Preparation of Fe0-BC Using Wood Waste and Iron Sludge and Its Application for Removing Cr(Ⅵ)
-
摘要: 含铬废水的直接排放会对自然环境造成严重危害. 为探究零价铁-生物炭材料(Fe0-BC)与Cr(Ⅵ)的反应效能,以木质垃圾与印染行业废铁泥两种亟需处理的固体废物作为原料,在不同温度下通过碳热还原制备Fe0-BC,并将其应用于水中Cr(Ⅵ)的去除. 材料表征结果表明,1 200 ℃下制备的Fe0-BC材料(Fe0-BC-1200)性能最佳,其比表面积为105.6 m3/g,孔径为6.23 nm,物相主要由Fe0、Cu0、C以及少量杂质构成,其中Fe0以球状的颗粒形式分散附着在碳的孔结构中,且大小均匀,粒度基本达到纳米级. 通过静态试验考察了Fe0-BC材料对Cr(Ⅵ)的去除过程,发现Fe0-BC-1200对Cr(Ⅵ)的去除效果最好,在初始浓度为20 mg/L、初始pH为3.5、投加量为2.5 g/L的条件下,Cr(Ⅵ)的去除率达到95.2%. Cr(Ⅵ)的去除过程符合准二级反应动力学过程和Langmuir等温吸附模型(R2>0.99),最大吸附量为10.71 mg/g. Cr(Ⅵ)的去除是包含吸附、还原以及络合沉淀等共同作用的结果,此外,Cu0的存在有利于催化Fe0的氧化,从而促进Cr(Ⅵ)的去除. 研究显示,利用固体废物制备的Fe0-BC材料成本低且对于含Cr(Ⅵ)废水的解毒效果显著,是实现“以废治废”的环境治理新思路.Abstract: If chromium containing wastewater is directly discharged, it will cause serious harm to the natural environment. In order to explore the reaction efficiency of zero-valent iron/biochar (Fe0-BC) and Cr(Ⅵ), the Fe0-BC was synthesized by the carbothermal reduction of wood waste and printing and dyeing industry iron sludge at different temperatures and applied to remove Cr(Ⅵ) in water. The characteristics of Fe0-BC were determined by specific surface area analyzer and scanning electron microscope (SEM), and the results showed that the Fe0-BC-1200 prepared at 1200 ℃ had the best performance, with a specific surface area of 105.6 m3/g and a pore diameter of 6.23 nm. The Fe0-BC-1200 was mainly composed of Fe0, Cu0, C and a small amount of impurities. Fe0 particles were dispersed and attached in the pore structure of carbon as spherical particles with uniform size distribution at the nanometer level. Furthermore, the removal process of Cr(Ⅵ) by Fe0-BC was studied through batch experiments. The Fe0-BC-1200 showed the best removal performance, and the removal rate of Cr(Ⅵ) could reach 95.2% under the conditions of initial concentration of 20 mg/L, initial pH value of 3.5 and dosage of 2.5 g/L. The removal process of Cr(Ⅵ) was well predicted by the pseudo-second-order model and Langmuir equation (R2> 0.99), and the maximum adsorption capacity was 10.71 mg/g. The removal mechanisms mainly included adsorption, reduction and complex precipitation. In addition, the presence of Cu0 was beneficial to catalyze the oxidation of iron, thus promoting the removal of Cr(Ⅵ). The Fe0-BC prepared with solid waste has the advantages of low cost and significant detoxification effect on Cr(Ⅵ)-containing wastewater, which is a new idea to realize the purpose of ‘dealing pollution with waste’.
-
Key words:
- wood waste /
- iron mud /
- carbothermal reduction /
- zero-valent iron/biochar /
- Cr(Ⅵ)
-
表 1 不同温度下制备的Fe0-BC材料主要元素含量
Table 1. Main element content of Fe0-BC synthesized at different temperatures
温度/ºC 主要物相 含量/% TFe Fe0 C Cu 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 800 Fe3O4、CuO、C 19.4 0.6 0.0 0.0 51.3 1.5 9.6 0.6 900 Fe3O4、CuFeO2、C、 21.6 0.8 0.0 0.0 50.1 1.8 10.1 0.7 1 000 Fe3O4、Cu、C 22.8 1.6 1.1 0.2 49.2 2.1 10.8 1.1 1 100 Fe3O4、Cu、Fe、C 24.3 1.6 15.8 1.1 48.2 0.9 11.1 0.6 1 200 Cu、Fe、C 27.1 1.2 25.8 0.7 46.7 1.2 11.8 0.5 表 2 不同温度下制备的Fe0-BC材料的孔结构参数
Table 2. Pore structure parameters Fe0-BC synthesized at different temperatures
温度/ºC 比表面积/(m2/g) 孔径/nm 孔体积/(cm3/g) 平均值 标准差 平均值 标准差 平均值 标准差 800 156.1 3.7 4.12 0.5 0.23 0.02 900 137.6 4.2 4.22 0.3 0.21 0.02 1 000 119.1 6.6 5.17 0.4 0.17 0.04 1 100 109.8 4.9 6.11 0.1 0.16 0.03 1 200 105.6 4.3 6.23 0.3 0.14 0.01 表 3 Fe0-BC材料制备吨成本
Table 3. Fe0-BC preparation cost per ton
类别 成本/元 质量/t 吨成本/元 备注 建设投资 — — 333 年投资200×104元,年运行300 d 人工成本 — — 100 10人,平均年薪6×104元 设备折旧及维修 — — 33 10年折旧年限 木质垃圾运输费 45.91 0.74 34 运输距离10 km 废铁泥运输费 54.71 1.48 81 运输距离30 km 破碎处理耗能 399.00 0.74 295 吨成品消耗0.74 t木质垃圾,吨耗量约为550 kW·h 热处理耗能 522.00 2.22 1 159 吨成品消耗2.22 t总原料,吨耗量720 kW·h 磨细处理耗能 435.00 1.00 435 吨耗量600 kW·h 合计 2 570 表 4 Fe0-BC-1200去除Cr(Ⅵ)的吸附动力学参数
Table 4. Kinetics parameters for sorption of Fe0-BC-1200 on Cr(Ⅵ)
准一级动力学方程 准二级动力学方程 qe/(mg/g) k1/min−1 R2 qe/(mg/g) k2/[g/(mg·min)] R2 4.81 0.037 0.942 8.02 0.013 0.995 表 5 Fe0-BC-1200去除Cr(Ⅵ)的吸附等温线参数
Table 5. Adsorption isotherm parameters for sorption of Fe0-BC-1200 on Cr(Ⅵ)
Langmuir等温吸附模型 Freundlich等温吸附模型 qmax/(mg/g) kL/(L/mg) R2 n kF/(mg/g) R2 10.71 0.77 0.999 4.45 5.206 0.731 -
[1] CHRYSOCHOOU M,JOHNSTON C P,DAHAL G.A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J].Journal of Hazardous Materials,2012,201/202:33-42. doi: 10.1016/j.jhazmat.2011.11.003 [2] DesMARIAS T L,COSTA M.Mechanisms of chromium-induced toxicity[J].Current Opinion in Toxicology,2019,14:1-7. doi: 10.1016/j.cotox.2019.05.003 [3] SINGH P,ITANKAR N,PATIL Y.Biomanagement of hexavalent chromium:current trends and promising perspectives[J].Journal of Environmental Management,2021,279:111547. doi: 10.1016/j.jenvman.2020.111547 [4] PAVESI T,MOREIRA J C.Mechanisms and individuality in chromium toxicity in humans[J].Journal of Applied Toxicology,2020,40(9):1183-1197. doi: 10.1002/jat.3965 [5] LAXMAN R S,MORE S.Reduction of hexavalent chromium by Streptomyces griseus[J].Minerals Engineering,2002,15(11):831-837. doi: 10.1016/S0892-6875(02)00128-0 [6] Di NATALE F,LANCIA A,MOLINO A,et al.Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char[J].Journal of Hazardous Materials,2007,145(3):381-390. doi: 10.1016/j.jhazmat.2006.11.028 [7] BABEL S,KURNIAWAN T A.Cr(Ⅵ) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan[J].Chemosphere,2004,54(7):951-967. doi: 10.1016/j.chemosphere.2003.10.001 [8] KARATEPE A,KORKMAZ E,SOYLAK M,et al.Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters[J].Journal of Hazardous Materials,2010,173(1/2/3):433-437. [9] HOSSEINI S M,SOHRABNEJAD S,NABIYOUNI G,et al.Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis[J].Journal of Membrane Science,2019,583:292-300. doi: 10.1016/j.memsci.2019.04.069 [10] PEHLIVAN E,CETIN S.Sorption of Cr(Ⅵ) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer[J].Journal of Hazardous Materials,2009,163(1):448-453. doi: 10.1016/j.jhazmat.2008.06.115 [11] LIU F L,ZUO J E,CHI T,et al.Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar[J].Frontiers of Environmental Science & Engineering,2015,9(6):1066-1075. [12] ZHANG K K,SUN P,ZHANG Y R.Decontamination of Cr(Ⅵ) facilitated formation of persistent free radicals on rice husk derived biochar[J].Frontiers of Environmental Science & Engineering,2019,13(2):22. [13] 李宇,程和发.有机污染物的高铁酸盐氧化去除强化技术研究进展[J].环境科学研究,2022,35(6):1323-1333.LI Y,CHENG H F.Research progress in enhanced technologies for organic pollutant removal by ferrate oxidation[J].Research of Environmental Sciences,2022,35(6):1323-1333. [14] YAO Y,GAO B,CHEN J J,et al.Engineered biochar reclaiming phosphate from aqueous solutions:mechanisms and potential application as a slow-release fertilizer[J].Environmental Science & Technology,2013,47(15):8700-8708. [15] HARIKISHORE KUMAR REDDY D,LEE S M.Magnetic biochar composite:facile synthesis,characterization,and application for heavy metal removal[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,454:96-103. [16] DEVI P,SAROHA A K.Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge[J].Chemical Engineering Journal,2015,271:195-203. doi: 10.1016/j.cej.2015.02.087 [17] OH S Y,SEO Y D,KIM B,et al.Microbial reduction of nitrate in the presence of zero-valent iron and biochar[J].Bioresource Technology,2016,200:891-896. doi: 10.1016/j.biortech.2015.11.021 [18] FRICK H,TARDIF S,KANDELER E,et al.Assessment of biochar and zero-valent iron for in situ remediation of chromated copper arsenate contaminated soil[J].Science of the Total Environment,2019,655:414-422. doi: 10.1016/j.scitotenv.2018.11.193 [19] 王侠,王欣,杜艳艳,等.改性纳米零价铁对稻田土壤As污染的修复效能[J].环境科学研究,2017,30(9):1406-1414.WANG X,WANG X,DU Y Y,et al.Remediation efficiency of arsenic-contaminated paddy soil with modified nano-zero-valent iron[J].Research of Environmental Sciences,2017,30(9):1406-1414. [20] POURREZAEI P,ALPATOVA A,KHOSRAVI K,et al.Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke[J].Journal of Environmental Management,2014,139:50-58. [21] CALDERON B,FULLANA A.Heavy metal release due to aging effect during zero valent iron nanoparticles remediation[J].Water Research,2015,83:1-9. doi: 10.1016/j.watres.2015.06.004 [22] MITZIA A,VÍTKOVÁ M,KOMÁREK M.Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn,Pb and Cd:a temporal study of solid phase geochemistry under changing soil conditions[J].Chemosphere,2020,242:125248. doi: 10.1016/j.chemosphere.2019.125248 [23] LI Z,SUN Y Q,YANG Y,et al.Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater[J].Journal of Hazardous Materials,2020,383:121240. doi: 10.1016/j.jhazmat.2019.121240 [24] 权衡,牛琳,时迪,等.负载纳米零价铁的铁碳材料制备及其降解抗生素性能研究[J].环境科学研究,2022,35(12):2732-2747.QUAN H,NIU L,SHI D,et al.Preparation of iron-carbon materials loaded with nano zero-valent iron and their performance of degrading antibiotics[J].Research of Environmental Sciences,2022,35(12):2732-2747. [25] DEVI P,SAROHA A K.Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent[J].Bioresource Technology,2014,169:525-531. doi: 10.1016/j.biortech.2014.07.062 [26] 刘美丽,牛其建,俞洋洋,等.碳基材料负载纳米零价铁去除六价铬的研究进展[J].环境科学研究,2022,35(3):768-779.LIU M L,NIU Q J,YU Y Y,et al.Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J].Research of Environmental Sciences,2022,35(3):768-779. [27] ZHAO L,ZHAO Y H,NAN H Y,et al.Suppressed formation of polycyclic aromatic hydrocarbons (PAHs) during pyrolytic production of Fe-enriched composite biochar[J].Journal of Hazardous Materials,2020,382:121033. doi: 10.1016/j.jhazmat.2019.121033 [28] HAN B H,SONG L,LI H,et al.Naked oats biochar-supported nanoscale zero-valent iron composite:effects on Cd immobilization and enzyme activities in Ulansuhai River sediments of China[J].Journal of Soils and Sediments,2019,19(5):2650-2662. doi: 10.1007/s11368-019-02278-7 [29] FAN M D,YUAN P,CHEN T H,et al.Synthesis,characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite[J].Chinese Science Bulletin,2010,55(11):1092-1099. doi: 10.1007/s11434-010-0062-1 [30] QUAN G X,SUN W J,YAN J L,et al.Nanoscale zero-valent iron supported on biochar:characterization and reactivity for degradation of acid orange 7 from aqueous solution[J].Water,Air,& Soil Pollution,2014,225(11):2195. [31] LAWRINENKO M,WANG Z J,HORTON R,et al.Macroporous carbon supported zerovalent iron for remediation of trichloroethylene[J].ACS Sustainable Chemistry & Engineering,2017,5(2):1586-1593. [32] MANDAL S,SARKAR B,BOLAN N,et al.Enhancement of chromate reduction in soils by surface modified biochar[J].Journal of Environmental Management,2017,186:277-284. [33] SHANG J G,ZONG M Z,YU Y,et al.Removal of chromium (Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J].Journal of Environmental Management,2017,197:331-337. doi: 10.1016/j.jenvman.2017.03.085 [34] CHEN C,LIU J G,GEN C,et al.Synthesis of zero-valent iron/biochar by carbothermal reduction from wood waste and iron mud for removing rhodamine B[J].Environmental Science and Pollution Research,2021,28(35):48556-48568. doi: 10.1007/s11356-021-13962-y [35] MA L M,DING Z G,GAO T Y,et al.Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system[J].Chemosphere,2004,55(9):1207-1212. doi: 10.1016/j.chemosphere.2003.12.021 [36] LAI B,ZHANG Y H,CHEN Z Y,et al.Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles[J].Applied Catalysis B:Environmental,2014,144:816-830. doi: 10.1016/j.apcatb.2013.08.020 [37] LI W,CHEN C,ZHU J Y,et al.Efficient removal of aniline by micro-scale zinc-copper (mZn/Cu) bimetallic particles in acidic solution:an oxidation degradation mechanism via radicals[J].Journal of Hazardous Materials,2019,366:482-491. doi: 10.1016/j.jhazmat.2018.12.027 [38] 公绪金,李伟光,张妍妍,等.活性炭吸附水中六价铬机理及影响因素[J].山东建筑大学学报,2011,26(4):396-402. doi: 10.3969/j.issn.1673-7644.2011.04.018GONG X J,LI W G,ZHANG Y Y,et al.Adsorption mechanism and influence factors of activated carbons for the removal of chromium(Ⅵ) from water[J].Journal of Shandong Jianzhu University,2011,26(4):396-402. doi: 10.3969/j.issn.1673-7644.2011.04.018 [39] LAI K C K,LO I M C.Removal of chromium (Ⅵ) by acid-washed zero-valent iron under various groundwater geochemistry conditions[J].Environmental Science & Technology,2008,42(4):1238-1244. [40] BLOWES D.Tracking hexavalent Cr in groundwater[J].Science,2002,295(5562):2024-2025. doi: 10.1126/science.1070031 [41] MONSER L,ADHOUM N.Tartrazine modified activated carbon for the removal of Pb(Ⅱ),Cd(Ⅱ) and Cr(Ⅲ)[J].Journal of Hazardous Materials,2009,161(1):263-269. doi: 10.1016/j.jhazmat.2008.03.120 [42] JOVANOVIC G N,ŽNIDARŠIČ PLAZL P,SAKRITTICHAI P,et al.Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst[J].Industrial & Engineering Chemistry Research,2005,44(14):5099-5106. [43] FARRELL J,KASON M,MELITAS N,et al.Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene[J].Environmental Science & Technology,2000,34(3):514-521. [44] PENG A P,HUANG M Y,CHEN Z Y,et al.Oxidative coupling of acetaminophen mediated by Fe3+-saturated montmorillonite[J].Science of the Total Environment,2017,595:673-680. doi: 10.1016/j.scitotenv.2017.03.274 [45] ZHANG Y Q,ZUO S J,ZHOU M H,et al.Removal of tetracycline by coupling of flow-through electro-Fenton and in situ regenerative active carbon felt adsorption[J].Chemical Engineering Journal,2018,335:685-692. doi: 10.1016/j.cej.2017.11.012 [46] 秦泽敏,董黎明,刘平,等.零价纳米铁吸附去除水中六价铬的研究[J].中国环境科学,2014,34(12):3106-3111.QIN Z M,DONG L M,LIU P,et al.Removal Cr6+ from water using nanoscale zero-valent iron[J].China Environmental Science,2014,34(12):3106-3111. -