学,2021,42(6):2634-2647.LIU M X,LI L,YU R X,et al.Spatio-temporal patterns and potential sources of absorbing aerosols in the Fenwei Plain[J].Environmental Science,2021,42(6):2634-2647. [8] 乔栋,张丹华.汾渭平原打响蓝天保卫战[N].北京:人民日报,2018-07-02(14). [9] 王圣,徐静馨,孙雪丽,等.汾渭平原采暖期与非采暖期大气环境质量时空变化特征研究[J].环境污染与防治,2019,41(12):1451-1458. doi: 10.15985/j.cnki.1001-3865.2019.12.013WANG S,XU J X,SUN X L,et al.Spatial-temporal variation characteristics of air pollution in Fenwei Plain during heating and non-heating seasons[J].Environmental Pollution & Control,2019,41(12):1451-1458. doi: 10.15985/j.cnki.1001-3865.2019.12.013 [10] 王胜杰,解淑艳,王军霞,等.2016—2019年汾渭平原城市空气质量状况分析[J].中国环境监测,2020,36(6):57-65. doi: 10.19316/j.issn.1002-6002.2020.06.10WANG S J,XIE S Y,WANG J X,et al.Analysis of air quality in Fenwei Plain from 2016 to 2019[J].Environmental Monitoring in China,2020,36(6):57-65. doi: 10.19316/j.issn.1002-6002.2020.06.10 [11] 国务院.关于印发《打赢蓝天保卫战三年行动计划》的通知[R].北京:国务院,2018. [12] 张忠地,邵天杰,黄小刚,等.2017年京津冀地区PM2.5污染特征及潜在来源分析[J].环境工程,2020,38(2):99-106.ZHANG Z D,SHAO T J,HUANG X G,et al.Characteristics and potential sources of pm2.5 pollution in Beijing-Tianjin-Hebei Region in 2017[J].Environmental Engineering,2020,38(2):99-106. [13] 唐倩,郑博,薛文博,等.京津冀及周边地区秋冬季大气污染物排放变化因素解析[J].环境科学,2021,42(4):1591-1599. doi: 10.13227/j.hjkx.202007218TANG Q,ZHENG B,XUE W B,et al.Contributors to air pollutant emission changes in autumn and winter in Beijing-Tianjin-Hebei and surrounding areas[J].Environmental Science,2021,42(4):1591-1599. doi: 10.13227/j.hjkx.202007218 [14] 刀谞,吉东生,张显,等.京津冀及周边地区采暖季PM2.5化学组分变化特征[J].环境科学研究,2021,34(1):1-10.DAO X,JI D S,ZHANG X,et al.Characteristics of chemical composition of PM2.5 in Beijing-Tianjin-Hebei and its surrounding areas during the heating period[J].Research of Environmental Sciences,2021,34(1):1-10. [15] 赵清,李杏茹,王国选,等.运城秋冬季大气细粒子化学组成特征及来源解析[J].环境科学,2021,42(4):1626-1635.ZHAO Q,LI X R,WANG G X,et al.Chemical composition and source analysis of PM2.5 in Yuncheng,Shanxi Province in autumn and winter[J].Environmental Science,2021,42(4):1626-1635. [16] 王妘涛.运城市PM2.5污染特征及其来源解析[D].西安:西北大学,2022. [17] XU H M,CAO J J,CHOW J C,et al.Inter-annual variability of wintertime PM2.5 chemical composition in Xi′an,China:evidences of changing source emissions[J].Science of the Total Environment,2016,545/546:546-555. doi: 10.1016/j.scitotenv.2015.12.070 [18] 曹宁,黄学敏,祝颖,等.西安冬季重污染过程PM2.5理化特征及来源解析[J].中国环境科学,2019,39(1):32-39. doi: 10.3969/j.issn.1000-6923.2019.01.004CAO N,HUANG X M,ZHU Y,et al.Pollution characteristics and source apportionment of fine particles during a heavy pollution in winter in Xi′an City[J].China Environmental Science,2019,39(1):32-39. doi: 10.3969/j.issn.1000-6923.2019.01.004 [19] 靳朝喜.洛阳市大气PM2.5中重金属元素特征来源及潜在生态风险评价[J].环保科技,2020,26(6):11-15. doi: 10.3969/j.issn.1674-0254.2020.06.003JIN C X.Heavy metal characteristic sources and ecological risk assessment of atmospheric PM2.5 in Luoyang City[J].Environmental Protection and Technology,2020,26(6):11-15. doi: 10.3969/j.issn.1674-0254.2020.06.003 [20] 齐静文,张瑞芹,姜楠,等.洛阳市秋冬季PM2.5中多环芳烃的污染特征、来源解析及健康风险评价[J].环境科学,2021,42(2):595-603.QI J W,ZHANG R Q,JIANG N,et al.Characterization,sources,and health risks of PM2.5-bound PAHs during autumn and winter in Luoyang City[J].Environmental Science,2021,42(2):595-603. [21] 王跃思,宫正宇,刘子锐,等.京津冀及周边地区大气污染综合立体观测网的建设与应用[J].环境科学研究,2019,32(10):1651-1663.WANG Y S,GONG Z Y,LIU Z R,et al.Construction and application of comprehensive observation network for air pollution in Beijing-Tianjin-Hebei and its surrounding areas[J].Research of Environmental Sciences,2019,32(10):1651-1663. [22] 生态环境部.环境空气颗粒物(PM2.5)手工监测方法(重量法) 技术规范:HJ 656—2013.北京:生态环境部,2013. [23] 生态环境部.关于发布《大气颗粒物来源解析技术指南(试行)》的通知[EB/OL].北京:生态环境部,2013-08-14[2020-08-29].http:www.mee.gov.cn/gkml/hbb/bwj/201308/t20130820_257699.htm. [24] 崔宏,平丽蓉,刘肖,等.临汾市PM2.5中水溶性离子季节变化特征及来源解析[J].环境化学,2021,40(12):3764-3773. doi: 10.7524/j.issn.0254-6108.2020081207CUI H,PING L R,LIU X,et al.Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Linfen City[J].Environmental Chemistry,2021,40(12):3764-3773. doi: 10.7524/j.issn.0254-6108.2020081207 [25] 黄小刚,邵天杰,赵景波,等.汾渭平原PM2.5浓度的影响因素及空间溢出效应[J].中国环境科学,2019,39(8):3539-3548. doi: 10.3969/j.issn.1000-6923.2019.08.049HUANG X G,SHAO T J,ZHAO J B,et al.Influence factors and spillover effect of PM2.5 concentration on Fen-Wei Plain[J].China Environmental Science,2019,39(8):3539-3548. doi: 10.3969/j.issn.1000-6923.2019.08.049 [26] SILLANPÄÄ M,HILLAMO R,SAARIKOSKI S,et al.Chemical composition and mass closure of particulate matter at six urban sites in Europe[J].Atmospheric Environment,2006,40:212-223. [27] 刘保献,杨懂艳,张大伟,等.北京城区大气PM2.5主要化学组分构成研究[J].环境科学,2015,36(7):2346-2352.LIU B X,YANG D Y,ZHANG D W,et al.Chemical species of PM2.5 in the urban area of Beijing[J].Environmental Science,2015,36(7):2346-2352. [28] XING L,FU T M,CAO J J,et al.Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols[J].Atmospheric Chemistry and Physics,2013,13(8):4307-4318. doi: 10.5194/acp-13-4307-2013 [29] BLANCHARD C L,HIDY G M,TANENBAUM S,et al.Carbon in southeastern US aerosol particles:empirical estimates of secondary organic aerosol formation[J].Atmospheric Environment,2008,42(27):6710-6720. doi: 10.1016/j.atmosenv.2008.04.011 [30] LIU S,AHIM L,DAY D A,et al.Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield[J].Journal of Geophysical ResearchAtmospheres,2012,117(S23):1467-1471. [31] TRUEX T,PIERSON W,MC-KEE D.Sulfate in diesel exhaust[J].Environmental Science and Technology,1980,14(9):1118-1121. doi: 10.1021/es60169a013 [32] 杨闻达,程鹏,田智林,等.广州市夏秋季HONO污染特征及白天未知源分析[J].中国环境科学,2017,37(6):2029-2039. doi: 10.3969/j.issn.1000-6923.2017.06.005YANG W D,CHENG P,TIAN Z L,et al.Study on HONO pollution characteristics and daytime unknown sources during summer and autumn in Guangzhou,China[J].China Environmental Science,2017,37(6):2029-2039. doi: 10.3969/j.issn.1000-6923.2017.06.005 [33] 国家大气污染防治攻关联合中心.大气重污染成因与治理攻关项目研究报告[M].北京:科学出版社,2021. [34] 高星星,桂海林,王楠,等.汾渭平原一次沙尘和人为混合空气污染过程分析[J].气象与环境学报,2021,37(1):1-8.GAO X X,GUI H L,WANG N,et al.Analysis of an air pollution event due to dust and anthropogenic emission in Fenwei Plain[J].Journal of Meteorology and Environment,2021,37(1):1-8. [35] 孙丽娟.山西省受沙尘天气过程影响特征分析[J].山西化工,2022,42(2):337-339.SUN L J.Analysis on the characteristics of sand-dust weather process in Shanxi Province[J].Shanxi Chemical Industry,2022,42(2):337-339. [36] 刘慧,井宇,黄少妮,等.陕西关中地区一次霾转沙尘过程的气象条件分析[J].气象与环境科学,2021,44(3):8-15. doi: 10.16765/j.cnki.1673-7148.2021.03.002LIU H,JING Y,HUANG S N,et al.Analysis of meteorological conditions for a haze to dust pollution process in Guanzhong,Shaanxi Province[J].Meteorological and Environmental Sciences,2021,44(3):8-15. doi: 10.16765/j.cnki.1673-7148.2021.03.002 [37] 唐孝炎.大气环境化学[M].北京:科学出版社,2014. [38] 高晓梅.我国典型地区大气PM2.5水溶性离子的理化特征及来源解析[D].济南:山东大学,2012. [39] REDDY M S,VENKATARAMAN C.Inventory of aerosol and sulphur dioxide emissions from India.I:fossil fuel combustion[J].Atmospheric Environment,2002,36(4):677-697. doi: 10.1016/S1352-2310(01)00463-0 [40] WANG S X,XING J,JANG C,et al.Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique[J].Environmental Science & Technology,2011,45(21):9293-9300. [41] HAN X,ZHU L,LIU M,et al.Numerical analysis of agricultural emissions impacts on PM2.5 in China using a high-resolution ammonia emission inventory[J].Atmospheric Chemistry and Physics,2020,20(16):9979-96. doi: 10.5194/acp-20-9979-2020 [42] RENNER E,WOLKE R.Modelling the formation and atmospheric transport of secondary inorganic aerosols with special attention to regions with high ammonia emissions[J].Atmospheric Environment,2010,44(15):1904-1912. doi: 10.1016/j.atmosenv.2010.02.018 [43] PU W W,MA Z Q,COLLETT JR J L,et al.Regional transport and urban emissions are important ammonia contributors in Beijing,China[J].Environmental Pollution,2020,265:115062. doi: 10.1016/j.envpol.2020.115062 [44] 陈雯.基于多源数据比对的汾河平原大气污染源排放清单评估研究[D].北京:中国环境科学研究院,2021:11-21. [45] 苏航,闫东杰,黄学敏,等.西安市人为源大气氨排放清单及特征[J].环境科学,2016,37(11):4117-4123. doi: 10.13227/j.hjkx.201605127SU H,YAN D J,HUANG X M,et al.Inventory and characteristics of anthropogenic ammonia emission in Xi'an[J].Environmental Science,2016,37(11):4117-4123. doi: 10.13227/j.hjkx.201605127 [46] 贾玉欢,王春迎,孙凯,等.洛阳市2017年大气氨排放清单的建立及其空间分布特征[J].中国环境监测,2021,37(5):116-124.JIA Y H,WANG C Y,SUN K,et al.The establishment of the anthropogenic ammonia emission inventory and its spatial distribution characteristics in Luoyang City in 2017[J].Environmental Monitoring in China,2021,37(5):116-124. [47] ZHU C Y,TIAN H Z,HAO Y,et al.A high-resolution emission inventory of anthropogenic trace elements in Beijing-Tianjin-Hebei (BTH) Region of China[J].Atmospheric Environment,2018,191:452-462. doi: 10.1016/j.atmosenv.2018.08.035 [48] BROWN S G,FRANKEL A,RAFFUSE S M,et al.Source apportionment of fine particulate matter in phoenix,AZ,using positive matrix factorization[J].Journal of the Air & Waste Management Association,2007,57(6):741-752. [49] PAATERO P,TAPPER U.Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J].Environmetrics,1994,5:111-126. doi: 10.1002/env.3170050203 [50] NORRIS G,DUVALL R.EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide[EB/OL].Washington DC:US Environmental Protection Agency,(2015-06-29)[2022-08-20].https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&direntryid=308292. [51] WANG G,CHEN J,ZHANG W G,et al.Relationship between magnetic properties and heavy metal contamination of street dust samples from Shanghai,China[J].Environmental Science and Pollution Research International,2019,26(9):8958-8970. doi: 10.1007/s11356-019-04338-4 [52] ZHANG X F,GAO S,FU Q Y,et al.Impact of VOCs emission from iron and steel industry on regional O3 and PM2.5 pollutions[J].Environmental Science and Pollution Research International,2020,27(23):28853-28866. doi: 10.1007/s11356-020-09218-w [53] 郑玫,张延君,闫才青,等.中国PM2.5来源解析方法综述[J].北京大学学报(自然科学版),2014,50(6):1141-1154.ZHENG M,ZHANG Y J,YAN C Q,et al.Review of PM2.5 source apportionment methods in China[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(6):1141-1154. [54] PEI B,WANG X L,ZHANG Y H,et al.Emissions and source profiles of PM2.5 for coal-fired boilers in the Shanghai megacity,China[J].Atmospheric Pollution Research,2016,7(4):577-584. doi: 10.1016/j.apr.2016.01.005 [55] 冯加良,毛文文,荆亮,等.上海不同功能区夏季PM2.5中生物质燃烧贡献的解析[J].环境科学学报,2019,39(11):3677-3684.FENG J L,MAO W W,JING L,et al.Interpretation on biomass burning contributions to the summer PM2.5 at different sites in Shanghai[J].Acta Scientiae Circumstantiae,2019,39(11):3677-3684. -