Mechanical Properties and Heavy Metal Leaching Characteristics of Cement Pavement Base Prepared from Oil-Based Drill Cuttings
-
摘要: 油基岩屑是石油开采时产生的危险废物,随着我国石油勘探开发能力的不断提升,因油基岩屑造成的环境污染和资源浪费问题已不容忽视. 资源化利用油基岩屑将对油气行业环境保护和可持续发展起到重要促进作用. 为探明利用油基岩屑制备水泥道路结构的可行性,制作11种不同配合比的水泥路面基层试件,通过无侧限抗压、劈裂抗拉以及抗压回弹试验,探寻符合相关力学性能要求且岩屑掺加量最大的试件,随即对其开展浸出试验以研究重金属浸出规律,并通过浸出动力学模型拟合重金属长期浸出量. 结果表明:①随着油基岩屑掺加量的提升,水泥路面基层试件的无侧限抗压强度、劈裂抗拉强度以及抗压回弹模量同时呈下降趋势. 当岩屑掺加量为12%时,试件相关力学指标满足《公路路面基层施工技术细则》(JTG/T F20—2015)和四川省农村公路基层材料设计参数要求,此时岩屑掺加量达到最大. ②Ba、Mn、Pb、Zn为油基岩屑中的特征污染物. Ba、Mn、Pb累积浸出量的变化趋势较为一致,在第64天时基本达到浸出平衡;而Zn的累积浸出量在第64天时仍持续增长. 4种重金属在全浸出阶段的浸出行为都受到扩散控制影响. ③Ba和Pb的浸出规律符合Elovich方程,而二阶动力学方程更适用于描述试件中Mn的浸出特性. 若长期使用利用油基岩屑制备的水泥路面基层,应更加关注Mn的浸出风险. 研究显示,油基岩屑可以替代部分天然矿石制备水泥路面基层,建议进一步拓展其资源化利用场景,以期为岩屑资源化利用技术的发展提供支撑.Abstract: Oil-based drill cuttings (OBDC) are hazardous wastes generated during petroleum exploitation. With the continuous improvement of China's petroleum exploitation capacity, environmental pollution and wasting of resources caused by OBDC has become more prominent. The utilization of OBDC will play an important role in promoting environmental protection and sustainable development of the petroleum industry. In order to investigate the feasibility of using OBDC to prepare cement pavement base, 11 kinds of cement pavement base specimens with different mixing proportions were made. Through unconfined compression strength, splitting tensile strength, and compressive modulus of resilience tests, the specimen that could meet the mechanical properties specified in Pavement Base Construction Technical Instructions (JTG/T F20-2015) and parameters of base materials for rural roads in Sichuan province were selected. Then, leaching tests were carried out to study the heavy metal leaching behavior, and the long-term heavy metal cumulative leaching amount was fitted through different leaching models. The results reveal that: (1) With the increase of OBDC mixing proportion, the unconfined compressive strength, splitting tensile strength and compressive modulus of resilience of the cement pavement base showed a downward trend at the same time. When the mixing proportion of OBDC reached to 12%, the mechanical properties of the specimen could meet the requirements. (2) Ba, Mn, Pb, and Zn were characteristic pollutants in OBDC. The cumulative leaching amount of Ba, Mn, and Pb reached to leaching equilibrium at 64 days, whereas the cumulative leaching of Zn continued to increase. Overall, the leaching behavior of these four heavy metals was affected by diffusion control. (3) The leaching behavior of Ba and Pb conformed to the Elovich equation, and the second-order kinetic equation was more suitable for describing the leaching of Mn. The long-term heavy metal cumulative leaching amount prediction indicated that more attention should be paid to Mn. The research shows that OBDC could replace certain amount of mineral materials during the preparation of cement pavement base. It is recommended to further expand the utilization scenarios of OBDC to provide a scientific basis for the development of OBDC utilization technology.
-
表 1 不同水泥路面基层配合比试件中各原料的掺加比
Table 1. Mixing proportions of different cement pavement base specimens
不同水泥路面基层
配合比试件掺加比/% 水泥 粗细骨料 油基岩屑 CPB-1 6 94 0 CPB-2 6 92 2 CPB-3 6 90 4 CPB-4 6 88 6 CPB-5 6 86 8 CPB-6 6 84 10 CPB-7 6 82 12 CPB-8 6 80 14 CPB-9 6 78 16 CPB-10 6 76 18 CPB-11 6 74 20 表 2 浸出液浸出阶段与浸出时间
Table 2. Leaching stage and leaching solution replacement time during leaching experiment
浸出
阶段累积浸出
时间/d间隔浸出
时间/h浸出
阶段累积浸出
时间/d间隔浸出
时间/h阶段1 0.25 6 阶段5 9 120 阶段2 1.00 18 阶段6 16 168 阶段3 2.25 30 阶段7 36 480 阶段4 4.00 42 阶段8 64 672 表 3 油基岩屑中常规元素和F、Cl、S元素含量
Table 3. Concentration of typical elements and F, Cl, S in oil-based drill cuttings
元素 Si Al Fe Ca K Mg F Cl S 含量/(104 mg/kg) 2.3 0.1 0.4 1.1 0.3 0.1 0.2 0.6 4.3 表 4 油基岩屑中主要重金属污染物含量
Table 4. Heavy metal contents of oil-based drill cuttings
元素 Hg Mn Pb Ni Ba Cu Cd Zn Sb Co 含量/(mg/kg) 2.9 419.3 224.3 43.7 6.3×104 52.8 13.5 326.0 11.3 38.1 表 5 Ba、Mn、Pb、Zn在不同阶段的浸出行为
Table 5. Leaching behavior of Ba, Mn, Pb and Zn under different leaching stage
浸出阶段 浸出行为 Ba Mn Pb Zn 阶段2~7 扩散控制 扩散控制 扩散控制 扩散控制 阶段5~8 耗竭作用 耗竭作用 耗竭作用 扩散控制 阶段4~7 耗竭作用 扩散控制 耗竭作用 耗竭作用 阶段3~6 扩散控制 扩散控制 扩散控制 扩散控制 阶段2~5 扩散控制 扩散控制 扩散控制 扩散控制 阶段1~4 延滞作用 延滞作用 延滞作用 扩散控制 -
[1] 中华人民共和国自然资源部.中国矿产资源报告(2022年)[M].北京:地质出版社,2022:5-6. [2] 李建成,杨鹏,关键,等.新型全油基钻井液体系[J].石油勘探与开发,2014,41(4):490-496. doi: 10.11698/PED.2014.04.16LI J C,YANG P,GUAN J,et al.A new type of whole oil-based drilling fluid[J].Petroleum Exploration and Development,2014,41(4):490-496. doi: 10.11698/PED.2014.04.16 [3] 王中华.国内钻井液技术进展评述[J].石油钻探技术,2019,47(3):95-102. doi: 10.11911/syztjs.2019054WANG Z H.Review of progress on drilling fluid technology in China[J].Petroleum Drilling Techniques,2019,47(3):95-102. doi: 10.11911/syztjs.2019054 [4] 黄慧,聂志强,孟棒棒,等.不同处理工艺页岩气钻井岩屑的污染特性[J].环境科学研究,2020,33(3):777-782. doi: 10.13198/j.issn.1001-6929.2019.07.08HUANG H,NIE Z Q,MENG B B,et al.Pollution characteristics of typical field shale gas drilling cuttings with different treatment processes[J].Research of Environmental Sciences,2020,33(3):777-782. doi: 10.13198/j.issn.1001-6929.2019.07.08 [5] YANG H,DIAO H L,ZHANG Y,et al.Treatment and novel resource-utilization methods for shale gas oil based drill cuttings:a review[J].Journal of Environmental Management,2022,317:115462. doi: 10.1016/j.jenvman.2022.115462 [6] 王之超,何洁,张曼丽,等.油基钻井岩屑固化体中多环芳烃释放特征[J].环境工程技术学报,2020,10(4):647-652. doi: 10.12153/j.issn.1674-991X.20200013WANG Z C,HE J,ZHANG M L,et al.Release characteristics of PAHs in oil-based drilling cuttings solidified body[J].Journal of Environmental Engineering Technology,2020,10(4):647-652. doi: 10.12153/j.issn.1674-991X.20200013 [7] HOU Y F,QI S D,YOU H P,et al.The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating[J].Journal of Environmental Management,2018,228:312-318. doi: 10.1016/j.jenvman.2018.09.040 [8] 刘宇程,王茂仁,吴建发,等.油基岩屑热脱附处理技术研究进展[J].天然气工业,2020,40(2):140-148. doi: 10.3787/j.issn.1000-0976.2020.02.017LIU Y C,WANG M R,WU J F,et al.Research progress in the oil-based cuttings thermal desorption technology[J].Natural Gas Industry,2020,40(2):140-148. doi: 10.3787/j.issn.1000-0976.2020.02.017 [9] BALL A S,STEWART R J,SCHLIEPHAKE K.A review of the current options for the treatment and safe disposal of drill cuttings[J].Waste Management & Research,2012,30(5):457-473. [10] LIU T T,TIAN L F,YANG L Y,et al.Emissions of BTEXs,NMHC,PAHs,and PCDD/Fs from co-processing of oil-based drilling cuttings in brick kilns[J].Journal of Environmental Management,2022,304:114170. doi: 10.1016/j.jenvman.2021.114170 [11] WANG C Q,LIN X Y,MEI X D,et al.Performance of non-fired bricks containing oil-based drilling cuttings pyrolysis residues of shale gas[J].Journal of Cleaner Production,2019,206:282-296. doi: 10.1016/j.jclepro.2018.09.128 [12] ABOUTABIKH M,SOLIMAN A M,EL NAGGAR M H.Properties of cementitious material incorporating treated oil sands drill cuttings waste[J].Construction and Building Materials,2016,111:751-757. doi: 10.1016/j.conbuildmat.2016.02.163 [13] 陈筱悦.页岩气油基岩屑制备陶粒的工艺研究[D].绵阳:西南科技大学,2020. [14] XIONG D M,WANG C Q.Physical characteristics and environmental risks assessment of oil-based drilling cuttings residues used for subgrade materials[J].Journal of Cleaner Production,2021,323:129152. doi: 10.1016/j.jclepro.2021.129152 [15] 胡代淋.掺入油基岩屑的路基填料的改性研究[D].绵阳:西南科技大学,2020. [16] 李梦妮.油基岩屑在钻前公路无机稳定底基层中的应用研究[D].绵阳:西南科技大学,2018. [17] XIONG D M,WANG C Q,WANG P X,et al.Study on environment-friendly disposal and utilization of oil-based drilling cuttings solidified body of shale gas[J].Construction and Building Materials,2022,327:127043. doi: 10.1016/j.conbuildmat.2022.127043 [18] 谭文欣,文华,李梦妮,等.油基岩屑在无机稳定基层中应用的路用性能研究[J].绿色科技,2020(4):132-136. doi: 10.3969/j.issn.1674-9944.2020.04.053TAN W X,WEN H,LI M N,et al.Research on road performance of oily cuttings applied in inorganic stabilized base[J].Journal of Green Science and Technology,2020(4):132-136. doi: 10.3969/j.issn.1674-9944.2020.04.053 [19] FOROUTAN M,HASSAN M M,DESROSIERS N,et al.Evaluation of the reuse and recycling of drill cuttings in concrete applications[J].Construction and Building Materials,2018,164:400-409. doi: 10.1016/j.conbuildmat.2017.12.180 [20] 孙兆辉.水泥稳定碎石基层的抗裂稳定性研究[J].建筑材料学报,2007,10(1):59-65. doi: 10.3969/j.issn.1007-9629.2007.01.011SUN Z H.Research on crack resistance of cement stabilized macadam base course[J].Journal of Building Materials,2007,10(1):59-65. doi: 10.3969/j.issn.1007-9629.2007.01.011 [21] 杨玉飞,黄启飞,杨昱,等.废物水泥窑共处置产品中重金属释放潜能表征研究[J].环境科学研究,2008,21(6):47-51. doi: 10.13198/j.res.2008.06.49.yangyf.023YANG Y F,HUANG Q F,YANG Y,et al.Characterization of the release potential of heavy metals in cement products from co-processing waste in cement kilns[J].Research of Environmental Sciences,2008,21(6):47-51. doi: 10.13198/j.res.2008.06.49.yangyf.023 [22] NJUGUNA J,SIDDIQUE S,KWROFFIE L B,et al.The fate of waste drilling fluids from oil & gas industry activities in the exploration and production operations[J].Waste Management,2022,139:362-380. doi: 10.1016/j.wasman.2021.12.025 [23] 于劲磊,向启贵,蒋国斌,等.深、浅层页岩气区块油基岩屑污染特征研究[J].石油与天然气化工,2021,50(4):124-129. doi: 10.3969/j.issn.1007-3426.2021.04.021YU J L,XIANG Q G,JIANG G B,et al.Research on pollution characteristics of oil-base cuttings from deep and shallow shale gas development[J].Chemical Engineering of Oil & Gas,2021,50(4):124-129. doi: 10.3969/j.issn.1007-3426.2021.04.021 [24] 阮志刚.四川省农村公路工程技术标准的研究[D].成都:西南交通大学,2011. [25] QIAO X C,POON C S,CHEESEMAN C R.Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases[J].Journal of Hazardous Materials,2007,139(2):238-243. doi: 10.1016/j.jhazmat.2006.06.009 [26] 王登权,何伟,王强,等.重金属在水泥基材料中的固化和浸出研究进展[J].硅酸盐学报,2018,46(5):683-693. doi: 10.14062/j.issn.0454-5648.2018.05.11WANG D Q,HE W,WANG Q,et al.Review on stabilization and leaching of heavy metals in cementitious materials[J].Journal of the Chinese Ceramic Society,2018,46(5):683-693. doi: 10.14062/j.issn.0454-5648.2018.05.11 [27] LI X D,POON C S,SUN H,et al.Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J].Journal of Hazardous Materials,2001,82(3):215-230. doi: 10.1016/S0304-3894(00)00360-5 [28] MOLLAH M Y A,TSAI Y N,COCKE D L.An FTIR investigation of cement based solidification/stabilization systems doped with cadmium[J].Journal of Environmental Science and Health Part A:Environmental Science and Engineering and Toxicology,1992,27(5):1213-1227. doi: 10.1080/10934529209375792 [29] 杨延梅,慕宗宇,王菲,等.螯合剂固化生活垃圾焚烧飞灰中重金属的机理研究进展[J].环境科学研究,2022,35(10):2388-2395. doi: 10.13198/j.issn.1001-6929.2022.06.21YANG Y M,MU Z Y,WANG F,et al.Review on mechanisms of chelating agents to solidify heavy metals in municipal solid waste incineration fly ash[J].Research of Environmental Sciences,2022,35(10):2388-2395. doi: 10.13198/j.issn.1001-6929.2022.06.21 [30] 李沙,王肇嘉,王明威,等.钢渣在水泥基胶凝材料中重金属的长期浸出行为研究[J/OL].环境工程,2022,[2022-08-04]. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.1752.012.html.LI S,WANG Z J,WANG M W,et al.Study on long-term leaching behavior of heavy metals of steel slag in cement-based cementitious materials[J/OL].Environmental Engineering,2022,[2022-08-04]. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.1752.012.html. [31] SANCHEZ F,GERVAIS C,GARRABRANTS A C,et al.Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting[J].Waste Management,2002,22(2):249-260. doi: 10.1016/S0956-053X(01)00076-9 [32] 皇志威,苏向东,张建刚,等.赤泥-磷石膏复合材料中重金属浸出研究[J].无机盐工业,2022,54(10):133-140. doi: 10.19964/j.issn.1006-4990.2022-0195HUANG Z W,SU X D,ZHANG J G,et al.Study on leaching of heavy metals from red mud-phosphogypsum composites[J].Inorganic Chemicals Industry,2022,54(10):133-140. doi: 10.19964/j.issn.1006-4990.2022-0195 [33] YANG Y F,YANG Y,WANG Q H,et al.Release of heavy metals from concrete made with cement from cement kiln co-processing of hazardous wastes in pavement scenarios[J].Environmental Engineering Science,2011,28(1):35-42. doi: 10.1089/ees.2010.0066 [34] LIU Q,WANG X N,GAO M,et al.Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill[J].Chemosphere,2022,300:134571. doi: 10.1016/j.chemosphere.2022.134571 [35] 张增强,孟昭福,张一平.对Elovich方程的再认识[J].土壤通报,2000,31(5):208-209. doi: 10.3321/j.issn:0564-3945.2000.05.005ZHANG Z Q,MENG Z F,ZHANG Y P.Recognition of elovich equation[J].Chinese Journal of Soil Science,2000,31(5):208-209. doi: 10.3321/j.issn:0564-3945.2000.05.005 -