留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京清河水体中有机磷酸酯的污染特征与生态风险评估

雷啟焘 史亚利 汤智 牛琳 赵晓丽

雷啟焘, 史亚利, 汤智, 牛琳, 赵晓丽. 北京清河水体中有机磷酸酯的污染特征与生态风险评估[J]. 环境科学研究, 2023, 36(4): 836-847. doi: 10.13198/j.issn.1001-6929.2023.01.13
引用本文: 雷啟焘, 史亚利, 汤智, 牛琳, 赵晓丽. 北京清河水体中有机磷酸酯的污染特征与生态风险评估[J]. 环境科学研究, 2023, 36(4): 836-847. doi: 10.13198/j.issn.1001-6929.2023.01.13
LEI Qitao, SHI Yali, TANG Zhi, NIU Lin, ZHAO Xiaoli. Pollution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Qinghe River, Beijing[J]. Research of Environmental Sciences, 2023, 36(4): 836-847. doi: 10.13198/j.issn.1001-6929.2023.01.13
Citation: LEI Qitao, SHI Yali, TANG Zhi, NIU Lin, ZHAO Xiaoli. Pollution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Qinghe River, Beijing[J]. Research of Environmental Sciences, 2023, 36(4): 836-847. doi: 10.13198/j.issn.1001-6929.2023.01.13

北京清河水体中有机磷酸酯的污染特征与生态风险评估

doi: 10.13198/j.issn.1001-6929.2023.01.13
基金项目: 国家自然科学基金项目(No.41991315)
详细信息
    作者简介:

    雷啟焘(1993-),男,浙江衢州人,leiqitao@126.com

    通讯作者:

    赵晓丽(1981-),女,河北邢台人,研究员,博士,博导,主要从事水质基准理论与方法学和纳米材料研究,zhaoxiaoli_zxl@126.com

  • 中图分类号: X83

Pollution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Qinghe River, Beijing

Funds: National Natural Science Foundation of China (No.41991315)
  • 摘要: 为了探究城市地表水中有机磷酸酯(OPEs)污染水平和生态风险,采用超高效液相色谱-质谱联用仪(UPLC-MS/MS)分析测定了北京清河地表水中10种OPEs的浓度水平和成分组成,使用相关性分析和主成分分析对地表水中OPEs进行源解析,并评估生态风险. 结果表明:北京清河地表水中∑10OPEs浓度范围为439.61~1 053.06 ng/L,浓度中位值为768.85 ng/L,平均值为761.77 ng/L,其中磷酸三(1-氯-2-丙基)酯(TCIPP)以及磷酸三(1-氯-2-丙基)酯(TCEP)是主要污染物. ∑10OPEs浓度沿河流方向呈先稳定后降低再缓慢升高的特征. 源解析结果表明,污水处理厂、道路交通、建筑装饰材料及汽车维修可能是北京清河地表水中OPEs的主要来源. 风险熵评估结果表明,水体中TCEP等10种OPEs的生态风险相对较低,但其引起的联合效应值得进一步关注. 研究显示,北京清河地表水中OPEs污染水平相对较高,受人为活动影响较大,造成的生态风险可以忽略.

     

  • 图  1  北京清河水样采集点示意

    Figure  1.  Sampling sites of surface water in Qinghe River, Beijing

    图  2  北京清河各采样点OPES的浓度与组成

    Figure  2.  Concentration and composition of OPEs at each sampling site in Qinghe River, Beijing

    图  3  Spearman相关性分析

    注:*表示在P<0.05水平上(双尾)显著相关.

    Figure  3.  Spearman correlation analysis

    图  4  主成分分析因子载荷与得分

    Figure  4.  Loading and score plot of the PCA

    图  5  北京清河各采样点OPEs风险熵值

    Figure  5.  RQ of the OPEs in the sampling sites in in Qinghe River, Beijing

    表  1  OPEs的分子式、相对分子质量及CAS号

    Table  1.   Formulas, relative molecular masses and CAS numbers of OPEs

    化合物英文缩写化学式相对分子质量CAS号
    Trimethyl phosphate(磷酸三甲酯) TMP C3H9O4P 140.8 512-56-1
    Triethyl phosphate(磷酸三乙酯) TEP C6H15O4P 182.16 78-40-0
    Tri-iso-butyl phosphate(磷酸三正丁酯) TnBP C12H27O4P 266.31 126-73-8
    Tri(2-butoxyethyl)phosphate(磷酸三丁氧酯) TBEP C18H39O7P 398.47 78-51-3
    Tri(2-chloroethyl)phosphate(磷酸三(2-氯乙基)酯) TCEP C6H12Cl3O4P 285.49 115-96-8
    Tri(1-chloro-2-propyl)phosphate(磷酸三(1-氯-2-丙基)酯) TCIPP C9H18Cl3O4P 327.57 13674-84-5
    Tri(1,3-dichloro-2-propyl)phosphate(磷酸三(1,3-二氯-2-丙基)酯) TDCP C9H15Cl6O4P 430.90 13674-87-8
    Trimethylphenyl phosphate(磷酸三甲苯酯) TCrP C21H21O4P 368.36 563-04-2
    Cresyl diphenyl phosphate(磷酸甲苯二苯酯) CDPP C19H17O4P 340.31 26444-49-5
    2-Ethylhexyl di-phenyl phosphate(2-乙基己基苯基磷酸酯) EHDPP C20H27O4P 340.31 1241-94-7
    下载: 导出CSV

    表  2  目标化合物离子对及相应质谱参数

    Table  2.   Analyte ions and MS parameters of target OPEs

    化合物保留时间/min母离子
    (m/z)
    子离子
    (m/z)
    去簇电压/V碰撞能/V
    TMP1.66140783022
    1083018
    TEP2.01182981)2518
    1262512
    TCEP2.39286981)4224
    1244214
    TnBP3.9266982615
    155268
    TCIPP2.983282471)28
    28822
    CDPP4.373411523939
    EHDPP6.823632513139
    91306
    TBEP4.58399199214
    299212
    TCrP5.77368919832
    1659832
    TDCP3.68429992426
    983220
    TPrP-d212.742461011)3618
    1503610
    TnBP-d273.862941011)3618
    1663612
    TCIPP-d182.953461011)3620
    1833610
    注:1)表示定量离子.
    下载: 导出CSV

    表  3  OPEs的加标回收率、相关系数、检出限和定量限

    Table  3.   Spiked recoveries, correlation coefficient, limits of detection and limits of quantitation of OPEs

    化合物加标回收率±标
    准差(n=3)
    相关系
    数(R2)
    检出限/
    (ng/L)
    定量限/
    (ng/L)
    TMP90.2%±4.3%0.9980.331.10
    TEP87.3%±9.9%0.9990.351.17
    TCEP95.2%±3.7%0.9950.782.60
    TnBP83.6%±5.2%0.9950.331.10
    TCIPP101.2%±8.4%0.9940.571.90
    CDPP89.5%±6.1%0.9980.210.70
    EHDPP81.4%±5.4%0.9960.441.47
    TBEP90.2%±7.1%0.9940.120.40
    TCrP95.3%±7.4%0.9950.551.83
    TDCP96.5%±4.4%0.9980.130.43
    下载: 导出CSV

    表  4  北京清河OPEs的总体检出水平

    Table  4.   Summary of OPEs concentration in the sampled surface water in Qinghe River, Beijing

    目标物质检出率/%浓度/(ng/L)含量/%
    最大值最小值平均值中位值
    TMP 100 37.98 13.01 21.85 20.08 2.87
    TEP 100 77.64 39.84 58.38 57.97 7.66
    TnBP 100 34.02 14.09 26.21 26.02 3.44
    TBEP 100 27.90 3.74 7.02 5.32 0.92
    TCEP 100 190.44 86.77 135.06 136.07 17.73
    TCIPP 100 598.97 260.13 457.76 468.43 60.09
    TDCP 100 84.13 21.55 54.38 53.83 7.14
    CDPP 100 0.78 0.10 0.45 0.49 0.06
    EHDPP 100 0.69 0.18 0.32 0.30 0.04
    TCrP 100 0.51 0.21 0.33 0.33 0.04
    10OPEs 1 053.06 439.61 761.77 768.85
    下载: 导出CSV

    表  5  国内外河流、湖泊和海水中OPEs浓度对比

    Table  5.   Concentration of OPEs in different rivers, lakes and seawater around the world

    国家河流/湖泊ΣOPEs浓度/(ng/L)烷基类OPEs浓度/(ng/L)氯代OPEs浓度/(ng/L)烷基类OPEs浓度/(ng/L)数据来源
    TMPTEPTnBPTBEPTCEPTCIPPTDCPTCrPEHDPPCDPP
    中国 北京清河 761.77
    (439.61~1053.06)
    21.85
    (13.01~37.98)
    58.38
    (39.84~77.64)
    26.21
    (14.09~34.02)
    7.02
    (3.74~27.90)
    135.06
    (86.77~190.44)
    457.76
    (260.13~598.97)
    54.38
    (21.55~84.13)
    0.33
    (0.21~0.51)
    0.32
    (0.18~0.69)
    0.45
    (0.10~0.78)
    该研究
    中国 珠江三角洲河流 160(25~840) 11.0
    (4.17~33.4)
    11
    (<LOD~360)
    12
    (<LOD~32)
    17
    (<LOD~150)
    120
    (22~330)
    10
    (<LOD~99)
    24
    (<LOD~480)
    文献[32]
    中国 北京城区河流 954
    (3.24~10 945)
    144
    (<LOD~9497)
    88.7
    (nd~2072)
    19.6
    (nd~256)
    <LOD~3617 219
    (nd~5689)
    291
    (nd~1742)
    46.3
    (nd~855)
    0.18
    (<LOD~4.29)
    0.38
    (<LOD~40.3)
    0.43
    (<LOD~4.85)
    文献[1]
    中国 太湖 800
    (100~1700)
    28
    (2.7~84)
    620
    (53~1400)
    0.11
    (nd~2.7)
    44
    (14~76)
    93
    (12~290)
    1.8
    (nd~6.0)
    0.088
    (nd~1.5)
    2.8
    (0.88~12)
    文献[8]
    中国 骆马湖 127
    (0.82~708)
    25.2
    (<LOD~127)
    11.7
    (nd~32.1)
    2.37
    (0.01~5.85)
    0.07
    (0.002~0.18)
    69.6
    (0.01~552)
    5.79
    (0.02~10.8)
    0.95
    (0.03~1.98)
    6.36
    (0.71~54.6)
    1.86
    (<LOD~3.39)
    文献[33]
    中国 上海城区河流 850
    (339~1689)
    29.9
    (11.6~63.3)
    46.6
    (15.9~100.6)
    348.5
    (67.5~865.2)
    259
    (123.9~523)
    25.1
    (<LOD~45.3)
    文献[6]
    中国 上海郊区河流 222
    (185~321)
    25
    (6.9~44.8)
    23.6
    (<LOD~47.9)
    38.2
    (30~63.3)
    77.4
    (60~154.2)
    <LOD 文献[6]
    中国 成都锦江 3747.58
    (689.09~10 623.94)
    36.16~85.41 274.25~
    10 186.61
    27.68~273.10 35.76~143.75 文献[27]
    中国 环渤海40条河流 300
    (9.6~1549)
    <LOD~81 <LOD~47 1~268 5~921 <LOD~44 文献[7]
    中国 广州蕉门水道 442±6.66 33.4±0.85 64.9±1.83 102±3.62 215±7.43 5.43±0.17 nd 文献[26]
    中国 中山横门水道 217±3.84 5.17±0.11 125±2.61 28.8±0.78 32.3±1.23 2.72±0.11 nd 文献[26]
    中国 广州红旗门水道 178±4.17 7.44±0.32 60.4±2.52 47.6±3.39 42.1±0.75 2.53±0.06 nd 文献[26]
    中国 广州虎门水道 193±1.98 4.17±0.14 49.0±2.40 35.7±0.69 77.8±3.17 4.67±0.10 nd 文献[26]
    下载: 导出CSV
    续表 5 
    国家河流/湖泊ΣOPEs浓度/
    (ng/L)
    烷基类OPEs浓度/(ng/L)氯代OPEs浓度/(ng/L)烷基类OPEs浓度/(ng/L)数据来源
    TMPTEPTnBPTBEPTCEPTCIPPTDCPTCrPEHDPPCDPP
    中国 湘江水源地 14.9
    (6.07~25.3)
    0.23
    (nd~0.46)
    6.83
    (2.04~13.5)
    0.61
    (0.45~0.99)
    文献[34]
    中国 洞庭湖旱季湖水 49.5~148 1.87
    (1.04~2.56)
    <LOD 7.89
    (2.26~12.6)
    6.00
    (1.64~6.05)
    0.590
    (<LOD~0.871)
    文献[35]
    中国 洞庭湖雨季湖水 5.00~45.7 12.5
    (<LOD~23.5)
    <LOD 31.6
    (16.7~44.5)
    43.8
    (27.3~106)
    3.46
    (<LOD~6.59)
    文献[35]
    中国 莱州湾海水 88.4±5.3 6.0±2.4 3.9±1.2 15.2±5.0 11.7±5.7 5.5±1.5 18.8±5.1 1.6±1.0 0.6±0.4 文献[36]
    加拿大 北冰洋 11
    (0.017~306)
    0.55
    (<LOD~8.1)
    <LOD 5.5
    (<LOD~246)
    2.9
    (0.17~53)
    0.13
    (<LOD~7.0)
    文献[37]
    美国 Michigan湖 8.6~10 0.45~0.77 0.30~0.46 2.9~3.2 0.92~1.3 文献[38]
    英国 Aire 河 119~316 6 040
    (113~26 050)
    62~149 文献[9]
    欧洲 Danube 河 1 014.6 5.6
    (0.4~700)
    13
    (<LOQ~93)
    119
    (2.4~4.1)
    115
    (28~603)
    11
    (nd~28)
    0.6
    (<LOQ~5.9)
    文献[39]
    韩国 Shihwa 河 2344
    (597~16 000)
    459
    (42.2~3 677)
    40.3
    (15.6~72.9)
    436
    (145~839)
    706
    (86.5~5 963)
    594
    (68.3~5 102)
    48.1
    (<LOD~325)
    9.87
    (1.91~59.2)
    文献[25]
    美国 Hudson 河 191
    (37.2~510)
    0.49
    (<LOQ~3.97)
    4.77
    (<LOQ~24.8)
    66.2
    (2.53~366)
    14.6
    (<LOQ~79.5)
    74.6
    (3.30~214)
    21.1
    (<LOQ~86.7)
    文献[40]
    西班牙 Nalón 河、Arga 河、 Besòs 河 7.6~7 200 <LOD~370 <LOD~4 600 <LOD~330 <LOD~1 800 <LOD~200 <LOD~0.009 2 <LOD~0.046 文献[41]
    奥地利 Danube 河、Schwechat 河、Liesig 河 141~922 13~51 24~500 13~130 33~170 <MLQ~19 nd 文献[42]
    注:括号中数值为OPEs总浓度范围. <LOD表示小于检出限,<LOQ表示小于定量限,nd表示未检出,—表示无数据.
    下载: 导出CSV

    表  6  OPEs毒理数据及生态风险

    Table  6.   Toxicity data and ecological risk of OPEs

    化合物敏感物种LC50/(mg/L)PNEC/(mg/L)RQS
    TMP 藻类(Scenedesmus subspicatus)
    甲壳类(Daphnia magna)
    鱼类(Pimephales promelas) 7 000 7 000 000 0.000 002~0.000 005
    TEP 藻类(Scenedesmus subspicatus) 900 900 000 0.000 044~0.000 086
    甲壳类(Daphnia magna) 350 350 000 0.000 114~0.000 222
    鱼类(Leuciscus idus) 2 140 2 140 000 0.000 019~0.000 036
    TnBP 藻类(Scenedesmus subspicatus) 34 34 000 0.000 414~0.001 001
    甲壳类(Daphnia magna) 11 11 000 0.001 280~0.003 093
    鱼类(Leuciscus idus) 20 20 000 0.000 704~0.001 701
    TBEP 藻类(Scenedesmus subspicatus)
    甲壳类(Daphnia magna) 75 75 000 0.000 050~0.000 372
    鱼类(Pimephales promelas) 13 13 000 0.000 288~0.002 146
    TCEP 藻类(Scenedesmus subspicatus) 51 51 000 0.001 807~0.003 734
    甲壳类((Daphnia magna) 330 330 000 0.000 263~0.000 577
    鱼类(Carassius auratus) 90 90 000 0.000 964~0.002 116
    TCIPP 藻类(Scenedesmus subspicatus) 45 45 000 0.005 780~0.013 310
    甲壳类(Daphnia magna) 91 91 000 0.002 859~0.006 582
    鱼类(Poecilia reticulata) 30 30 000 0.008 671~0.019 966
    TDCP 藻类(Pseudokirchneriella subcapitata) 39 39 000 0.000 553~0.002 157
    甲壳类(Daphnia magna) 4.2 4 200 0.005 130~0.020 032
    鱼类(Carassius auratus) 5.1 5 100 0.004 225~0.016 497
    CDPP 藻类(Scenedesmus subspicatus) 0.6 600 0.000 167~0.001 301
    甲壳类(Daphnia magna)
    鱼类(Pimephales promelas)
    EHDPP 藻类(Scenedesmus subspicatus)
    甲壳类(Daphnia magna) 0.018 18 0.009 880~0.038 277
    鱼类(Pimephales promelas)
    TCrP 藻类(Scenedesmus subspicatus) 0.29 290 0.000 731~0.001 737
    甲壳类(Daphnia magna) 0.27 270 0.000 786~0.001 884
    鱼类(Lepomis macrochirus) 0.11 110 0.001 928~0.004 623
    注:“—”表示未查询或计算到相关数据.
    下载: 导出CSV
  • [1] SHI Y L,GAO L H,LI W H,et al.Occurrence,distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing,China[J].Environmental Pollution,2016,209:1-10. doi: 10.1016/j.envpol.2015.11.008
    [2] 郭凌川,刘涛,肖建鹏,等.多溴联苯醚和新型阻燃剂暴露与儿童肾损伤研究[J].环境科学研究,2022,35(2):508-518.

    GUO L C,LIU T,XIAO J P,et al.Renal damage of polybrominated diphenyl ethers and new flame retardantsin in children[J].Research of Environmental Sciences,2022,35(2):508-518.
    [3] SÜHRING R,DIAMOND M L,SCHERINGER M,et al.Organophosphate esters in Canadian Arctic air:occurrence,levels and trends[J].Environmental Science & Technology,2016,50(14):7409-7415.
    [4] ALI N,SHAHZAD K,RASHID M I,et al.Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000-2016)[J].Environmental Science and Pollution Research,2017,24(23):18721-18741. doi: 10.1007/s11356-017-9336-3
    [5] PANTELAKI I,VOUTSA D.Organophosphate flame retardants (OPFRs):a review on analytical methods and occurrence in wastewater and aquatic environment[J].Science of the Total Environment,2019,649:247-263. doi: 10.1016/j.scitotenv.2018.08.286
    [6] ZHANG Z Y,SHAO H Y,WU M H,et al.Occurrence,distribution,and potential sources of organophosphate esters in urban and rural surface water in Shanghai,China[J].Archives of Environmental Contamination and Toxicology,2019,77(1):115-126. doi: 10.1007/s00244-019-00633-w
    [7] WANG R M,TANG J H,XIE Z Y,et al.Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea,North China[J].Environmental Pollution,2015,198:172-178. doi: 10.1016/j.envpol.2014.12.037
    [8] LIU Y H,SONG N H,GUO R X,et al.Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake):implication for eco-toxicity risk[J].Chemosphere,2018,202:255-263. doi: 10.1016/j.chemosphere.2018.03.108
    [9] CRISTALE J,KATSOYIANNIS A,SWEETMAN A J,et al.Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK)[J].Environmental Pollution,2013,179:194-200. doi: 10.1016/j.envpol.2013.04.001
    [10] 白云松,付青,涂响,等.北江中上游流域阻燃剂污染特征和风险评估[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.12.05.

    BAI Y S,FU Q,TU X,et al.Pollution characteristics and risk assessment of flame retardants in middle and upper reaches of Beijiang River Basin[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.12.05.
    [11] 薛倩倩,魏扬,田瑛泽,等.2019—2020年天津市津南区多环芳烃和有机磷阻燃剂气固分配特征及健康风险评价[J].环境科学研究,2022,35(1):30-39.

    XUE Q Q,WEI Y,TIAN Y Z,et al.Characteristics,gas-particle partitioning,and health risks of PM2.5-bound PAHs and OPEs from 2019 to 2020 in Jinnan District,Tianjin[J].Research of Environmental Sciences,2022,35(1):30-39.
    [12] HE M J,YANG T,YANG Z H,et al.Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing,China:implications for human exposure[J].Archives of Environmental Contamination and Toxicology,2017,73(3):349-361. doi: 10.1007/s00244-017-0432-7
    [13] SUN Y L,ZHU H K.A pilot study of organophosphate esters in surface soils collected from Jinan City,China:implications for risk assessments[J].Environmental Science and Pollution Research,2021,28(3):3344-3353. doi: 10.1007/s11356-020-10730-2
    [14] LIU Q,TANG X X,JIAN X Y,et al.Toxic effect and mechanism of tris (1,3-dichloro-2-propyl)phosphate (TDCPP) on the marine Alga Phaeodactylum tricornutum[J].Chemosphere,2020,252:126467. doi: 10.1016/j.chemosphere.2020.126467
    [15] WANG L,HUANG X L,LASERNA A K C,et al.Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus[J].Science of the Total Environment,2020,708:134498. doi: 10.1016/j.scitotenv.2019.134498
    [16] YAN S H,WANG Q,YANG L H,et al.Comparison of the toxicity effects of tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) with tributyl phosphate (TNBP) reveals the mechanism of the apoptosis pathway in Asian freshwater clams (Corbicula fluminea)[J].Environmental Science & Technology,2020,54(11):6850-6858.
    [17] LI R W,WANG H Q,MI C,et al.The adverse effect of TCIPP and TCEP on neurodevelopment of zebrafish embryos/larvae[J].Chemosphere,2019,220:811-817. doi: 10.1016/j.chemosphere.2018.12.198
    [18] WANG X L,ZHU L Y,ZHONG W J,et al.Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake,China[J].Journal of Hazardous Materials,2018,360:43-50. doi: 10.1016/j.jhazmat.2018.07.082
    [19] 代丹,于涛,雷坤,等.北京市清河水体非点源污染特征[J].环境科学研究,2018,31(6):1068-1077. doi: 10.13198/j.issn.1001-6929.2018.03.21

    DAI D,YU T,LEI K,et al.Characteristics of non-point source pollution of Qinghe River in Beijing City[J].Research of Environmental Sciences,2018,31(6):1068-1077. doi: 10.13198/j.issn.1001-6929.2018.03.21
    [20] LV J P,GUO C S,LUO Y,et al.Spatial distribution,receptor modelling and risk assessment of organophosphate esters in surface water from the largest freshwater lake in China[J].Ecotoxicology and Environmental Safety,2022,238:113618. doi: 10.1016/j.ecoenv.2022.113618
    [21] 李栋,张圣虎,张芹,等.长江南京段水源水中有机磷酸酯的污染特征与风险评估[J].环境科学,2020,41(1):205-212. doi: 10.13227/j.hjkx.201907149

    LI D,ZHANG S H,ZHANG Q,et al.Occurrence and risk assessment of organophosphate esters in source water of the Nanjing section of the Yangtze River[J].Environmental Science,2020,41(1):205-212. doi: 10.13227/j.hjkx.201907149
    [22] 曹渺,郭昌胜,张恒,等.黄河流域入海口典型区域有机磷酸酯分布特征和风险评估[J].环境科学,2022.doi: 10.13227/j.hjkx.202204164.

    CAO M,GUO C S,ZHANG H,et al.Distribution characteristics and risk assessment of organophosphate esters in the estuary of the Yellow River Basin[J].Environmental Science,2022.doi: 10.13227/j.hjkx.202204164.
    [23] WANG X,ZHU Q Q,YAN X T,et al.A review of organophosphate flame retardants and plasticizers in the environment:analysis,occurrence and risk assessment[J].Science of the Total Environment,2020,731:139071. doi: 10.1016/j.scitotenv.2020.139071
    [24] REGNERY J,PÜTTMANN W.Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany[J].Water Research,2010,44(14):4097-4104. doi: 10.1016/j.watres.2010.05.024
    [25] LEE S,CHO H J,CHOI W,et al.Organophosphate flame retardants (OPFRs) in water and sediment:occurrence,distribution,and hotspots of contamination of Lake Shihwa,Korea[J].Marine Pollution Bulletin,2018,130:105-112. doi: 10.1016/j.marpolbul.2018.03.009
    [26] SHI Y F,ZHANG Y,DU Y M,et al.Occurrence,composition and biological risk of organophosphate esters (OPEs) in water of the Pearl River Estuary,South China[J].Environmental Science and Pollution Research,2020,27(13):14852-14862. doi: 10.1007/s11356-020-08001-1
    [27] 吴迪,印红玲,李世平,等.成都市锦江表层水和沉积物中有机磷酸酯的污染特征[J].环境科学,2019,40(3):1245-1251. doi: 10.13227/j.hjkx.201808038

    WU D,YIN H L,LI S P,et al.Pollution characteristics of OPEs in the surface water and sediment of the Jinjiang River in Chengdu City[J].Environmental Science,2019,40(3):1245-1251. doi: 10.13227/j.hjkx.201808038
    [28] WEI G L,LI D Q,ZHUO M N,et al.Organophosphorus flame retardants and plasticizers:sources,occurrence,toxicity and human exposure[J].Environmental Pollution,2015,196:29-46. doi: 10.1016/j.envpol.2014.09.012
    [29] NIU Z G,ZHANG Z Z,LI J F,et al.Threats of organophosphate esters (OPEs) in surface water to ecological system in Haihe River of China based on species sensitivity distribution model and assessment factor model[J].Environmental Science and Pollution Research,2019,26(11):10854-10866. doi: 10.1007/s11356-019-04461-2
    [30] WANG X W,LIU J F,YIN Y G.Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J].Journal of Chromatography A,2011,1218(38):6705-6711. doi: 10.1016/j.chroma.2011.07.067
    [31] van der VEEN I,de BOER J.Phosphorus flame retardants:properties,production,environmental occurrence,toxicity and analysis[J].Chemosphere,2012,88(10):1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
    [32] LIANG C,MO X J,XIE J F,et al.Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta,South China:implications for human exposure[J].Environmental Pollution,2022,313:120150. doi: 10.1016/j.envpol.2022.120150
    [33] XING L Q,ZHANG Q,SUN X,et al.Occurrence,distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater lake,China[J].Science of the Total Environment,2018,636:632-640. doi: 10.1016/j.scitotenv.2018.04.320
    [34] ZHANG S W,YANG C,LIU M Y,et al.Occurrence of organophosphate esters in surface water and sediment in drinking water source of Xiangjiang River,China[J].Science of the Total Environment,2021,781:146734. doi: 10.1016/j.scitotenv.2021.146734
    [35] XU L,ZHANG B,HU Q P,et al.Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk[J].Environmental Pollution,2021,282:117031. doi: 10.1016/j.envpol.2021.117031
    [36] BEKELE T G,ZHAO H X,WANG Q Z,et al.Bioaccumulation and trophic transfer of emerging organophosphate flame retardants in the marine food webs of Laizhou Bay,North China[J].Environmental Science & Technology,2019,53(22):13417-13426.
    [37] SÜHRING R,DIAMOND M L,BERNSTEIN S,et al.Organophosphate esters in the Canadian Arctic Ocean[J].Environmental Science & Technology,2021,55(1):304-312.
    [38] GUO J H,VENIER M,SALAMOVA A,et al.Bioaccumulation of dechloranes,organophosphate esters,and other flame retardants in Great Lakes fish[J].Science of the Total Environment,2017,583:1-9. doi: 10.1016/j.scitotenv.2016.11.063
    [39] LOOS R,TAVAZZI S,MARIANI G,et al.Analysis of emerging organic contaminants in water,fish and suspended particulate matter (SPM) in the Joint Danube Survey using solid-phase extraction followed by UHPLC-MS-MS and GC-MS analysis[J].Science of the Total Environment,2017,607/608:1201-1212. doi: 10.1016/j.scitotenv.2017.07.039
    [40] KIM U J,KANNAN K.Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters,tap water,and rainwater:implications for human exposure[J].Environmental Science & Technology,2018,52(10):5625-5633.
    [41] CRISTALE J,GARCÍA V A,BARATA C,et al.Priority and emerging flame retardants in rivers:occurrence in water and sediment,Daphnia magna toxicity and risk assessment[J].Environment International,2013,59:232-243. doi: 10.1016/j.envint.2013.06.011
    [42] MARTÍNEZ-CARBALLO E,GONZÁLEZ-BARREIRO C,SITKA A,et al.Determination of selected organophosphate esters in the aquatic environment of Austria[J].Science of the Total Environment,2007,388(1/2/3):290-299.
    [43] LI W H,SHI Y L,GAO L H,et al.Occurrence,distribution and risk of organophosphate esters in urban road dust in Beijing,China[J].Environmental Pollution,2018,241:566-575. doi: 10.1016/j.envpol.2018.05.092
    [44] LI J,TANG J H,MI W Y,et al.Spatial distribution and seasonal variation of organophosphate esters in air above the Bohai and Yellow Seas,China[J].Environmental Science & Technology,2018,52(1):89-97.
    [45] DENG M J,KUO D T F,WU Q H,et al.Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou,China[J].Environmental Pollution,2018,236:137-145. doi: 10.1016/j.envpol.2018.01.042
    [46] GARCÍA-LÓPEZ M,RODRÍGUEZ I,CELA R.Mixed-mode solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the determination of tri- and di-substituted organophosphorus species in water samples[J].Journal of Chromatography A,2010,1217(9):1476-1484. doi: 10.1016/j.chroma.2009.12.067
    [47] 刘静,何丽雄,曾祥英,等.珠江主干和东江河流表层沉积物中有机磷酸酯阻燃剂/增塑剂分布[J].生态毒理学报,2016,11(2):436-443.

    LIU J,HE L X,ZENG X Y,et al.Occurrence and distribution of organophosphorus flame retardants/plasticizer in surface sediments from the Pearl River and Dongjiang River[J].Asian Journal of Ecotoxicology,2016,11(2):436-443.
    [48] BRANDSMA S H,de BOER J,van VELZEN M J M,et al.Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment[J].Chemosphere,2014,116:3-9. doi: 10.1016/j.chemosphere.2014.02.036
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  33
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2023-01-28

目录

    /

    返回文章
    返回