Pollution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Qinghe River, Beijing
-
摘要: 为了探究城市地表水中有机磷酸酯(OPEs)污染水平和生态风险,采用超高效液相色谱-质谱联用仪(UPLC-MS/MS)分析测定了北京清河地表水中10种OPEs的浓度水平和成分组成,使用相关性分析和主成分分析对地表水中OPEs进行源解析,并评估生态风险. 结果表明:北京清河地表水中∑10OPEs浓度范围为439.61~1 053.06 ng/L,浓度中位值为768.85 ng/L,平均值为761.77 ng/L,其中磷酸三(1-氯-2-丙基)酯(TCIPP)以及磷酸三(1-氯-2-丙基)酯(TCEP)是主要污染物. ∑10OPEs浓度沿河流方向呈先稳定后降低再缓慢升高的特征. 源解析结果表明,污水处理厂、道路交通、建筑装饰材料及汽车维修可能是北京清河地表水中OPEs的主要来源. 风险熵评估结果表明,水体中TCEP等10种OPEs的生态风险相对较低,但其引起的联合效应值得进一步关注. 研究显示,北京清河地表水中OPEs污染水平相对较高,受人为活动影响较大,造成的生态风险可以忽略.
-
关键词:
- 有机磷酸酯(OPEs) /
- 源解析 /
- 生态风险
Abstract: In order to explore the pollution characteristics, potential sources and ecological risk of organophosphate esters (OPEs) in urban surface water, the concentrations of 10 species of OPEs in the surface water were determined using UPLC-MS/MS. The potential sources, ecological risk and spatial distribution of the OPEs in surface water of the Qinghe River was further analyzed. The pollution sources were analyzed by correlation analysis and principal component analysis, and the ecological risk was evaluated. The results showed that the concentration of ∑10OPEs in surface water ranged from 439.61 to 1053.06 ng/L, the median concentration of 768.85 ng/L and the average concentration of 761.77 ng/L. Tri(1-chloro-2-propyl) phosphate (TCIPP) and tri(1-chloro-2-propyl) phosphate (TCEP) were the main pollutants. The distribution of ∑10OPEs showed an obvious regional pattern, which was steady first, then decreased and then increased slowly along the direction of the Qinghe River inlet. The source analysis results revealed that sewage treatment plant, road traffic, building decoration materials and vehicle maintenance were the sources of OPEs in the surface water of the Qinghe River. The ecological risk assessment results indicate that the risk of 10 OPEs to aquatic organisms in the Qinghe River was low, but their combined effects deserved further attention. The research shows that the surface water of the Qinghe River is highly polluted by OPEs, it is greatly affected by human activities, and the ecological risks caused can be ignored.-
Key words:
- organophosphate esters (OPEs) /
- source analysis /
- ecological risk
-
表 1 OPEs的分子式、相对分子质量及CAS号
Table 1. Formulas, relative molecular masses and CAS numbers of OPEs
化合物 英文缩写 化学式 相对分子质量 CAS号 Trimethyl phosphate(磷酸三甲酯) TMP C3H9O4P 140.8 512-56-1 Triethyl phosphate(磷酸三乙酯) TEP C6H15O4P 182.16 78-40-0 Tri-iso-butyl phosphate(磷酸三正丁酯) TnBP C12H27O4P 266.31 126-73-8 Tri(2-butoxyethyl)phosphate(磷酸三丁氧酯) TBEP C18H39O7P 398.47 78-51-3 Tri(2-chloroethyl)phosphate(磷酸三(2-氯乙基)酯) TCEP C6H12Cl3O4P 285.49 115-96-8 Tri(1-chloro-2-propyl)phosphate(磷酸三(1-氯-2-丙基)酯) TCIPP C9H18Cl3O4P 327.57 13674-84-5 Tri(1,3-dichloro-2-propyl)phosphate(磷酸三(1,3-二氯-2-丙基)酯) TDCP C9H15Cl6O4P 430.90 13674-87-8 Trimethylphenyl phosphate(磷酸三甲苯酯) TCrP C21H21O4P 368.36 563-04-2 Cresyl diphenyl phosphate(磷酸甲苯二苯酯) CDPP C19H17O4P 340.31 26444-49-5 2-Ethylhexyl di-phenyl phosphate(2-乙基己基苯基磷酸酯) EHDPP C20H27O4P 340.31 1241-94-7 表 2 目标化合物离子对及相应质谱参数
Table 2. Analyte ions and MS parameters of target OPEs
化合物 保留时间/min 母离子
(m/z)子离子
(m/z)去簇电压/V 碰撞能/V TMP 1.66 140 78 30 22 108 30 18 TEP 2.01 182 981) 25 18 126 25 12 TCEP 2.39 286 981) 42 24 124 42 14 TnBP 3.9 266 98 26 15 155 26 8 TCIPP 2.98 328 2471) 2 8 288 2 2 CDPP 4.37 341 152 39 39 EHDPP 6.82 363 251 31 39 91 30 6 TBEP 4.58 399 199 2 14 299 2 12 TCrP 5.77 368 91 98 32 165 98 32 TDCP 3.68 429 99 24 26 98 32 20 TPrP-d21 2.74 246 1011) 36 18 150 36 10 TnBP-d27 3.86 294 1011) 36 18 166 36 12 TCIPP-d18 2.95 346 1011) 36 20 183 36 10 注:1)表示定量离子. 表 3 OPEs的加标回收率、相关系数、检出限和定量限
Table 3. Spiked recoveries, correlation coefficient, limits of detection and limits of quantitation of OPEs
化合物 加标回收率±标
准差(n=3)相关系
数(R2)检出限/
(ng/L)定量限/
(ng/L)TMP 90.2%±4.3% 0.998 0.33 1.10 TEP 87.3%±9.9% 0.999 0.35 1.17 TCEP 95.2%±3.7% 0.995 0.78 2.60 TnBP 83.6%±5.2% 0.995 0.33 1.10 TCIPP 101.2%±8.4% 0.994 0.57 1.90 CDPP 89.5%±6.1% 0.998 0.21 0.70 EHDPP 81.4%±5.4% 0.996 0.44 1.47 TBEP 90.2%±7.1% 0.994 0.12 0.40 TCrP 95.3%±7.4% 0.995 0.55 1.83 TDCP 96.5%±4.4% 0.998 0.13 0.43 表 4 北京清河OPEs的总体检出水平
Table 4. Summary of OPEs concentration in the sampled surface water in Qinghe River, Beijing
目标物质 检出率/% 浓度/(ng/L) 含量/% 最大值 最小值 平均值 中位值 TMP 100 37.98 13.01 21.85 20.08 2.87 TEP 100 77.64 39.84 58.38 57.97 7.66 TnBP 100 34.02 14.09 26.21 26.02 3.44 TBEP 100 27.90 3.74 7.02 5.32 0.92 TCEP 100 190.44 86.77 135.06 136.07 17.73 TCIPP 100 598.97 260.13 457.76 468.43 60.09 TDCP 100 84.13 21.55 54.38 53.83 7.14 CDPP 100 0.78 0.10 0.45 0.49 0.06 EHDPP 100 0.69 0.18 0.32 0.30 0.04 TCrP 100 0.51 0.21 0.33 0.33 0.04 ∑10OPEs — 1 053.06 439.61 761.77 768.85 — 表 5 国内外河流、湖泊和海水中OPEs浓度对比
Table 5. Concentration of OPEs in different rivers, lakes and seawater around the world
国家 河流/湖泊 ΣOPEs浓度/(ng/L) 烷基类OPEs浓度/(ng/L) 氯代OPEs浓度/(ng/L) 烷基类OPEs浓度/(ng/L) 数据来源 TMP TEP TnBP TBEP TCEP TCIPP TDCP TCrP EHDPP CDPP 中国 北京清河 761.77
(439.61~1053.06)21.85
(13.01~37.98)58.38
(39.84~77.64)26.21
(14.09~34.02)7.02
(3.74~27.90)135.06
(86.77~190.44)457.76
(260.13~598.97)54.38
(21.55~84.13)0.33
(0.21~0.51)0.32
(0.18~0.69)0.45
(0.10~0.78)该研究 中国 珠江三角洲河流 160(25~840) — 11.0
(4.17~33.4)11
(<LOD~360)12
(<LOD~32)17
(<LOD~150)120
(22~330)10
(<LOD~99)— 24
(<LOD~480)— 文献[32] 中国 北京城区河流 954
(3.24~10 945)144
(<LOD~9497)88.7
(nd~2072)19.6
(nd~256)<LOD~3617 219
(nd~5689)291
(nd~1742)46.3
(nd~855)0.18
(<LOD~4.29)0.38
(<LOD~40.3)0.43
(<LOD~4.85)文献[1] 中国 太湖 800
(100~1700)28
(2.7~84)620
(53~1400)— 0.11
(nd~2.7)44
(14~76)93
(12~290)1.8
(nd~6.0)0.088
(nd~1.5)2.8
(0.88~12)— 文献[8] 中国 骆马湖 127
(0.82~708)25.2
(<LOD~127)11.7
(nd~32.1)2.37
(0.01~5.85)0.07
(0.002~0.18)69.6
(0.01~552)5.79
(0.02~10.8)0.95
(0.03~1.98)6.36
(0.71~54.6)1.86
(<LOD~3.39)— 文献[33] 中国 上海城区河流 850
(339~1689)— — 29.9
(11.6~63.3)46.6
(15.9~100.6)348.5
(67.5~865.2)259
(123.9~523)25.1
(<LOD~45.3)— — — 文献[6] 中国 上海郊区河流 222
(185~321)— — 25
(6.9~44.8)23.6
(<LOD~47.9)38.2
(30~63.3)77.4
(60~154.2)<LOD — — — 文献[6] 中国 成都锦江 3747.58
(689.09~10 623.94)— — 36.16~85.41 274.25~
10 186.6127.68~273.10 35.76~143.75 — — — — 文献[27] 中国 环渤海40条河流 300
(9.6~1549)— — <LOD~81 <LOD~47 1~268 5~921 <LOD~44 — — — 文献[7] 中国 广州蕉门水道 442±6.66 — 33.4±0.85 64.9±1.83 — 102±3.62 215±7.43 5.43±0.17 nd — — 文献[26] 中国 中山横门水道 217±3.84 — 5.17±0.11 125±2.61 — 28.8±0.78 32.3±1.23 2.72±0.11 nd — — 文献[26] 中国 广州红旗门水道 178±4.17 — 7.44±0.32 60.4±2.52 — 47.6±3.39 42.1±0.75 2.53±0.06 nd — — 文献[26] 中国 广州虎门水道 193±1.98 — 4.17±0.14 49.0±2.40 — 35.7±0.69 77.8±3.17 4.67±0.10 nd — — 文献[26] 续表 5 国家 河流/湖泊 ΣOPEs浓度/
(ng/L)烷基类OPEs浓度/(ng/L) 氯代OPEs浓度/(ng/L) 烷基类OPEs浓度/(ng/L) 数据来源 TMP TEP TnBP TBEP TCEP TCIPP TDCP TCrP EHDPP CDPP 中国 湘江水源地 14.9
(6.07~25.3)— — — — 0.23
(nd~0.46)6.83
(2.04~13.5)— — 0.61
(0.45~0.99)— 文献[34] 中国 洞庭湖旱季湖水 49.5~148 — — 1.87
(1.04~2.56)<LOD 7.89
(2.26~12.6)6.00
(1.64~6.05)0.590
(<LOD~0.871)— — — 文献[35] 中国 洞庭湖雨季湖水 5.00~45.7 — — 12.5
(<LOD~23.5)<LOD 31.6
(16.7~44.5)43.8
(27.3~106)3.46
(<LOD~6.59)— — — 文献[35] 中国 莱州湾海水 88.4±5.3 6.0±2.4 3.9±1.2 15.2±5.0 11.7±5.7 5.5±1.5 18.8±5.1 1.6±1.0 0.6±0.4 文献[36] 加拿大 北冰洋 11
(0.017~306)— — 0.55
(<LOD~8.1)<LOD 5.5
(<LOD~246)2.9
(0.17~53)— — 0.13
(<LOD~7.0)— 文献[37] 美国 Michigan湖 8.6~10 — — 0.45~0.77 — 0.30~0.46 2.9~3.2 0.92~1.3 — — — 文献[38] 英国 Aire 河 — — — — — 119~316 6 040
(113~26 050)62~149 — — — 文献[9] 欧洲 Danube 河 1 014.6 — — 5.6
(0.4~700)13
(<LOQ~93)119
(2.4~4.1)115
(28~603)11
(nd~28)— 0.6
(<LOQ~5.9)— 文献[39] 韩国 Shihwa 河 2344
(597~16 000)— 459
(42.2~3 677)40.3
(15.6~72.9)436
(145~839)706
(86.5~5 963)594
(68.3~5 102)48.1
(<LOD~325)— 9.87
(1.91~59.2)— 文献[25] 美国 Hudson 河 191
(37.2~510)0.49
(<LOQ~3.97)4.77
(<LOQ~24.8)— 66.2
(2.53~366)14.6
(<LOQ~79.5)74.6
(3.30~214)21.1
(<LOQ~86.7)— — — 文献[40] 西班牙 Nalón 河、Arga 河、 Besòs 河 7.6~7 200 — — <LOD~370 <LOD~4 600 <LOD~330 <LOD~1 800 <LOD~200 <LOD~0.009 2 <LOD~0.046 — 文献[41] 奥地利 Danube 河、Schwechat 河、Liesig 河 141~922 — 13~51 — 24~500 13~130 33~170 <MLQ~19 nd — — 文献[42] 注:括号中数值为OPEs总浓度范围. <LOD表示小于检出限,<LOQ表示小于定量限,nd表示未检出,—表示无数据. 表 6 OPEs毒理数据及生态风险
Table 6. Toxicity data and ecological risk of OPEs
化合物 敏感物种 LC50/(mg/L) PNEC/(mg/L) RQS TMP 藻类(Scenedesmus subspicatus) — — — 甲壳类(Daphnia magna) — — — 鱼类(Pimephales promelas) 7 000 7 000 000 0.000 002~0.000 005 TEP 藻类(Scenedesmus subspicatus) 900 900 000 0.000 044~0.000 086 甲壳类(Daphnia magna) 350 350 000 0.000 114~0.000 222 鱼类(Leuciscus idus) 2 140 2 140 000 0.000 019~0.000 036 TnBP 藻类(Scenedesmus subspicatus) 34 34 000 0.000 414~0.001 001 甲壳类(Daphnia magna) 11 11 000 0.001 280~0.003 093 鱼类(Leuciscus idus) 20 20 000 0.000 704~0.001 701 TBEP 藻类(Scenedesmus subspicatus) — — — 甲壳类(Daphnia magna) 75 75 000 0.000 050~0.000 372 鱼类(Pimephales promelas) 13 13 000 0.000 288~0.002 146 TCEP 藻类(Scenedesmus subspicatus) 51 51 000 0.001 807~0.003 734 甲壳类((Daphnia magna) 330 330 000 0.000 263~0.000 577 鱼类(Carassius auratus) 90 90 000 0.000 964~0.002 116 TCIPP 藻类(Scenedesmus subspicatus) 45 45 000 0.005 780~0.013 310 甲壳类(Daphnia magna) 91 91 000 0.002 859~0.006 582 鱼类(Poecilia reticulata) 30 30 000 0.008 671~0.019 966 TDCP 藻类(Pseudokirchneriella subcapitata) 39 39 000 0.000 553~0.002 157 甲壳类(Daphnia magna) 4.2 4 200 0.005 130~0.020 032 鱼类(Carassius auratus) 5.1 5 100 0.004 225~0.016 497 CDPP 藻类(Scenedesmus subspicatus) 0.6 600 0.000 167~0.001 301 甲壳类(Daphnia magna) — — — 鱼类(Pimephales promelas) — — — EHDPP 藻类(Scenedesmus subspicatus) — — — 甲壳类(Daphnia magna) 0.018 18 0.009 880~0.038 277 鱼类(Pimephales promelas) — — — TCrP 藻类(Scenedesmus subspicatus) 0.29 290 0.000 731~0.001 737 甲壳类(Daphnia magna) 0.27 270 0.000 786~0.001 884 鱼类(Lepomis macrochirus) 0.11 110 0.001 928~0.004 623 注:“—”表示未查询或计算到相关数据. -
[1] SHI Y L,GAO L H,LI W H,et al.Occurrence,distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing,China[J].Environmental Pollution,2016,209:1-10. doi: 10.1016/j.envpol.2015.11.008 [2] 郭凌川,刘涛,肖建鹏,等.多溴联苯醚和新型阻燃剂暴露与儿童肾损伤研究[J].环境科学研究,2022,35(2):508-518.GUO L C,LIU T,XIAO J P,et al.Renal damage of polybrominated diphenyl ethers and new flame retardantsin in children[J].Research of Environmental Sciences,2022,35(2):508-518. [3] SÜHRING R,DIAMOND M L,SCHERINGER M,et al.Organophosphate esters in Canadian Arctic air:occurrence,levels and trends[J].Environmental Science & Technology,2016,50(14):7409-7415. [4] ALI N,SHAHZAD K,RASHID M I,et al.Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000-2016)[J].Environmental Science and Pollution Research,2017,24(23):18721-18741. doi: 10.1007/s11356-017-9336-3 [5] PANTELAKI I,VOUTSA D.Organophosphate flame retardants (OPFRs):a review on analytical methods and occurrence in wastewater and aquatic environment[J].Science of the Total Environment,2019,649:247-263. doi: 10.1016/j.scitotenv.2018.08.286 [6] ZHANG Z Y,SHAO H Y,WU M H,et al.Occurrence,distribution,and potential sources of organophosphate esters in urban and rural surface water in Shanghai,China[J].Archives of Environmental Contamination and Toxicology,2019,77(1):115-126. doi: 10.1007/s00244-019-00633-w [7] WANG R M,TANG J H,XIE Z Y,et al.Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea,North China[J].Environmental Pollution,2015,198:172-178. doi: 10.1016/j.envpol.2014.12.037 [8] LIU Y H,SONG N H,GUO R X,et al.Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake):implication for eco-toxicity risk[J].Chemosphere,2018,202:255-263. doi: 10.1016/j.chemosphere.2018.03.108 [9] CRISTALE J,KATSOYIANNIS A,SWEETMAN A J,et al.Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK)[J].Environmental Pollution,2013,179:194-200. doi: 10.1016/j.envpol.2013.04.001 [10] 白云松,付青,涂响,等.北江中上游流域阻燃剂污染特征和风险评估[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.12.05.BAI Y S,FU Q,TU X,et al.Pollution characteristics and risk assessment of flame retardants in middle and upper reaches of Beijiang River Basin[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.12.05. [11] 薛倩倩,魏扬,田瑛泽,等.2019—2020年天津市津南区多环芳烃和有机磷阻燃剂气固分配特征及健康风险评价[J].环境科学研究,2022,35(1):30-39.XUE Q Q,WEI Y,TIAN Y Z,et al.Characteristics,gas-particle partitioning,and health risks of PM2.5-bound PAHs and OPEs from 2019 to 2020 in Jinnan District,Tianjin[J].Research of Environmental Sciences,2022,35(1):30-39. [12] HE M J,YANG T,YANG Z H,et al.Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing,China:implications for human exposure[J].Archives of Environmental Contamination and Toxicology,2017,73(3):349-361. doi: 10.1007/s00244-017-0432-7 [13] SUN Y L,ZHU H K.A pilot study of organophosphate esters in surface soils collected from Jinan City,China:implications for risk assessments[J].Environmental Science and Pollution Research,2021,28(3):3344-3353. doi: 10.1007/s11356-020-10730-2 [14] LIU Q,TANG X X,JIAN X Y,et al.Toxic effect and mechanism of tris (1,3-dichloro-2-propyl)phosphate (TDCPP) on the marine Alga Phaeodactylum tricornutum[J].Chemosphere,2020,252:126467. doi: 10.1016/j.chemosphere.2020.126467 [15] WANG L,HUANG X L,LASERNA A K C,et al.Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus[J].Science of the Total Environment,2020,708:134498. doi: 10.1016/j.scitotenv.2019.134498 [16] YAN S H,WANG Q,YANG L H,et al.Comparison of the toxicity effects of tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) with tributyl phosphate (TNBP) reveals the mechanism of the apoptosis pathway in Asian freshwater clams (Corbicula fluminea)[J].Environmental Science & Technology,2020,54(11):6850-6858. [17] LI R W,WANG H Q,MI C,et al.The adverse effect of TCIPP and TCEP on neurodevelopment of zebrafish embryos/larvae[J].Chemosphere,2019,220:811-817. doi: 10.1016/j.chemosphere.2018.12.198 [18] WANG X L,ZHU L Y,ZHONG W J,et al.Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake,China[J].Journal of Hazardous Materials,2018,360:43-50. doi: 10.1016/j.jhazmat.2018.07.082 [19] 代丹,于涛,雷坤,等.北京市清河水体非点源污染特征[J].环境科学研究,2018,31(6):1068-1077. doi: 10.13198/j.issn.1001-6929.2018.03.21DAI D,YU T,LEI K,et al.Characteristics of non-point source pollution of Qinghe River in Beijing City[J].Research of Environmental Sciences,2018,31(6):1068-1077. doi: 10.13198/j.issn.1001-6929.2018.03.21 [20] LV J P,GUO C S,LUO Y,et al.Spatial distribution,receptor modelling and risk assessment of organophosphate esters in surface water from the largest freshwater lake in China[J].Ecotoxicology and Environmental Safety,2022,238:113618. doi: 10.1016/j.ecoenv.2022.113618 [21] 李栋,张圣虎,张芹,等.长江南京段水源水中有机磷酸酯的污染特征与风险评估[J].环境科学,2020,41(1):205-212. doi: 10.13227/j.hjkx.201907149LI D,ZHANG S H,ZHANG Q,et al.Occurrence and risk assessment of organophosphate esters in source water of the Nanjing section of the Yangtze River[J].Environmental Science,2020,41(1):205-212. doi: 10.13227/j.hjkx.201907149 [22] 曹渺,郭昌胜,张恒,等.黄河流域入海口典型区域有机磷酸酯分布特征和风险评估[J].环境科学,2022.doi: 10.13227/j.hjkx.202204164.CAO M,GUO C S,ZHANG H,et al.Distribution characteristics and risk assessment of organophosphate esters in the estuary of the Yellow River Basin[J].Environmental Science,2022.doi: 10.13227/j.hjkx.202204164. [23] WANG X,ZHU Q Q,YAN X T,et al.A review of organophosphate flame retardants and plasticizers in the environment:analysis,occurrence and risk assessment[J].Science of the Total Environment,2020,731:139071. doi: 10.1016/j.scitotenv.2020.139071 [24] REGNERY J,PÜTTMANN W.Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany[J].Water Research,2010,44(14):4097-4104. doi: 10.1016/j.watres.2010.05.024 [25] LEE S,CHO H J,CHOI W,et al.Organophosphate flame retardants (OPFRs) in water and sediment:occurrence,distribution,and hotspots of contamination of Lake Shihwa,Korea[J].Marine Pollution Bulletin,2018,130:105-112. doi: 10.1016/j.marpolbul.2018.03.009 [26] SHI Y F,ZHANG Y,DU Y M,et al.Occurrence,composition and biological risk of organophosphate esters (OPEs) in water of the Pearl River Estuary,South China[J].Environmental Science and Pollution Research,2020,27(13):14852-14862. doi: 10.1007/s11356-020-08001-1 [27] 吴迪,印红玲,李世平,等.成都市锦江表层水和沉积物中有机磷酸酯的污染特征[J].环境科学,2019,40(3):1245-1251. doi: 10.13227/j.hjkx.201808038WU D,YIN H L,LI S P,et al.Pollution characteristics of OPEs in the surface water and sediment of the Jinjiang River in Chengdu City[J].Environmental Science,2019,40(3):1245-1251. doi: 10.13227/j.hjkx.201808038 [28] WEI G L,LI D Q,ZHUO M N,et al.Organophosphorus flame retardants and plasticizers:sources,occurrence,toxicity and human exposure[J].Environmental Pollution,2015,196:29-46. doi: 10.1016/j.envpol.2014.09.012 [29] NIU Z G,ZHANG Z Z,LI J F,et al.Threats of organophosphate esters (OPEs) in surface water to ecological system in Haihe River of China based on species sensitivity distribution model and assessment factor model[J].Environmental Science and Pollution Research,2019,26(11):10854-10866. doi: 10.1007/s11356-019-04461-2 [30] WANG X W,LIU J F,YIN Y G.Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J].Journal of Chromatography A,2011,1218(38):6705-6711. doi: 10.1016/j.chroma.2011.07.067 [31] van der VEEN I,de BOER J.Phosphorus flame retardants:properties,production,environmental occurrence,toxicity and analysis[J].Chemosphere,2012,88(10):1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [32] LIANG C,MO X J,XIE J F,et al.Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta,South China:implications for human exposure[J].Environmental Pollution,2022,313:120150. doi: 10.1016/j.envpol.2022.120150 [33] XING L Q,ZHANG Q,SUN X,et al.Occurrence,distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater lake,China[J].Science of the Total Environment,2018,636:632-640. doi: 10.1016/j.scitotenv.2018.04.320 [34] ZHANG S W,YANG C,LIU M Y,et al.Occurrence of organophosphate esters in surface water and sediment in drinking water source of Xiangjiang River,China[J].Science of the Total Environment,2021,781:146734. doi: 10.1016/j.scitotenv.2021.146734 [35] XU L,ZHANG B,HU Q P,et al.Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk[J].Environmental Pollution,2021,282:117031. doi: 10.1016/j.envpol.2021.117031 [36] BEKELE T G,ZHAO H X,WANG Q Z,et al.Bioaccumulation and trophic transfer of emerging organophosphate flame retardants in the marine food webs of Laizhou Bay,North China[J].Environmental Science & Technology,2019,53(22):13417-13426. [37] SÜHRING R,DIAMOND M L,BERNSTEIN S,et al.Organophosphate esters in the Canadian Arctic Ocean[J].Environmental Science & Technology,2021,55(1):304-312. [38] GUO J H,VENIER M,SALAMOVA A,et al.Bioaccumulation of dechloranes,organophosphate esters,and other flame retardants in Great Lakes fish[J].Science of the Total Environment,2017,583:1-9. doi: 10.1016/j.scitotenv.2016.11.063 [39] LOOS R,TAVAZZI S,MARIANI G,et al.Analysis of emerging organic contaminants in water,fish and suspended particulate matter (SPM) in the Joint Danube Survey using solid-phase extraction followed by UHPLC-MS-MS and GC-MS analysis[J].Science of the Total Environment,2017,607/608:1201-1212. doi: 10.1016/j.scitotenv.2017.07.039 [40] KIM U J,KANNAN K.Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters,tap water,and rainwater:implications for human exposure[J].Environmental Science & Technology,2018,52(10):5625-5633. [41] CRISTALE J,GARCÍA V A,BARATA C,et al.Priority and emerging flame retardants in rivers:occurrence in water and sediment,Daphnia magna toxicity and risk assessment[J].Environment International,2013,59:232-243. doi: 10.1016/j.envint.2013.06.011 [42] MARTÍNEZ-CARBALLO E,GONZÁLEZ-BARREIRO C,SITKA A,et al.Determination of selected organophosphate esters in the aquatic environment of Austria[J].Science of the Total Environment,2007,388(1/2/3):290-299. [43] LI W H,SHI Y L,GAO L H,et al.Occurrence,distribution and risk of organophosphate esters in urban road dust in Beijing,China[J].Environmental Pollution,2018,241:566-575. doi: 10.1016/j.envpol.2018.05.092 [44] LI J,TANG J H,MI W Y,et al.Spatial distribution and seasonal variation of organophosphate esters in air above the Bohai and Yellow Seas,China[J].Environmental Science & Technology,2018,52(1):89-97. [45] DENG M J,KUO D T F,WU Q H,et al.Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou,China[J].Environmental Pollution,2018,236:137-145. doi: 10.1016/j.envpol.2018.01.042 [46] GARCÍA-LÓPEZ M,RODRÍGUEZ I,CELA R.Mixed-mode solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the determination of tri- and di-substituted organophosphorus species in water samples[J].Journal of Chromatography A,2010,1217(9):1476-1484. doi: 10.1016/j.chroma.2009.12.067 [47] 刘静,何丽雄,曾祥英,等.珠江主干和东江河流表层沉积物中有机磷酸酯阻燃剂/增塑剂分布[J].生态毒理学报,2016,11(2):436-443.LIU J,HE L X,ZENG X Y,et al.Occurrence and distribution of organophosphorus flame retardants/plasticizer in surface sediments from the Pearl River and Dongjiang River[J].Asian Journal of Ecotoxicology,2016,11(2):436-443. [48] BRANDSMA S H,de BOER J,van VELZEN M J M,et al.Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment[J].Chemosphere,2014,116:3-9. doi: 10.1016/j.chemosphere.2014.02.036 -