Preparation and Characterization of Sulfhydryl Modified Palygorskite and Their Application for Cadmium Adsorption
-
摘要: 为明确巯基改性坡缕石(MPAL)作为修复材料对Cd的吸附机制以及其在修复Cd污染土壤中的应用潜力,以坡缕石(PAL)为原料,通过高速剪切凝胶法制备MPAL作为钝化剂开展吸附试验与土壤钝化试验,研究MPAL对Cd的吸附效果. 通过X射线衍射(XRD)、BET孔结构分析、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)以及X射线光电子能谱(XPS)对吸附前后的样品进行表征,探讨其吸附机制. 结果表明:PAL和MPAL均能有效吸附水溶液中的Cd2+,MPAL吸附效果优于PAL. 拟二级动力学模型更适合描述Cd2+在PAL和MPAL上吸附量的动态变化过程,MPAL约90 min达到吸附平衡,相比于PAL能更加迅速达到吸附平衡. Freundlich等温吸附模型能够更好地描述吸附数据特征,在试验条件下,MPAL的饱和吸附容量为44.41 mg/g,明显高于PAL的饱和吸附容量(33.65 mg/g). MPAL在投加量为0.1%~0.3%时可使土壤DTPA提取态Cd含量降低53.45%~78.43%. XRD衍射峰分析、FTIR官能团振动模式分析以及XPS关键元素结合能分析结果显示,PAL主要通过表面羟基与Cd2+形成表面络合来吸附Cd,而MPAL还提供了大量巯基官能团作为吸附位点,通过表面的羟基和巯基与Cd2+发生络合反应形成络合沉淀. 研究显示,MPAL对Cd的吸附能力更强,是一种在Cd污染农田土壤上具有良好应用潜力的高效钝化剂.Abstract: In order to understand the adsorption mechanism of Cd by sulfhydryl modified palygorskite (MPAL) as a remediation material and its application potential in the remediation of Cd-contaminated soil, MPAL was prepared by high speed shear gel method using palygorskite (PAL) as raw material to carry out adsorption experiments and soil passivation experiments, and the adsorption effect of MPAL on Cd was studied. X-ray diffraction (XRD), BET pore structure analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the samples before and after adsorption, and to explore the adsorption mechanism. The results showed that both PAL and MPAL could effectively adsorb Cd2+ in aqueous solution, and the adsorption effect of MPAL was better than PAL. The pseudo second order kinetics model is more suitable to describe the dynamic change process of Cd2+ adsorption on PAL and MPAL. MPAL reaches the adsorption equilibrium in about 90 minutes, which is faster than PAL. Freundlich isotherm absorption can describe the adsorption data better. Under the experimental conditions, the saturated adsorption capacity of MPAL is 44.41 mg/g, which is significantly higher than that of PAL (33.65 mg/g). The DTPA extractable Cd concentrations in soil can be reduced by 53.45%-78.43% when the dosage of sulfhydryl modified palygorskite is 0.1%-0.3%. X-ray diffraction peak analysis, FTIR functional group vibration mode analysis and binding energy analysis of key elements of XPS showed that PAL adsorbed Cd through the formation of surface complexation between the surface hydroxyl group and Cd2+, while MPAL also provided a large number of sulfhydryl functional groups as adsorption sites, and formed complexation precipitation through the complexation reaction between the surface hydroxyl group and the sulfhydryl group and Cd2+. The study showed that MPAL has stronger adsorption capacity for Cd, and it is an efficient passivating agent with good application potential in Cd polluted farmland soil.
-
Key words:
- palygorskite /
- cadmium /
- adsorption /
- hydroxyl group /
- sulfhydryl group
-
表 1 Cd2+在PAL和MPAL上的吸附动力学参数
Table 1. Adsorption kinetic parameters of Cd2+ adsorption on PAL and MPAL
钝化材料 拟一级动力学模型 拟二级动力学模型 qm1/(mg/g) k1/min−1 R2 qm2/(mg/g) k2/[g/(mg·min)] R2 PAL 6.87±0.16 0.331±0.074 2 0.947 32 7.08±0.13 0.095±0.026 4 0.97244 MPAL 8.25±0.13 0.31±0.045 0.974 85 8.47±0.08 0.081±0.011 3 0.99306 表 2 Cd2+在PAL和MPAL上的等温吸附模型拟合参数
Table 2. Isotherm parameters of Cd2+ adsorption on PAL and MPAL
钝化材料 Langmuir等温吸附模型 Freundlich等温吸附模型 Qm/(mg/g) k/(L/mg) R2 KF/(L/g) n R2 PAL 33.65±2.30 0.07±0.02 0.966 89 5.80±0.61 2.74±0.19 0.986 92 MPAL 44.41±5.33 0.06±0.03 0.938 31 12.01±1.12 3.96±0.38 0.979 57 表 3 不同钝化材料对Cd的吸附作用
Table 3. Adsorption of cadmium by different passivating materials
表 4 PAL和MPAL及其吸附产物的XRD参数
Table 4. XRD indexes of PAL, MPAL and adsorption products
hkl PAL MPAL PAL-Cd MPAL-Cd 2θ/(°) d(Å) 2θ/(°) d(Å) 2θ/(°) d(Å) 2θ/(°) d(Å) (110) 8.49 10.395 9 8.42 10.482 6 8.38 10.531 8 8.39 10.524 4 (040) 19.69 4.504 3 19.71 4.498 5 19.75 4.490 6 19.63 4.517 9 (121) 20.90 4.246 6 20.79 4.268 0 20.84 4.257 1 20.86 4.253 9 (221) 24.03 3.699 0 24.02 3.701 7 24.07 3.693 7 23.98 3.707 6 (231) 26.61 3.346 4 26.59 3.348 5 26.65 3.341 1 26.59 3.348 5 (331) 30.91 2.890 5 30.87 2.893 6 30.93 2.888 0 30.88 2.892 7 a1) — 12.830 4 — 12.854 7 — 12.782 5 — 12.843 4 b1) — 17.886 3 — 17.962 4 — 17.936 2 — 17.951 7 c1) — 5.209 4 — 5.199 4 — 5.206 7 — 5.198 1 注:1)晶格常数a、b和c由Jade 6.5根据峰值位置和米勒指数计算得到. 表 5 PAL和MPAL的N2吸附-脱附分析结果
Table 5. Analysis results of N2 adsorption-desorption of PAL and MPAL
钝化材料 BET表面积/(m2/g) 总孔体积/(cm3/g) 平均孔径/nm 微孔体积/(cm3/g) 微孔面积/(m2/g) 外表面积/(m2/g) PAL 111.84 0.16 7.98 0.012 709 28.673 8 83.165 4 MPAL 88.70 0.14 11.32 0.004 881 10.041 8 78.659 5 表 6 PAL和MPAL及其吸附产物的XPS参数
Table 6. XPS indexes of PAL, MPAL and adsorption products
材料 Al2p Si2p O1s S2p Cd3d3/2 结合能/eV 原子比/% 结合能/eV 原子比/% 结合能/eV 原子比/% 结合能/eV 原子比/% 结合能/eV 原子比/% PAL 74.77 5.19 102.88 16.13 532.03 53.35 — — — — PAL-Cd 74.45 6.48 102.89 19.14 532.01 58.81 — — 413.39 0.26 MPAL 74.82 4.74 102.98 14.71 532.15 47.04 163.81 2.30 — — MPAL-Cd 74.96 5.00 103.11 16.31 532.26 50.88 164.01 1.70 412.78 0.46 -
[1] 雍莹莹,徐应明,黄青青,等.巯基坡缕石-硫酸锰复配对碱性土壤镉污染钝化阻控效应[J].农业环境科学学报,2021,40(12):2681-2692. doi: 10.11654/jaes.2021-0426YONG Y Y,XU Y M,HUANG Q Q,et al.Immobilization effect of mercaptopalygorskite and manganese sulfate on Cd pollution in alkaline soil[J].Journal of Agro-Environment Science,2021,40(12):2681-2692. doi: 10.11654/jaes.2021-0426 [2] 环境保护部,国土资源部.全国土壤污染状况调查公报[EB/OL].北京:环境保护部,(2014-04-17)[2023-01-15].http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf. [3] 陈文轩,李茜,王珍,等.中国农田土壤重金属空间分布特征及污染评价[J].环境科学,2020,41(6):2822-2833. doi: 10.13227/j.hjkx.201910075CHEN W X,LI Q,WANG Z,et al.Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J].Environmental Science,2020,41(6):2822-2833. doi: 10.13227/j.hjkx.201910075 [4] 陶玲,管天成,刘瑞珍,等.热改性坡缕石对土壤Cd污染的钝化修复研究[J].农业环境科学学报,2021,40(4):782-790. doi: 10.11654/jaes.2020-1115TAO L,GUAN T C,LIU R Z,et al.Stabilization remediation of cadmium contaminated soil by using heat-modified palygorskite[J].Journal of Agro-Environment Science,2021,40(4):782-790. doi: 10.11654/jaes.2020-1115 [5] ZHAO H H,HUANG X R,LIU F H,et al.A two-year field study of using a new material for remediation of cadmium contaminated paddy soil[J].Environmental Pollution,2020,263:114614. doi: 10.1016/j.envpol.2020.114614 [6] 李英,商建英,黄益宗,等.镉砷复合污染土壤钝化材料研究进展[J].土壤学报,2021,58(4):837-850.LI Y,SHANG J Y,HUANG Y Z,et al.Research progress on passivation materials for cadmium-arsenic co-contamination in soil[J].Acta Pedologica Sinica,2021,58(4):837-850. [7] HAMID Y,TANG L,HUSSAIN B,et al.Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system:a review[J].Science of the Total Environment,2020,707:136121. doi: 10.1016/j.scitotenv.2019.136121 [8] XIAO X,CHEN B L,CHEN Z M,et al.Insight into multiple and multilevel structures of biochars and their potential environmental applications:a critical review[J].Environmental Science & Technology,2018,52(9):5027-5047. [9] GUO F Y,DING C F,ZHOU Z G,et al.Assessment of the immobilization effectiveness of several amendments on a cadmium-contaminated soil using Eisenia fetida[J].Ecotoxicology and Environmental Safety,2020,189:109948. doi: 10.1016/j.ecoenv.2019.109948 [10] 武晓微,翟文珺,高超,等.钝化剂对土壤性质及镉生物有效性的影响研究[J].农业环境科学学报,2021,40(3):562-569. doi: 10.11654/jaes.2020-0826WU X W,ZHAI W J,GAO C,et al.Influence of passivation on soil properties and bioavailability of cadmium in soils[J].Journal of Agro-Environment Science,2021,40(3):562-569. doi: 10.11654/jaes.2020-0826 [11] 朱维,刘代欢,陈建清,等.黏土矿物在土壤重金属污染中的应用研究进展[J].土壤通报,2018,49(2):499-504. doi: 10.19336/j.cnki.trtb.2018.02.34ZHU W,LIU D H,CHEN J Q,et al.Research progress on the application of clay minerals in the remediation of cadmium polluted farmland[J].Chinese Journal of Soil Science,2018,49(2):499-504. doi: 10.19336/j.cnki.trtb.2018.02.34 [12] HUANG C Y,HUANG H L,QIN P F.In-situ immobilization of copper and cadmium in contaminated soil using acetic acid-eggshell modified diatomite[J].Journal of Environmental Chemical Engineering,2020,8(4):103931. doi: 10.1016/j.jece.2020.103931 [13] 韩雷,陈娟,杜平,等.不同钝化剂对Cd污染农田土壤生态安全的影响[J].环境科学研究,2018,31(7):1289-1295. doi: 10.13198/j.issn.1001-6929.2018.03.06HAN L,CHEN J,DU P,et al.Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J].Research of Environmental Sciences,2018,31(7):1289-1295. doi: 10.13198/j.issn.1001-6929.2018.03.06 [14] 何丽质,徐应明,宋常志,等.巯基化坡缕石对碱性土壤镉污染的快速钝化修复效应[J].农业环境科学学报,2021,40(2):319-328. doi: 10.11654/jaes.2020-1060HE L Z,XU Y M,SONG C Z,et al.Using thiolated palygorskite to remediate Cd-contaminated alkaline soil via rapid immobilization[J].Journal of Agro-Environment Science,2021,40(2):319-328. doi: 10.11654/jaes.2020-1060 [15] 李昂,侯红,苏本营,等.基于CNKI文献分析的镉污染土壤钝化技术概况及效果评估研究[J].农业环境科学学报,2019,38(8):1677-1684. doi: 10.11654/jaes.2018-1534LI A,HOU H,SU B Y,et al.Assessment of heavy metal passivation technology and evaluation of cadmium-contaminated soil based on CNKI literature analysis[J].Journal of Agro-Environment Science,2019,38(8):1677-1684. doi: 10.11654/jaes.2018-1534 [16] 王玉婷,王紫玥,刘田田,等.钝化剂对镉污染土壤修复效果及青菜生理效应影响[J].环境化学,2020,39(9):2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505WANG Y T,WANG Z Y,LIU T T,et al.Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi[J].Environmental Chemistry,2020,39(9):2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505 [17] ÁLVAREZ-AYUSO E,GARCı́A-SÁNCHEZ A.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J].Environmental Pollution,2003,125(3):337-344. doi: 10.1016/S0269-7491(03)00121-0 [18] GARCÍA-ROMERO E,SUÁREZ M,SANTARÉN J,et al.Crystallochemical characterization of the palygorskite and sepiolite from the allou kagne deposit,Senegal[J].Clays and Clay Minerals,2007,55(6):606-617. doi: 10.1346/CCMN.2007.0550608 [19] WANG Y L,XU Y M,LIANG X F,et al.Effects of mercapto-palygorskite on Cd distribution in soil aggregates and Cd accumulation by wheat in Cd contaminated alkaline soil[J].Chemosphere,2021,271:129590. doi: 10.1016/j.chemosphere.2021.129590 [20] 陶玲,米成成,王丽,等.凹凸棒石组配硫酸锌对土壤Cd的钝化效果及生态风险评价[J].环境科学研究,2022,35(1):211-218.TAO L,MI C C,WANG L,et al.Stabilization effect of attapulgite and ZnSO4 on Cd in soil and ecological risk assessment[J].Research of Environmental Sciences,2022,35(1):211-218. [21] 陈展祥,陈传胜,陈卫平,等.凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J].环境科学,2018,39(10):4744-4751. doi: 10.13227/j.hjkx.201801283CHEN Z X,CHEN C S,CHEN W P,et al.Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J].Environmental Science,2018,39(10):4744-4751. doi: 10.13227/j.hjkx.201801283 [22] GARCÍA N,GUZMÁN J,BENITO E,et al.Surface modification of sepiolite in aqueous gels by using methoxysilanes and its impact on the nanofiber dispersion ability[J].Langmuir:the ACS Journal of Surfaces and Colloids,2011,27(7):3952-3959. doi: 10.1021/la104410r [23] LIANG X F,HAN J,XU Y M,et al.Sorption of Cd2+ on mercapto and amino functionalized palygorskite[J].Applied Surface Science,2014,322:194-201. doi: 10.1016/j.apsusc.2014.10.092 [24] LIANG X F,XU Y M,TAN X,et al.Heavy metal adsorbents mercapto and amino functionalized palygorskite:preparation and characterization[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,426:98-105. [25] LIANG X F,QIN X,HUANG Q Q,et al.Remediation mechanisms of mercapto-grafted palygorskite for cadmium pollutant in paddy soil[J].Environmental Science and Pollution Research,2017,24(30):23783-23793. doi: 10.1007/s11356-017-0014-2 [26] LIANG X F,XU Y M,SUN G H,et al.Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium[J].Chemical Engineering Journal,2011,174(1):436-444. doi: 10.1016/j.cej.2011.08.060 [27] WANG X H,ZHENG Y A,WANG A Q.Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites[J].Journal of Hazardous Materials,2009,168(2/3):970-977. [28] FOO K Y,HAMEED B H.Insights into the modeling of adsorption isotherm systems[J].Chemical Engineering Journal,2010,156(1):2-10. doi: 10.1016/j.cej.2009.09.013 [29] WU J Z,HUANG D,LIU X M,et al.Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J].Journal of Hazardous Materials,2018,348:10-19. doi: 10.1016/j.jhazmat.2018.01.011 [30] 何楚城,李晓飞,祝紫莹,等.柠檬酸-施氏矿物复合体对Cd和Pb的吸附研究[J].环境科学学报,2021,41(12):4793-4802. doi: 10.13671/j.hjkxxb.2021.0212HE C C,LI X F,ZHU Z Y,et al.Cd,Pb adsorption on citric acid-schwertmannite complexes[J].Acta Scientiae Circumstantiae,2021,41(12):4793-4802. doi: 10.13671/j.hjkxxb.2021.0212 [31] 王晓霞,杨涛,肖璐睿,等.稻草秸秆生物质炭对重金属Cd2+的吸附性能研究[J].环境科学学报,2021,41(7):2691-2699.WANG X X,YANG T,XIAO L R,et al.Study on the adsorption performance of rice straw biomass charcoal to heavy metal Cd2+[J].Acta Scientiae Circumstantiae,2021,41(7):2691-2699. [32] HAN J,XU Y M,LIANG X F,et al.Sorption stability and mechanism exploration of palygorskite as immobilization agent for Cd in polluted soil[J].Water,Air,& Soil Pollution,2014,225(10):2160. [33] LIU H B,CHEN T H,CHANG D Y,et al.The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite[J].Journal of Thermal Analysis and Calorimetry,2013,111(1):409-415. doi: 10.1007/s10973-012-2363-x [34] GILES C H,MacEWAN T H,NAKHWA S N,et al.786.Studies in adsorption.Part Ⅺ.a system of classification of solution adsorption isotherms,and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids[J].Journal of the Chemical Society (Resumed),1960(0):3973-3993. [35] ZHANG J P,WANG Q,CHEN H,et al.XRF and nitrogen adsorption studies of acid-activated palygorskite[J].Clay Minerals,2010,45(2):145-156. doi: 10.1180/claymin.2010.045.2.145 [36] 赵丹.改性凹凸棒去除水中重金属[D].天津:天津大学,2017. [37] NEAMAN A,SINGER A.The effects of palygorskite on chemical and physico-chemical properties of soils[M].Amsterdam:Elsevier,2011:325-349. [38] KIM S H,HEO N H,KIM G H,et al.Preparation,crystal structure,and thermal stability of the cadmium sulfide nanoclusters Cd6S44+ and Cd2Na2S4+ in the sodalite cavities of zeolite A (LTA)[J].The Journal of Physical Chemistry B,2006,110(51):25964-25974. doi: 10.1021/jp063446w [39] TINGAUT P,HAUERT R,ZIMMERMANN T.Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry[J].Journal of Materials Chemistry,2011,21(40):16066-16076. doi: 10.1039/c1jm11620g [40] ZUO J,TORRES E.Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO2 and hydroxylated SiO2[J].Langmuir:the ACS Journal of Surfaces and Colloids,2010,26(19):15161-15168. doi: 10.1021/la102221v [41] LIU Y B,ZHOU H B,ZHOU B X,et al.Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation[J].International Journal of Hydrogen Energy,2011,36(1):167-174. doi: 10.1016/j.ijhydene.2010.09.089 -