留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巯基改性坡缕石的制备、表征及其对Cd的吸附作用

王冕 赵龙 侯红

王冕, 赵龙, 侯红. 巯基改性坡缕石的制备、表征及其对Cd的吸附作用[J]. 环境科学研究, 2023, 36(4): 794-804. doi: 10.13198/j.issn.1001-6929.2023.02.11
引用本文: 王冕, 赵龙, 侯红. 巯基改性坡缕石的制备、表征及其对Cd的吸附作用[J]. 环境科学研究, 2023, 36(4): 794-804. doi: 10.13198/j.issn.1001-6929.2023.02.11
WANG Mian, ZHAO Long, HOU Hong. Preparation and Characterization of Sulfhydryl Modified Palygorskite and Their Application for Cadmium Adsorption[J]. Research of Environmental Sciences, 2023, 36(4): 794-804. doi: 10.13198/j.issn.1001-6929.2023.02.11
Citation: WANG Mian, ZHAO Long, HOU Hong. Preparation and Characterization of Sulfhydryl Modified Palygorskite and Their Application for Cadmium Adsorption[J]. Research of Environmental Sciences, 2023, 36(4): 794-804. doi: 10.13198/j.issn.1001-6929.2023.02.11

巯基改性坡缕石的制备、表征及其对Cd的吸附作用

doi: 10.13198/j.issn.1001-6929.2023.02.11
基金项目: 国家重点研发计划项目(No.2020YFC1807700)
详细信息
    作者简介:

    王冕(1998-),男,河南新乡人,m18801102160@163.com

    通讯作者:

    ①赵龙(1983-),男,山西太原人,研究员,博士,主要从事土壤环境化学研究,zhaolong1227@126.com

    ②侯红(1963-),女,山西太原人,研究员,博士,博导,主要从事土壤污染效应与土壤环境基准研究,houhong@craes.org.cn

  • 中图分类号: X53

Preparation and Characterization of Sulfhydryl Modified Palygorskite and Their Application for Cadmium Adsorption

Funds: National Key Research and Development Program of China (No.2020YFC1807700)
  • 摘要: 为明确巯基改性坡缕石(MPAL)作为修复材料对Cd的吸附机制以及其在修复Cd污染土壤中的应用潜力,以坡缕石(PAL)为原料,通过高速剪切凝胶法制备MPAL作为钝化剂开展吸附试验与土壤钝化试验,研究MPAL对Cd的吸附效果. 通过X射线衍射(XRD)、BET孔结构分析、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)以及X射线光电子能谱(XPS)对吸附前后的样品进行表征,探讨其吸附机制. 结果表明:PAL和MPAL均能有效吸附水溶液中的Cd2+,MPAL吸附效果优于PAL. 拟二级动力学模型更适合描述Cd2+在PAL和MPAL上吸附量的动态变化过程,MPAL约90 min达到吸附平衡,相比于PAL能更加迅速达到吸附平衡. Freundlich等温吸附模型能够更好地描述吸附数据特征,在试验条件下,MPAL的饱和吸附容量为44.41 mg/g,明显高于PAL的饱和吸附容量(33.65 mg/g). MPAL在投加量为0.1%~0.3%时可使土壤DTPA提取态Cd含量降低53.45%~78.43%. XRD衍射峰分析、FTIR官能团振动模式分析以及XPS关键元素结合能分析结果显示,PAL主要通过表面羟基与Cd2+形成表面络合来吸附Cd,而MPAL还提供了大量巯基官能团作为吸附位点,通过表面的羟基和巯基与Cd2+发生络合反应形成络合沉淀. 研究显示,MPAL对Cd的吸附能力更强,是一种在Cd污染农田土壤上具有良好应用潜力的高效钝化剂.

     

  • 图  1  Cd2+在PAL和MPAL上的吸附动力学拟合结果

    Figure  1.  Adsorption kinetic fit of Cd2+ on PAL and MPAL

    图  2  Cd2+在PAL和MPAL上的等温吸附模型拟合线

    Figure  2.  Adsorption isotherms of Cd2+ adsorption on PAL and MPAL

    图  3  不同处理土壤中DTPA提取态Cd含量的变化

    Figure  3.  Soil DTPA extractable Cd concentrations after different treatments

    图  4  PAL和MPAL及其吸附Cd后的XRD图谱

    Figure  4.  XRD patterns of PAL, MPAL and adsorption products

    图  5  PAL和MPAL的N2吸附-脱附等温线

    Figure  5.  N2 adsorption-desorption isotherms of PAL and MPAL

    图  6  PAL和MPAL及其吸附Cd后的FTIR图谱

    Figure  6.  FTIR spectra of PAL, MPAL and adsorption products

    图  7  PAL和MPAL的扫描电镜图

    Figure  7.  SEM micrographs of PAL and MPAL

    图  8  PAL和MPAL及其吸附Cd后的XPS光谱

    Figure  8.  XPS spectra of PAL, MPAL and adsorption products

    图  9  Cd2+在PAL和MPAL上的吸附机理示意

    Figure  9.  Schematic of sorption mechanisms of Cd2+ on PAL and MPAL

    表  1  Cd2+在PAL和MPAL上的吸附动力学参数

    Table  1.   Adsorption kinetic parameters of Cd2+ adsorption on PAL and MPAL

    钝化材料拟一级动力学模型拟二级动力学模型
    qm1/(mg/g)k1/min−1R2qm2/(mg/g)k2/[g/(mg·min)]R2
    PAL6.87±0.160.331±0.074 20.947 327.08±0.130.095±0.026 40.97244
    MPAL8.25±0.130.31±0.0450.974 858.47±0.080.081±0.011 30.99306
    下载: 导出CSV

    表  2  Cd2+在PAL和MPAL上的等温吸附模型拟合参数

    Table  2.   Isotherm parameters of Cd2+ adsorption on PAL and MPAL

    钝化材料Langmuir等温吸附模型Freundlich等温吸附模型
    Qm/(mg/g)k/(L/mg)R2KF/(L/g)nR2
    PAL33.65±2.300.07±0.020.966 895.80±0.612.74±0.190.986 92
    MPAL44.41±5.330.06±0.030.938 3112.01±1.123.96±0.380.979 57
    下载: 导出CSV

    表  3  不同钝化材料对Cd的吸附作用

    Table  3.   Adsorption of cadmium by different passivating materials

    材料名称吸附条件吸附量/(mg/g)数据来源
    pH初始浓度/(mg/L)吸附剂用量/(g/L)吸附时间/h
    新型钙基磁性生物炭6.0602.5210.07文献[29]
    生化黄腐酸改性凹凸棒石5.5505.0246.58文献[21]
    柠檬酸-施氏矿物复合体6.01001.02418.71文献[30]
    稻草秸秆生物炭6.0502.5487.49文献[31]
    巯基改性坡缕石7.55052444.41该研究
    下载: 导出CSV

    表  4  PAL和MPAL及其吸附产物的XRD参数

    Table  4.   XRD indexes of PAL, MPAL and adsorption products

    hklPALMPALPAL-CdMPAL-Cd
    2θ/(°)d(Å)2θ/(°)d(Å)2θ/(°)d(Å)2θ/(°)d(Å)
    (110)8.4910.395 98.4210.482 68.3810.531 88.3910.524 4
    (040)19.694.504 319.714.498 519.754.490 619.634.517 9
    (121)20.904.246 620.794.268 020.844.257 120.864.253 9
    (221)24.033.699 024.023.701 724.073.693 723.983.707 6
    (231)26.613.346 426.593.348 526.653.341 126.593.348 5
    (331)30.912.890 530.872.893 630.932.888 030.882.892 7
    a1)12.830 412.854 712.782 512.843 4
    b1)17.886 317.962 417.936 217.951 7
    c1)5.209 45.199 45.206 75.198 1
    注:1)晶格常数abc由Jade 6.5根据峰值位置和米勒指数计算得到.
    下载: 导出CSV

    表  5  PAL和MPAL的N2吸附-脱附分析结果

    Table  5.   Analysis results of N2 adsorption-desorption of PAL and MPAL

    钝化材料BET表面积/(m2/g)总孔体积/(cm3/g)平均孔径/nm微孔体积/(cm3/g)微孔面积/(m2/g)外表面积/(m2/g)
    PAL111.840.167.980.012 70928.673 883.165 4
    MPAL88.700.1411.320.004 88110.041 878.659 5
    下载: 导出CSV

    表  6  PAL和MPAL及其吸附产物的XPS参数

    Table  6.   XPS indexes of PAL, MPAL and adsorption products

    材料Al2pSi2pO1sS2pCd3d3/2
    结合能/eV原子比/%结合能/eV原子比/%结合能/eV原子比/%结合能/eV原子比/%结合能/eV原子比/%
    PAL74.775.19102.8816.13532.0353.35
    PAL-Cd74.456.48102.8919.14532.0158.81413.390.26
    MPAL74.824.74102.9814.71532.1547.04163.812.30
    MPAL-Cd74.965.00103.1116.31532.2650.88164.011.70412.780.46
    下载: 导出CSV
  • [1] 雍莹莹,徐应明,黄青青,等.巯基坡缕石-硫酸锰复配对碱性土壤镉污染钝化阻控效应[J].农业环境科学学报,2021,40(12):2681-2692. doi: 10.11654/jaes.2021-0426

    YONG Y Y,XU Y M,HUANG Q Q,et al.Immobilization effect of mercaptopalygorskite and manganese sulfate on Cd pollution in alkaline soil[J].Journal of Agro-Environment Science,2021,40(12):2681-2692. doi: 10.11654/jaes.2021-0426
    [2] 环境保护部,国土资源部.全国土壤污染状况调查公报[EB/OL].北京:环境保护部,(2014-04-17)[2023-01-15].http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf.
    [3] 陈文轩,李茜,王珍,等.中国农田土壤重金属空间分布特征及污染评价[J].环境科学,2020,41(6):2822-2833. doi: 10.13227/j.hjkx.201910075

    CHEN W X,LI Q,WANG Z,et al.Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J].Environmental Science,2020,41(6):2822-2833. doi: 10.13227/j.hjkx.201910075
    [4] 陶玲,管天成,刘瑞珍,等.热改性坡缕石对土壤Cd污染的钝化修复研究[J].农业环境科学学报,2021,40(4):782-790. doi: 10.11654/jaes.2020-1115

    TAO L,GUAN T C,LIU R Z,et al.Stabilization remediation of cadmium contaminated soil by using heat-modified palygorskite[J].Journal of Agro-Environment Science,2021,40(4):782-790. doi: 10.11654/jaes.2020-1115
    [5] ZHAO H H,HUANG X R,LIU F H,et al.A two-year field study of using a new material for remediation of cadmium contaminated paddy soil[J].Environmental Pollution,2020,263:114614. doi: 10.1016/j.envpol.2020.114614
    [6] 李英,商建英,黄益宗,等.镉砷复合污染土壤钝化材料研究进展[J].土壤学报,2021,58(4):837-850.

    LI Y,SHANG J Y,HUANG Y Z,et al.Research progress on passivation materials for cadmium-arsenic co-contamination in soil[J].Acta Pedologica Sinica,2021,58(4):837-850.
    [7] HAMID Y,TANG L,HUSSAIN B,et al.Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system:a review[J].Science of the Total Environment,2020,707:136121. doi: 10.1016/j.scitotenv.2019.136121
    [8] XIAO X,CHEN B L,CHEN Z M,et al.Insight into multiple and multilevel structures of biochars and their potential environmental applications:a critical review[J].Environmental Science & Technology,2018,52(9):5027-5047.
    [9] GUO F Y,DING C F,ZHOU Z G,et al.Assessment of the immobilization effectiveness of several amendments on a cadmium-contaminated soil using Eisenia fetida[J].Ecotoxicology and Environmental Safety,2020,189:109948. doi: 10.1016/j.ecoenv.2019.109948
    [10] 武晓微,翟文珺,高超,等.钝化剂对土壤性质及镉生物有效性的影响研究[J].农业环境科学学报,2021,40(3):562-569. doi: 10.11654/jaes.2020-0826

    WU X W,ZHAI W J,GAO C,et al.Influence of passivation on soil properties and bioavailability of cadmium in soils[J].Journal of Agro-Environment Science,2021,40(3):562-569. doi: 10.11654/jaes.2020-0826
    [11] 朱维,刘代欢,陈建清,等.黏土矿物在土壤重金属污染中的应用研究进展[J].土壤通报,2018,49(2):499-504. doi: 10.19336/j.cnki.trtb.2018.02.34

    ZHU W,LIU D H,CHEN J Q,et al.Research progress on the application of clay minerals in the remediation of cadmium polluted farmland[J].Chinese Journal of Soil Science,2018,49(2):499-504. doi: 10.19336/j.cnki.trtb.2018.02.34
    [12] HUANG C Y,HUANG H L,QIN P F.In-situ immobilization of copper and cadmium in contaminated soil using acetic acid-eggshell modified diatomite[J].Journal of Environmental Chemical Engineering,2020,8(4):103931. doi: 10.1016/j.jece.2020.103931
    [13] 韩雷,陈娟,杜平,等.不同钝化剂对Cd污染农田土壤生态安全的影响[J].环境科学研究,2018,31(7):1289-1295. doi: 10.13198/j.issn.1001-6929.2018.03.06

    HAN L,CHEN J,DU P,et al.Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J].Research of Environmental Sciences,2018,31(7):1289-1295. doi: 10.13198/j.issn.1001-6929.2018.03.06
    [14] 何丽质,徐应明,宋常志,等.巯基化坡缕石对碱性土壤镉污染的快速钝化修复效应[J].农业环境科学学报,2021,40(2):319-328. doi: 10.11654/jaes.2020-1060

    HE L Z,XU Y M,SONG C Z,et al.Using thiolated palygorskite to remediate Cd-contaminated alkaline soil via rapid immobilization[J].Journal of Agro-Environment Science,2021,40(2):319-328. doi: 10.11654/jaes.2020-1060
    [15] 李昂,侯红,苏本营,等.基于CNKI文献分析的镉污染土壤钝化技术概况及效果评估研究[J].农业环境科学学报,2019,38(8):1677-1684. doi: 10.11654/jaes.2018-1534

    LI A,HOU H,SU B Y,et al.Assessment of heavy metal passivation technology and evaluation of cadmium-contaminated soil based on CNKI literature analysis[J].Journal of Agro-Environment Science,2019,38(8):1677-1684. doi: 10.11654/jaes.2018-1534
    [16] 王玉婷,王紫玥,刘田田,等.钝化剂对镉污染土壤修复效果及青菜生理效应影响[J].环境化学,2020,39(9):2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505

    WANG Y T,WANG Z Y,LIU T T,et al.Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi[J].Environmental Chemistry,2020,39(9):2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505
    [17] ÁLVAREZ-AYUSO E,GARCı́A-SÁNCHEZ A.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J].Environmental Pollution,2003,125(3):337-344. doi: 10.1016/S0269-7491(03)00121-0
    [18] GARCÍA-ROMERO E,SUÁREZ M,SANTARÉN J,et al.Crystallochemical characterization of the palygorskite and sepiolite from the allou kagne deposit,Senegal[J].Clays and Clay Minerals,2007,55(6):606-617. doi: 10.1346/CCMN.2007.0550608
    [19] WANG Y L,XU Y M,LIANG X F,et al.Effects of mercapto-palygorskite on Cd distribution in soil aggregates and Cd accumulation by wheat in Cd contaminated alkaline soil[J].Chemosphere,2021,271:129590. doi: 10.1016/j.chemosphere.2021.129590
    [20] 陶玲,米成成,王丽,等.凹凸棒石组配硫酸锌对土壤Cd的钝化效果及生态风险评价[J].环境科学研究,2022,35(1):211-218.

    TAO L,MI C C,WANG L,et al.Stabilization effect of attapulgite and ZnSO4 on Cd in soil and ecological risk assessment[J].Research of Environmental Sciences,2022,35(1):211-218.
    [21] 陈展祥,陈传胜,陈卫平,等.凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J].环境科学,2018,39(10):4744-4751. doi: 10.13227/j.hjkx.201801283

    CHEN Z X,CHEN C S,CHEN W P,et al.Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J].Environmental Science,2018,39(10):4744-4751. doi: 10.13227/j.hjkx.201801283
    [22] GARCÍA N,GUZMÁN J,BENITO E,et al.Surface modification of sepiolite in aqueous gels by using methoxysilanes and its impact on the nanofiber dispersion ability[J].Langmuir:the ACS Journal of Surfaces and Colloids,2011,27(7):3952-3959. doi: 10.1021/la104410r
    [23] LIANG X F,HAN J,XU Y M,et al.Sorption of Cd2+ on mercapto and amino functionalized palygorskite[J].Applied Surface Science,2014,322:194-201. doi: 10.1016/j.apsusc.2014.10.092
    [24] LIANG X F,XU Y M,TAN X,et al.Heavy metal adsorbents mercapto and amino functionalized palygorskite:preparation and characterization[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,426:98-105.
    [25] LIANG X F,QIN X,HUANG Q Q,et al.Remediation mechanisms of mercapto-grafted palygorskite for cadmium pollutant in paddy soil[J].Environmental Science and Pollution Research,2017,24(30):23783-23793. doi: 10.1007/s11356-017-0014-2
    [26] LIANG X F,XU Y M,SUN G H,et al.Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium[J].Chemical Engineering Journal,2011,174(1):436-444. doi: 10.1016/j.cej.2011.08.060
    [27] WANG X H,ZHENG Y A,WANG A Q.Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites[J].Journal of Hazardous Materials,2009,168(2/3):970-977.
    [28] FOO K Y,HAMEED B H.Insights into the modeling of adsorption isotherm systems[J].Chemical Engineering Journal,2010,156(1):2-10. doi: 10.1016/j.cej.2009.09.013
    [29] WU J Z,HUANG D,LIU X M,et al.Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J].Journal of Hazardous Materials,2018,348:10-19. doi: 10.1016/j.jhazmat.2018.01.011
    [30] 何楚城,李晓飞,祝紫莹,等.柠檬酸-施氏矿物复合体对Cd和Pb的吸附研究[J].环境科学学报,2021,41(12):4793-4802. doi: 10.13671/j.hjkxxb.2021.0212

    HE C C,LI X F,ZHU Z Y,et al.Cd,Pb adsorption on citric acid-schwertmannite complexes[J].Acta Scientiae Circumstantiae,2021,41(12):4793-4802. doi: 10.13671/j.hjkxxb.2021.0212
    [31] 王晓霞,杨涛,肖璐睿,等.稻草秸秆生物质炭对重金属Cd2+的吸附性能研究[J].环境科学学报,2021,41(7):2691-2699.

    WANG X X,YANG T,XIAO L R,et al.Study on the adsorption performance of rice straw biomass charcoal to heavy metal Cd2+[J].Acta Scientiae Circumstantiae,2021,41(7):2691-2699.
    [32] HAN J,XU Y M,LIANG X F,et al.Sorption stability and mechanism exploration of palygorskite as immobilization agent for Cd in polluted soil[J].Water,Air,& Soil Pollution,2014,225(10):2160.
    [33] LIU H B,CHEN T H,CHANG D Y,et al.The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite[J].Journal of Thermal Analysis and Calorimetry,2013,111(1):409-415. doi: 10.1007/s10973-012-2363-x
    [34] GILES C H,MacEWAN T H,NAKHWA S N,et al.786.Studies in adsorption.Part Ⅺ.a system of classification of solution adsorption isotherms,and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids[J].Journal of the Chemical Society (Resumed),1960(0):3973-3993.
    [35] ZHANG J P,WANG Q,CHEN H,et al.XRF and nitrogen adsorption studies of acid-activated palygorskite[J].Clay Minerals,2010,45(2):145-156. doi: 10.1180/claymin.2010.045.2.145
    [36] 赵丹.改性凹凸棒去除水中重金属[D].天津:天津大学,2017.
    [37] NEAMAN A,SINGER A.The effects of palygorskite on chemical and physico-chemical properties of soils[M].Amsterdam:Elsevier,2011:325-349.
    [38] KIM S H,HEO N H,KIM G H,et al.Preparation,crystal structure,and thermal stability of the cadmium sulfide nanoclusters Cd6S44+ and Cd2Na2S4+ in the sodalite cavities of zeolite A (LTA)[J].The Journal of Physical Chemistry B,2006,110(51):25964-25974. doi: 10.1021/jp063446w
    [39] TINGAUT P,HAUERT R,ZIMMERMANN T.Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry[J].Journal of Materials Chemistry,2011,21(40):16066-16076. doi: 10.1039/c1jm11620g
    [40] ZUO J,TORRES E.Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO2 and hydroxylated SiO2[J].Langmuir:the ACS Journal of Surfaces and Colloids,2010,26(19):15161-15168. doi: 10.1021/la102221v
    [41] LIU Y B,ZHOU H B,ZHOU B X,et al.Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation[J].International Journal of Hydrogen Energy,2011,36(1):167-174. doi: 10.1016/j.ijhydene.2010.09.089
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  25
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-27
  • 修回日期:  2023-02-20

目录

    /

    返回文章
    返回