留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究

崔长颢 李丽 刘美佳 王健媛 闫大海 陈超

崔长颢, 李丽, 刘美佳, 王健媛, 闫大海, 陈超. 利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究[J]. 环境科学研究, 2023, 36(4): 805-813. doi: 10.13198/j.issn.1001-6929.2023.01.11
引用本文: 崔长颢, 李丽, 刘美佳, 王健媛, 闫大海, 陈超. 利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究[J]. 环境科学研究, 2023, 36(4): 805-813. doi: 10.13198/j.issn.1001-6929.2023.01.11
CUI Changhao, LI Li, LIU Meijia, WANG Jianyuan, YAN Dahai, CHEN Chao. Mechanical Properties and Heavy Metal Leaching Characteristics of Cement Pavement Base Prepared from Oil-Based Drill Cuttings[J]. Research of Environmental Sciences, 2023, 36(4): 805-813. doi: 10.13198/j.issn.1001-6929.2023.01.11
Citation: CUI Changhao, LI Li, LIU Meijia, WANG Jianyuan, YAN Dahai, CHEN Chao. Mechanical Properties and Heavy Metal Leaching Characteristics of Cement Pavement Base Prepared from Oil-Based Drill Cuttings[J]. Research of Environmental Sciences, 2023, 36(4): 805-813. doi: 10.13198/j.issn.1001-6929.2023.01.11

利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究

doi: 10.13198/j.issn.1001-6929.2023.01.11
基金项目: 国家重点研发计划项目(No.2018YFC1900100)
详细信息
    作者简介:

    崔长颢(1994-),男,黑龙江大庆人,工程师,硕士,主要从事固体废物利用技术研究,cch1994@vip.163.com

    通讯作者:

    闫大海(1979-),男,河南新乡人,研究员,博士,主要从事固体废物协同处置研究,seavsland@163.com

  • 中图分类号: X741

Mechanical Properties and Heavy Metal Leaching Characteristics of Cement Pavement Base Prepared from Oil-Based Drill Cuttings

Funds: National Key Research and Development Program of China (No.2018YFC1900100)
  • 摘要: 油基岩屑是石油开采时产生的危险废物,随着我国石油勘探开发能力的不断提升,因油基岩屑造成的环境污染和资源浪费问题已不容忽视. 资源化利用油基岩屑将对油气行业环境保护和可持续发展起到重要促进作用. 为探明利用油基岩屑制备水泥道路结构的可行性,制作11种不同配合比的水泥路面基层试件,通过无侧限抗压、劈裂抗拉以及抗压回弹试验,探寻符合相关力学性能要求且岩屑掺加量最大的试件,随即对其开展浸出试验以研究重金属浸出规律,并通过浸出动力学模型拟合重金属长期浸出量. 结果表明:①随着油基岩屑掺加量的提升,水泥路面基层试件的无侧限抗压强度、劈裂抗拉强度以及抗压回弹模量同时呈下降趋势. 当岩屑掺加量为12%时,试件相关力学指标满足《公路路面基层施工技术细则》(JTG/T F20—2015)和四川省农村公路基层材料设计参数要求,此时岩屑掺加量达到最大. ②Ba、Mn、Pb、Zn为油基岩屑中的特征污染物. Ba、Mn、Pb累积浸出量的变化趋势较为一致,在第64天时基本达到浸出平衡;而Zn的累积浸出量在第64天时仍持续增长. 4种重金属在全浸出阶段的浸出行为都受到扩散控制影响. ③Ba和Pb的浸出规律符合Elovich方程,而二阶动力学方程更适用于描述试件中Mn的浸出特性. 若长期使用利用油基岩屑制备的水泥路面基层,应更加关注Mn的浸出风险. 研究显示,油基岩屑可以替代部分天然矿石制备水泥路面基层,建议进一步拓展其资源化利用场景,以期为岩屑资源化利用技术的发展提供支撑.

     

  • 图  1  水泥路面基层试件浸出试验

    Figure  1.  Leaching experiment of cement pavement base specimens

    图  2  水泥路面基层试件的无侧限抗压强度变化曲线

    Figure  2.  Unconfined compressive strength of cement pavement base specimens

    图  3  水泥路面基层试件的劈裂抗拉强度变化曲线

    Figure  3.  Splitting tensile strength of cement pavement base specimens

    图  4  水泥路面基层试件的抗压回弹模量变化曲线

    Figure  4.  Compressive modulus of resilience of cement pavement base specimens

    图  5  Ba、Mn、Pb、Zn的64 d累积浸出量的变化趋势

    Figure  5.  Cumulative leaching amount of Ba, Mn, Pb and Zn under 64 days

    图  6  Ba、Mn、Pb的浸出动力学模型拟合结果

    Figure  6.  Leaching kinetics models of Ba, Mn and Pb

    表  1  不同水泥路面基层配合比试件中各原料的掺加比

    Table  1.   Mixing proportions of different cement pavement base specimens

    不同水泥路面基层
    配合比试件
    掺加比/%
    水泥粗细骨料油基岩屑
    CPB-16940
    CPB-26922
    CPB-36904
    CPB-46886
    CPB-56868
    CPB-668410
    CPB-768212
    CPB-868014
    CPB-967816
    CPB-1067618
    CPB-1167420
    下载: 导出CSV

    表  2  浸出液浸出阶段与浸出时间

    Table  2.   Leaching stage and leaching solution replacement time during leaching experiment

    浸出
    阶段
    累积浸出
    时间/d
    间隔浸出
    时间/h
    浸出
    阶段
    累积浸出
    时间/d
    间隔浸出
    时间/h
    阶段1 0.25 6 阶段5 9 120
    阶段2 1.00 18 阶段6 16 168
    阶段3 2.25 30 阶段7 36 480
    阶段4 4.00 42 阶段8 64 672
    下载: 导出CSV

    表  3  油基岩屑中常规元素和F、Cl、S元素含量

    Table  3.   Concentration of typical elements and F, Cl, S in oil-based drill cuttings

    元素SiAlFeCaKMgFClS
    含量/(104 mg/kg)2.30.10.41.10.30.10.20.64.3
    下载: 导出CSV

    表  4  油基岩屑中主要重金属污染物含量

    Table  4.   Heavy metal contents of oil-based drill cuttings

    元素HgMnPbNiBaCuCdZnSbCo
    含量/(mg/kg)2.9419.3224.343.76.3×10452.813.5326.011.338.1
    下载: 导出CSV

    表  5  Ba、Mn、Pb、Zn在不同阶段的浸出行为

    Table  5.   Leaching behavior of Ba, Mn, Pb and Zn under different leaching stage

    浸出阶段浸出行为
    BaMnPbZn
    阶段2~7扩散控制扩散控制扩散控制扩散控制
    阶段5~8耗竭作用耗竭作用耗竭作用扩散控制
    阶段4~7耗竭作用扩散控制耗竭作用耗竭作用
    阶段3~6扩散控制扩散控制扩散控制扩散控制
    阶段2~5扩散控制扩散控制扩散控制扩散控制
    阶段1~4延滞作用延滞作用延滞作用扩散控制
    下载: 导出CSV
  • [1] 中华人民共和国自然资源部.中国矿产资源报告(2022年)[M].北京:地质出版社,2022:5-6.
    [2] 李建成,杨鹏,关键,等.新型全油基钻井液体系[J].石油勘探与开发,2014,41(4):490-496. doi: 10.11698/PED.2014.04.16

    LI J C,YANG P,GUAN J,et al.A new type of whole oil-based drilling fluid[J].Petroleum Exploration and Development,2014,41(4):490-496. doi: 10.11698/PED.2014.04.16
    [3] 王中华.国内钻井液技术进展评述[J].石油钻探技术,2019,47(3):95-102. doi: 10.11911/syztjs.2019054

    WANG Z H.Review of progress on drilling fluid technology in China[J].Petroleum Drilling Techniques,2019,47(3):95-102. doi: 10.11911/syztjs.2019054
    [4] 黄慧,聂志强,孟棒棒,等.不同处理工艺页岩气钻井岩屑的污染特性[J].环境科学研究,2020,33(3):777-782. doi: 10.13198/j.issn.1001-6929.2019.07.08

    HUANG H,NIE Z Q,MENG B B,et al.Pollution characteristics of typical field shale gas drilling cuttings with different treatment processes[J].Research of Environmental Sciences,2020,33(3):777-782. doi: 10.13198/j.issn.1001-6929.2019.07.08
    [5] YANG H,DIAO H L,ZHANG Y,et al.Treatment and novel resource-utilization methods for shale gas oil based drill cuttings:a review[J].Journal of Environmental Management,2022,317:115462. doi: 10.1016/j.jenvman.2022.115462
    [6] 王之超,何洁,张曼丽,等.油基钻井岩屑固化体中多环芳烃释放特征[J].环境工程技术学报,2020,10(4):647-652. doi: 10.12153/j.issn.1674-991X.20200013

    WANG Z C,HE J,ZHANG M L,et al.Release characteristics of PAHs in oil-based drilling cuttings solidified body[J].Journal of Environmental Engineering Technology,2020,10(4):647-652. doi: 10.12153/j.issn.1674-991X.20200013
    [7] HOU Y F,QI S D,YOU H P,et al.The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating[J].Journal of Environmental Management,2018,228:312-318. doi: 10.1016/j.jenvman.2018.09.040
    [8] 刘宇程,王茂仁,吴建发,等.油基岩屑热脱附处理技术研究进展[J].天然气工业,2020,40(2):140-148. doi: 10.3787/j.issn.1000-0976.2020.02.017

    LIU Y C,WANG M R,WU J F,et al.Research progress in the oil-based cuttings thermal desorption technology[J].Natural Gas Industry,2020,40(2):140-148. doi: 10.3787/j.issn.1000-0976.2020.02.017
    [9] BALL A S,STEWART R J,SCHLIEPHAKE K.A review of the current options for the treatment and safe disposal of drill cuttings[J].Waste Management & Research,2012,30(5):457-473.
    [10] LIU T T,TIAN L F,YANG L Y,et al.Emissions of BTEXs,NMHC,PAHs,and PCDD/Fs from co-processing of oil-based drilling cuttings in brick kilns[J].Journal of Environmental Management,2022,304:114170. doi: 10.1016/j.jenvman.2021.114170
    [11] WANG C Q,LIN X Y,MEI X D,et al.Performance of non-fired bricks containing oil-based drilling cuttings pyrolysis residues of shale gas[J].Journal of Cleaner Production,2019,206:282-296. doi: 10.1016/j.jclepro.2018.09.128
    [12] ABOUTABIKH M,SOLIMAN A M,EL NAGGAR M H.Properties of cementitious material incorporating treated oil sands drill cuttings waste[J].Construction and Building Materials,2016,111:751-757. doi: 10.1016/j.conbuildmat.2016.02.163
    [13] 陈筱悦.页岩气油基岩屑制备陶粒的工艺研究[D].绵阳:西南科技大学,2020.
    [14] XIONG D M,WANG C Q.Physical characteristics and environmental risks assessment of oil-based drilling cuttings residues used for subgrade materials[J].Journal of Cleaner Production,2021,323:129152. doi: 10.1016/j.jclepro.2021.129152
    [15] 胡代淋.掺入油基岩屑的路基填料的改性研究[D].绵阳:西南科技大学,2020.
    [16] 李梦妮.油基岩屑在钻前公路无机稳定底基层中的应用研究[D].绵阳:西南科技大学,2018.
    [17] XIONG D M,WANG C Q,WANG P X,et al.Study on environment-friendly disposal and utilization of oil-based drilling cuttings solidified body of shale gas[J].Construction and Building Materials,2022,327:127043. doi: 10.1016/j.conbuildmat.2022.127043
    [18] 谭文欣,文华,李梦妮,等.油基岩屑在无机稳定基层中应用的路用性能研究[J].绿色科技,2020(4):132-136. doi: 10.3969/j.issn.1674-9944.2020.04.053

    TAN W X,WEN H,LI M N,et al.Research on road performance of oily cuttings applied in inorganic stabilized base[J].Journal of Green Science and Technology,2020(4):132-136. doi: 10.3969/j.issn.1674-9944.2020.04.053
    [19] FOROUTAN M,HASSAN M M,DESROSIERS N,et al.Evaluation of the reuse and recycling of drill cuttings in concrete applications[J].Construction and Building Materials,2018,164:400-409. doi: 10.1016/j.conbuildmat.2017.12.180
    [20] 孙兆辉.水泥稳定碎石基层的抗裂稳定性研究[J].建筑材料学报,2007,10(1):59-65. doi: 10.3969/j.issn.1007-9629.2007.01.011

    SUN Z H.Research on crack resistance of cement stabilized macadam base course[J].Journal of Building Materials,2007,10(1):59-65. doi: 10.3969/j.issn.1007-9629.2007.01.011
    [21] 杨玉飞,黄启飞,杨昱,等.废物水泥窑共处置产品中重金属释放潜能表征研究[J].环境科学研究,2008,21(6):47-51. doi: 10.13198/j.res.2008.06.49.yangyf.023

    YANG Y F,HUANG Q F,YANG Y,et al.Characterization of the release potential of heavy metals in cement products from co-processing waste in cement kilns[J].Research of Environmental Sciences,2008,21(6):47-51. doi: 10.13198/j.res.2008.06.49.yangyf.023
    [22] NJUGUNA J,SIDDIQUE S,KWROFFIE L B,et al.The fate of waste drilling fluids from oil & gas industry activities in the exploration and production operations[J].Waste Management,2022,139:362-380. doi: 10.1016/j.wasman.2021.12.025
    [23] 于劲磊,向启贵,蒋国斌,等.深、浅层页岩气区块油基岩屑污染特征研究[J].石油与天然气化工,2021,50(4):124-129. doi: 10.3969/j.issn.1007-3426.2021.04.021

    YU J L,XIANG Q G,JIANG G B,et al.Research on pollution characteristics of oil-base cuttings from deep and shallow shale gas development[J].Chemical Engineering of Oil & Gas,2021,50(4):124-129. doi: 10.3969/j.issn.1007-3426.2021.04.021
    [24] 阮志刚.四川省农村公路工程技术标准的研究[D].成都:西南交通大学,2011.
    [25] QIAO X C,POON C S,CHEESEMAN C R.Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases[J].Journal of Hazardous Materials,2007,139(2):238-243. doi: 10.1016/j.jhazmat.2006.06.009
    [26] 王登权,何伟,王强,等.重金属在水泥基材料中的固化和浸出研究进展[J].硅酸盐学报,2018,46(5):683-693. doi: 10.14062/j.issn.0454-5648.2018.05.11

    WANG D Q,HE W,WANG Q,et al.Review on stabilization and leaching of heavy metals in cementitious materials[J].Journal of the Chinese Ceramic Society,2018,46(5):683-693. doi: 10.14062/j.issn.0454-5648.2018.05.11
    [27] LI X D,POON C S,SUN H,et al.Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J].Journal of Hazardous Materials,2001,82(3):215-230. doi: 10.1016/S0304-3894(00)00360-5
    [28] MOLLAH M Y A,TSAI Y N,COCKE D L.An FTIR investigation of cement based solidification/stabilization systems doped with cadmium[J].Journal of Environmental Science and Health Part A:Environmental Science and Engineering and Toxicology,1992,27(5):1213-1227. doi: 10.1080/10934529209375792
    [29] 杨延梅,慕宗宇,王菲,等.螯合剂固化生活垃圾焚烧飞灰中重金属的机理研究进展[J].环境科学研究,2022,35(10):2388-2395. doi: 10.13198/j.issn.1001-6929.2022.06.21

    YANG Y M,MU Z Y,WANG F,et al.Review on mechanisms of chelating agents to solidify heavy metals in municipal solid waste incineration fly ash[J].Research of Environmental Sciences,2022,35(10):2388-2395. doi: 10.13198/j.issn.1001-6929.2022.06.21
    [30] 李沙,王肇嘉,王明威,等.钢渣在水泥基胶凝材料中重金属的长期浸出行为研究[J/OL].环境工程,2022,[2022-08-04]. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.1752.012.html.

    LI S,WANG Z J,WANG M W,et al.Study on long-term leaching behavior of heavy metals of steel slag in cement-based cementitious materials[J/OL].Environmental Engineering,2022,[2022-08-04]. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.1752.012.html.
    [31] SANCHEZ F,GERVAIS C,GARRABRANTS A C,et al.Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting[J].Waste Management,2002,22(2):249-260. doi: 10.1016/S0956-053X(01)00076-9
    [32] 皇志威,苏向东,张建刚,等.赤泥-磷石膏复合材料中重金属浸出研究[J].无机盐工业,2022,54(10):133-140. doi: 10.19964/j.issn.1006-4990.2022-0195

    HUANG Z W,SU X D,ZHANG J G,et al.Study on leaching of heavy metals from red mud-phosphogypsum composites[J].Inorganic Chemicals Industry,2022,54(10):133-140. doi: 10.19964/j.issn.1006-4990.2022-0195
    [33] YANG Y F,YANG Y,WANG Q H,et al.Release of heavy metals from concrete made with cement from cement kiln co-processing of hazardous wastes in pavement scenarios[J].Environmental Engineering Science,2011,28(1):35-42. doi: 10.1089/ees.2010.0066
    [34] LIU Q,WANG X N,GAO M,et al.Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill[J].Chemosphere,2022,300:134571. doi: 10.1016/j.chemosphere.2022.134571
    [35] 张增强,孟昭福,张一平.对Elovich方程的再认识[J].土壤通报,2000,31(5):208-209. doi: 10.3321/j.issn:0564-3945.2000.05.005

    ZHANG Z Q,MENG Z F,ZHANG Y P.Recognition of elovich equation[J].Chinese Journal of Soil Science,2000,31(5):208-209. doi: 10.3321/j.issn:0564-3945.2000.05.005
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  12
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-01-09

目录

    /

    返回文章
    返回