【PM2.5与O3协同防控科技攻关成果专题】编者按:2017年,国务院常务会议确定设立大气重污染成因与治理攻关项目,由生态环境部牵头,会同科学技术部、中国科学院、农业农村部、工业和信息化部、中国气象局、国家卫生健康委员会、高校等多部门和单位,集中优秀科研团队,针对京津冀及周边地区秋冬季大气重污染成因、重点行业和污染物排放管控技术、居民健康防护等开展集中攻关. 生态环境部探索“1+X”科技攻关新型举国体制机制,组建国家大气污染防治攻关联合中心. 2020年,生态环境部陆续启动一系列细颗粒物(PM2.5)和臭氧(O3)复合污染协同防控科技攻关先导项目和城市二期“一市一策”驻点跟踪研究,进一步推动京津冀及周边地区、汾渭平原等区域空气质量持续改善. 本专题将展示2017年以来大气攻关系列项目取得的研究成果,本期内容涉及大气重污染成因与治理、大气污染防治路径、O3前体物管控现状及减排策略、大气挥发性有机物(VOCs)源排放特征、大气污染物排放清单编制等研究内容. 专题相关研究成果可为推动我国PM2.5与O3复合污染协同防控相关领域研究提供参考.
Control Status and Emission Reduction Strategies of Nitrogen Oxides in Key Industries in China
-
摘要: 氮氧化物(NOx)减排对于我国细颗粒物(PM2.5)与臭氧(O3)复合污染的协同控制至关重要. 本文对我国重点行业NOx管控现状和减排策略进行了综述与展望. 研究表明,我国NOx排放主要来源于工业炉窑和柴油机尾气,其中工业烟气NOx排放主要来源于钢铁、建材和有色等行业;柴油机NOx排放主要来源于柴油车、非道路移动机械与船舶. NOx减排策略主要包括技术措施和政策措施,其中技术措施主要包括清洁燃烧,如低氮燃烧、废气再循环、清洁燃料替代等,以及后处理净化技术,如选择性催化还原技术、选择性非催化还原、臭氧氧化吸收等;政策措施主要包括提升NOx排放标准,加强排放智能监测监管,布局新能源相关技术等. 研究显示:现阶段,机动车和非电行业的NOx减排仍有较大空间;未来,在“碳达峰碳中和”背景下,通过发展大气污染物和温室气体的协同控制技术,将进一步深度减排NOx,实现PM2.5与O3的协同控制.Abstract: The reduction of nitrogen oxide (NOx) emissions is critical for the control of fine particulate matter (PM2.5) and ozone (O3) complex air pollution in China. Therefore, in this paper the control status and emission reduction strategies of NOx in key industries in China are reviewed and future prospects are discussed. Exhaust gases from non-electric industrial furnaces and diesel engines are major sources of NOx emissions. The NOx in industrial flue gas mainly comes from the steel, construction material and metallurgical industries, while the NOx in diesel engine exhaust mainly comes from diesel vehicles, off-road machinery and marine engines. The reduction strategies for NOx include both technical and policy measures. The technical measures include clean combustion, such as low-nitrogen combustion, exhaust gas recirculation and clean fuel substitution; and after-treatment purification, such as selective catalytic reduction and selective non-catalytic reduction, and ozone oxidation combined with absorption. Policy measures include raising NOx emission standards, strengthening intelligent monitoring and supervision, and developing new energy technologies. At the present stage, there is still room for NOx reduction from motor vehicles and non-electric industries. In future, under the background of ‘carbon peak and carbon neutrality’, developing synergetic emission reduction technologies for atmospheric pollutants and greenhouse gases will further reduce NOx emissions and achieve synergetic control of both PM2.5 and O3.
-
[1] 国家环境保护总局.国家环境科技发展“十五”计划纲要[EB/OL].北京:国家环境保护总局,(2001-05-23)[2023-01-09].https://www.mee.gov.cn/ywgz/kjycw/sthjkjcx/sthjkp/kpjd/200105/t20010523_68123.shtml. [2] 环境保护部,国家质量监督检验检疫总局.轻型汽车污染物排放限值及测量方法(中国第六阶段):GB 18352.6—2016[S].北京:中国环境科学出版社,2020. [3] 生态环境部,国家市场监督管理总局.重型柴油车污染物排放限值及测量方法(中国第六阶段):GB 17691—2018[S].北京:中国环境科学出版社,2019. [4] 国务院.打赢蓝天保卫战三年行动计划[EB/OL].北京:国务院,(2018-06-27)[2023-01-09].http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm. [5] 中央人民政府.中共中央 国务院关于深入打好污染防治攻坚战的意见[EB/OL].北京:新华社,(2021-11-02)[2023-01-09].http://www.gov.cn/zhengce/2021-11/07/content_5649656.htm. [6] CHU B W,DING Y,GAO X,et al.Coordinated control of fine-particle and ozone pollution by the substantial reduction of nitrogen oxides[J].Engineering,2022,15:13-16. doi: 10.1016/j.eng.2021.09.006 [7] 环境保护部.2012年中国环境统计年报[R].北京:环境保护部,2013. [8] 生态环境部.2020年中国生态环境统计年报[R].北京:生态环境部,2022. [9] 贺泓,王新明,王跃思,等.大气灰霾追因与控制[J].中国科学院院刊,2013,28(3):344-352. doi: 10.3969/j.issn.1000-3045.2013.03.008HE H,WANG X M,WANG Y S,et al.Formation mechanism and control strategies of haze in China[J].Bulletin of Chinese Academy of Sciences,2013,28(3):344-352. doi: 10.3969/j.issn.1000-3045.2013.03.008 [10] 楚碧武,马庆鑫,段凤魁,等.大气“霾化学”:概念提出和研究展望[J].化学进展,2020,32(1):1-4.CHU B W,MA Q X,DUAN F K,et al.Atmospheric ‘haze chemistry ’:concept and research prospects[J].Progress in Chemistry,2020,32(1):1-4. [11] LI H Y,CHENG J,ZHANG Q,et al.Rapid transition in winter aerosol composition in Beijing from 2014 to 2017:response to clean air actions[J].Atmospheric Chemistry and Physics,2019,19(17):11485-11499. doi: 10.5194/acp-19-11485-2019 [12] 王赫婧,吴琼,白璐,等.非重点行业炉窑典型大气污染物“十四五”减排潜力研究[J].环境科学研究,2020,33(12):2647-2656.WANG H J,WU Q,BAI L,et al.Analysis of the typical air pollutants emission reduction potential of non-key industries furnaces in the ‘14th Five-Year Plan ’[J].Research of Environmental Sciences,2020,33(12):2647-2656. [13] 刘飞,薛志钢,续鹏,等.钢铁行业典型烧结机污染物排放特征对比研究[J].环境科学研究,2020,33(4):849-858.LIU F,XUE Z G,XU P,et al.Comparative study on pollutant emission characteristics of typical sintering machines in iron and steel industry[J].Research of Environmental Sciences,2020,33(4):849-858. [14] 杨建军,杜利劳,马启翔,等.水泥企业不同固定源PM2.5排放特性[J].环境科学研究,2018,31(6):1049-1056.YANG J J,DU L L,MA Q X,et al.PM2.5 emission characteristics of different stationary sources in cement enterprise[J].Research of Environmental Sciences,2018,31(6):1049-1056. [15] 肖海平,茹宇,李丽,等.水泥窑协同处置生活垃圾焚烧飞灰过程中二噁英的迁移和降解特性[J].环境科学研究,2017,30(2):291-297.XIAO H P,RU Y,LI L,et al.Migration and degradation characteristics of dioxins during the process of cement kiln co-processing of municipal solid waste incineration fly ash[J].Research of Environmental Sciences,2017,30(2):291-297. [16] 宋畅,张翼,郝剑,等.燃煤电厂超低排放改造前后汞污染排放特征[J].环境科学研究,2017,30(5):672-677. doi: 10.13198/j.issn.1001-6929.2017.01.96SONG C,ZHANG Y,HAO J,et al.Mercury emission characteristics from coal-fired power plant before and after ultra-low emission retrofitting[J].Research of Environmental Sciences,2017,30(5):672-677. doi: 10.13198/j.issn.1001-6929.2017.01.96 [17] 生态环境部.中国移动源环境管理年报(2021年)[R].北京:生态环境部,2021. [18] 李振华,胡京南,鲍晓峰,等.国3重型柴油车在实际道路行驶中的气态污染物排放[J].环境科学研究,2009,22(12):1389-1394.LI Z H,HU J N,BAO X F,et al.Gaseous pollutant emission of China 3 heavy-duty diesel vehicles under real-world driving conditions[J].Research of Environmental Sciences,2009,22(12):1389-1394. [19] 范小莉,夏泽群,李成,等.港口机械排放清单估算方法改进及应用[J].环境科学研究,2017,30(4):628-635. doi: 10.13198/j.issn.1001-6929.2017.01.92FAN X L,XIA Z Q,LI C,et al.An improved method for building an emission inventory for cargo handling equipment and its application[J].Research of Environmental Sciences,2017,30(4):628-635. doi: 10.13198/j.issn.1001-6929.2017.01.92 [20] 曲亮,何立强,胡京南,等.工程机械不同工况下PM2.5排放及其碳质组分特征[J].环境科学研究,2015,28(7):1047-1052.QU L,HE L Q,HU J N,et al.Characteristics of PM2.5 emissions and its carbonaceous components from construction machines under different typical driving modes[J].Research of Environmental Sciences,2015,28(7):1047-1052. [21] 我国将大幅削减钢铁行业排放[N/OL].北京:经济日报,2019-05-06[2023-01-09].http://paper.ce.cn/jjrb/page/1/2019-05/06/04/2019050604_pdf.pdf [22] 工业和信息化部.钢铁工业调整升级规划(2016—2020年)[R].北京:中华人民共和国国家发展和改革委员会,2017. [23] 国务院.“十四五”节能减排综合工作方案[R].北京:生态环境部,2021. [24] WANG D,CHEN Q Z,ZHANG X,et al.Multipollutant control (MPC) of flue gas from stationary sources using SCR technology:a critical review[J].Environmental Science & Technology,2021,55:2743-2766. [25] 生态环境部.重污染天气重点行业应急减排措施制定技术指南[R].北京:生态环境部,2019. [26] 环境保护部,国家质量监督检验检疫总局.再生铜、铝、铅、锌工业污染物排放标准:GB 31574—2015[S].北京:中国环境科学出版社,2015. [27] 单文坡,余运波,张燕,等.中国重型柴油车后处理技术研究进展[J].环境科学研究,2019,32(10):1672-1677.SHAN W P,YU Y B,ZHANG Y,et al.Advances in the development of exhaust aftertreatment technologies for HeavyDuty diesel vehicles in China[J].Research of Environmental Sciences,2019,32(10):1672-1677. [28] XU G Y,SHAN W P,YU Y B,et al.Advances in emission control of diesel vehicles in China[J].Journal of Environmental Sciences,2023,123:15-29. doi: 10.1016/j.jes.2021.12.012 [29] 胡志远,磨文浩,宋博,等.在用国Ⅲ/国Ⅳ/国Ⅴ柴油公交车的颗粒物质量及固态PM2.5数量排放特性[J].环境科学研究,2016,29(10):1426-1432.HU Z Y,MO W H,SONG B,et al.Emission characteristics of particulate matter mass and quantity of solid PM2.5 number from in-use China Ⅲ/Ⅳ/Ⅴ diesel buses[J].Research of Environmental Sciences,2016,29(10):1426-1432. [30] 黄成,楼晟荣,乔利平,等.重型柴油公交车实际道路颗粒物排放的理化特征[J].环境科学研究,2016,29(9):1352-1361.HUANG C,LOU S R,QIAO L P,et al.Physicochemical characteristics of real-world PM emissions from heavy-duty diesel buses[J].Research of Environmental Sciences,2016,29(9):1352-1361. [31] 交通运输部.关于印发船舶大气污染物排放控制区实施方案的通知[R].北京:中华人民共和国中央人民政府,2018. -