Non-Carcinogenic Health Risk Assessment of Heavy Metals Combined Exposure from Soil of Agricultural Land Based on Bioavailability
-
摘要: 为科学评估农用地土壤重金属复合暴露对儿童的非致癌健康风险,以华南某生态观光园类农用地为研究对象,对其表层土壤中As、Cd、Cr、Cu、Pb、Ni、Zn、Hg的含量进行检测,采用单项污染指数法和内梅罗综合污染指数法评估其污染程度,并引入二元证据权重(binary weight of evidence, BINWOE)法和重金属生物可给性对儿童非致癌健康风险进行修正. 结果表明:①研究区表层土壤中As、Cd、Cr、Cu、Pb、Ni、Zn、Hg的含量分别为1.72~19.40、0.07~19.00、4.00~52.00、4.00~42.00、36.60~1.07×104、8.00~23.00、62.00~1.52×103、0.01~0.49 mg/kg,8种重金属的传统非致癌健康风险值的范围为0.65~78.80,其中部分点位As、Cd、Cr及Pb的儿童非致癌风险处于不可接受水平(HQ>1). ②4种重金属(As、Cd、Cr、Pb)引入BINWOE法修正的儿童非致癌健康风险值是传统方法的0.67~3.31倍. ③基于重金属生物可给性的儿童非致癌健康风险值(0.70~75.00)是基于重金属总量的儿童非致癌健康风险值(1.72~116.10)的0.38~0.92倍. 研究显示,对存在多种重金属污染的农用地开展儿童非致癌健康风险评估时,需考虑重金属间的相互作用及生物可给性,以避免直接套用传统风险评估方法低估(高估)污染土壤对儿童的实际健康风险.Abstract: In order to scientifically evaluate the non-carcinogenic health risk of children exposed to heavy metals in agricultural land soil, As, Cd, Cr, Cu, Pb, Ni, Zn and Hg in the agricultural land surface soil of an ecological tourism park in South China were analysed. The methods of the single pollution index and the Nemero comprehensive pollution index were used to evaluate soil contamination of heavy metals. Besides, the binary weight of evidence (BINWOE) and the bioavailability of heavy metals were further performed to modify the non-carcinogenic health risk of children. The results indicated that: (1) The contents of As, Cd, Cr, Cu, Pb, Ni, Zn and Hg in the surface soil of the study area were 1.72-19.40, 0.07-19.00, 4.00-52.00, 4.00-42.00, 36.60-1.07×104, 8.00-23.00, 62.00-1.52×103, and 0.01-0.49 mg/kg, respectively. The traditional non-carcinogenic health risk of 8 heavy metals ranged from 0.65 to 78.80, while the non-carcinogenic risks of children with As, Cd, Cr and Pb at some sampling points were at unacceptable levels (HQ>1). (2) The non-carcinogenic health risk value of 4 heavy metals (As, Cd, Cr, Pb) in childrenbased on BINWOE method was 0.67-3.31 times that of traditional methods. (3) The non-carcinogenic health risks of children assessed based on the bioavailability of heavy metals (0.70-75.00) were 0.38-0.92 times as high as those assessed (1.72-116.10) based on the total amount of heavy metals. Our study demonstrates that it is necessary to take the bioavailability and the interaction between heavy metals into consideration when evaluating the non-carcinogenic health risks of children exposed to multiple heavy metals in agricultural land, thus avoiding the underestimation/overestimation of the actual health risks of contaminated soil to children by traditional risk assessment methods.
-
Key words:
- agricultural land /
- heavy metal /
- soil /
- non-carcinogenic health risk /
- bioavailability
-
表 1 土壤样品分析的质量控制结果
Table 1. Quality control results of soil samples analysis
重金属 相对标准偏差 回收率 GBW07404或GBW07456 实测值 标准值 pH 0.02%~0.09% — 8.631) 8.61±0.071) As 2.00%~6.00% 90.0%~100.0% 12.802) 13.30±1.102) Cd 0.00%~22.00% 94.0%~106.0% 0.572) 0.59±0.042) Cr 0.00%~17.00% 83.2%~119.0% 79.002) 75.00±6.002) Cu 0.00%~14.00% 89.7%~105.0% 38.002) 40.00±3.002) Pb 2.00%~12.00% 91.4%~98.4% 54.002) 58.00±5.002) Zn 0.70%~9.00% 90.4%~116.0% 204.002) 210±13.002) Hg 0.00%~6.00% 88.0%~102.0% 0.112) 0.12±0.012) 注:1)无量纲;2)单位为mg/kg. 表 2 研究区表层土壤中重金属的描述性结果
Table 2. Descriptive results of heavy metals in surface soil of the study area
重金属 范围/(mg/kg) 平均值/(mg/kg) 标准差/(mg/kg) 对照组含量/(mg/kg) 风险筛选值/(mg/kg)[36] 超标率/% DZ1 DZ2 DZ3 pH≤5.5 5.5˂pH≤6.5 As 1.72~19.40 7.12 4.98 5.26 4.63 4.50 40 40 0.00 Cd 0.07~19.00 5.10 6.65 0.08 0.10 0.15 0.30 0.30 86.00 Cr 4.00~52.00 27.84 12.78 63.00 45.00 24.00 150 150 0.00 Cu 4.00~42.00 16.90 8.80 15.00 9.00 9.00 50 50 0.00 Pb 36.60~1.07×104 632.75 2 258.66 47.10 43.00 49.30 70 90 53.30 Ni 8.00~23.00 17.52 3.46 27.00 14.00 16.00 60 70 0.00 Zn 62.00~1.52×103 686.48 556.09 73.00 88.00 82.00 200 200 66.67 Hg 0.01~0.49 0.20 0.13 0.17 0.33 0.25 1.30 1.80 0.00 表 3 研究区表层土壤中重金属污染程度占比
Table 3. The proportion of heavy metal pollution in the surface soil of the study area
% 评价等级 单项污染指数评价结果 内梅罗综合污染指数评价结果 As Cd Cr Cu Pb Ni Zn Hg 无污染 100.00 21.31 100.00 98.36 52.46 100.00 31.15 90.16 14.29 轻微污染 — 6.56 — — 32.79 — 24.59 9.84 4.76 轻度污染 — 8.20 — — 1.64 — 3.28 — 4.76 中度污染 — 19.67 — 1.64 3.28 — 18.03 — 9.52 重度污染 — 44.26 — 9.83 — 22.95 — 66.67 表 4 表层土壤中重金属儿童非致癌健康风险值
Table 4. Non-carcinogenic health risk for children posed form heavy metals in surface soils
采样点 HQ HI As Cd Cr Cu Pb Zn Hg BT1 0.14 0.08 ND 0.01 0.41 0.01 1.82×10−6 0.65 BT2 0.41 4.64 0.92 0.10 72.61 0.12 9.63×10−6 78.80 BT3 0.48 0.49 0.52 0.06 1.32 0.11 1.34×10−5 2.98 BT4 0.43 0.47 0.27 0.03 0.61 0.12 7.91×10−6 1.93 BT5 0.30 0.23 0.24 0.02 0.65 0.01 4.51×10−6 1.47 BT6 0.33 0.40 0.54 0.03 0.59 0.03 9.70×10−6 1.92 BT7 0.41 0.57 0.65 0.03 0.46 0.02 5.30×10−6 2.14 BT8 0.34 0.44 0.35 0.03 0.56 0.07 6.68×10−6 1.80 BT9 0.31 0.42 0.62 0.03 0.54 0.02 7.43×10−6 1.94 BT10 0.40 0.59 0.71 0.04 0.83 0.11 1.68×10−6 2.67 BT11 0.37 2.64 0.84 0.05 0.78 0.09 8.12×10−6 4.77 BT12 1.41 4.30 0.87 0.06 0.77 0.11 1.00×10−5 7.52 BT13 0.83 4.35 0.00 0.04 0.56 0.05 3.48×10−6 5.84 BT14 1.28 4.32 0.95 0.04 0.54 0.05 3.61×10−6 7.18 BT15 1.16 0.03 1.19 0.04 0.27 0.01 3.13×10−6 2.70 BT16 1.58 0.02 1.19 0.04 0.25 0.01 1.65×10−6 3.08 BT17 0.37 0.59 1.41 0.05 0.59 0.12 1.63×10−6 3.13 BT18 0.19 0.16 0.11 0.01 0.55 0.01 4.13×10−6 1.03 ST1 0.54 0.02 0.95 0.03 0.29 0.01 4.16×10−6 1.84 ST2 0.33 0.32 0.92 0.04 0.62 0.01 2.06×10−6 2.24 ST3 0.56 1.08 1.09 0.09 6.39 0.10 8.02×10−6 9.29 注:ND表示该点位无儿童非致癌健康风险值. 表 5 经口暴露途径下As、Cr、Cd和Pb在神经系统、肾脏、血液和睾丸中二元证据权重因子(B)的赋值结果
Table 5. Assignment of binary evidence weighting factors (B) of As、Cr, Cd and Pb in the neurological, renal, hematological, and testicular toxicity under oral exposure pathway
相互作用 神经系统 肾脏 血液 睾丸 协同作用 0.50 (Pb + As)0.50 (As + Pb)0.75 (Cr + As) 0.75 (Cr + As) 0.71 (Pb + Cd)0.71 (Cd + Pb) 拮抗作用 −0.50 (As + Cr) −0.50 (Pb + As)−0.50 (As + Pb)−0.50 (Cr + As)−0.50 (As + Cr) −0.50 (Pb + As)−0.50 (As + Pb)−0.50 (As + Cr) −0.50 (As + Cr) 表 6 不同地区土壤中重金属生物可给性的统计结果
Table 6. Statistical results of heavy metal bioavailability in soil in different regions
国家或地区 As Cd Pb Cr 数据来源 美国 17.00%~32.00% 22.00%~89.00% 3.00%~59.00% — 文献[21] 中国东莞市 10.00%~25.00% — — — 文献[50] 法国北部地区 — 52.50% 17.20% 2.60% 文献[51] 中国八省份1) 1.10%~22.20% 4.60%~67.50% 0.30%~23.50% 0.30%~49.50% 文献[52] 中国北京市 0.41%~0.77% — 11.37%~39.03% 12.21%~16.67% 文献[53] 中国西北地区 — 26.32%~64.32% 41.81%~46.41% 2.37%~17.48% 文献[54] 中国北京市 — — — 17.51% 文献[55] 中国浙江省 — 10.19%~23.10% 0.60%~2.69% — 文献[56] 加纳 1.30%~40.00% 4.20%~67.00% 4.10%~57.00% — 文献[57] 中国广西壮族自治区 0.04%~0.07% 0.01%~0.03% 2.91%~9.40% 0.04%~0.06% 文献[58] 中国大连市、湖南省、广西壮族自治区 10.77%~51.46% — — — 文献[59] 中国大连市、湖南省、广西壮族自治区 — — 54.50% — 文献[60] 注:1)中国八省份表示广西壮族自治区、湖南省、内蒙古自治区、江西省、辽宁省、浙江省、陕西省和贵州省. -
[1] 朱龙,陈友媛,苑公静,等.城市道路沉积物中重金属生态风险的优化评价[J].环境科学研究,2022,35(3):836-844. doi: 10.13198/j.issn.1001-6929.2021.10.02ZHU L,CHEN Y Y,YUAN G J,et al.Optimal evaluation of ecological risk of heavy metals in urban road sediments[J].Research of Environmental Sciences,2022,35(3):836-844. doi: 10.13198/j.issn.1001-6929.2021.10.02 [2] WANG C,YANG Z F,ZHONG C,et al.Temporal-spatial variation and source apportionment of soil heavy metals in the representative river:alluviation depositional system[J].Environmental Pollution,2016,216:18-26. doi: 10.1016/j.envpol.2016.05.037 [3] SHI T R,MA J,WU X,et al.Inventories of heavy metal inputs and outputs to and from agricultural soils:a review[J].Ecotoxicology and Environmental Safety,2018,164:118-124. doi: 10.1016/j.ecoenv.2018.08.016 [4] 武晓娟,陈雅丽,马杰,等.长株潭典型污染区稻田剖面土壤重金属的累积及形态特征[J].环境科学研究,2022,35(8):1913-1924. doi: 10.13198/j.issn.1001-6929.2020.08.01WU X J,CHEN Y L,MA J,et al.Accumulation and speciation characteristics of heavy metals in paddy soil profiles in typical polluted areas of Chang-Zhu-Tan Region[J].Research of Environmental Sciences,2022,35(8):1913-1924. doi: 10.13198/j.issn.1001-6929.2020.08.01 [5] DAVIS S,MIRICK D K.Soil ingestion in children and adults in the same family[J].Journal of Exposure Science & Environmental Epidemiology,2006,16(1):63-75. [6] 李良忠,杨彦,蔡慧敏,等.太湖流域某农业活动区农田土壤重金属污染的风险评价[J].中国环境科学,2013,33(增刊1):60-65.LI L Z,YANG Y,CAI H M,et al.Health risk assessment of heavy metal pollution in farmland soils in Taihu Lake Basin agricultural area[J].China Environmental Science,2013,33(Suppl 1):60-65. [7] YANG L Y,WU P,YANG W T.Characteristics,health risk assessment,and transfer model of heavy metals in the soil-food chain in cultivated land in Karst[J].Foods,2022,11(18):2802. [8] 张迪,周明忠,熊康宁,等.贵州遵义下寒武统黑色页岩区土壤重金属污染和人体健康风险评价[J].环境科学研究,2021,34(5):1247-1257.ZHANG D,ZHOU M Z,XIONG K N,et al.Assessment of pollution and human health risk from heavy metals in soils and crops in the lower Cambrian black shale area,Zunyi,Guizhou Province[J].Research of Environmental Sciences,2021,34(5):1247-1257. [9] XU M Q,YANG W T,YANG L Y,et al.Health risk assessment and environmental benchmark of heavy metals in cultivated land in mountainous area of northwest Guizhou Province[J].Research of Environmental Sciences,2022,43(7):3799-3810. [10] GUPTA N,YADAV K K,KUMAR V,et al.Appraisal of contamination of heavy metals and health risk in agricultural soil of Jhansi City,India[J].Environmental Toxicology and Pharmacology,2021,88:103740. doi: 10.1016/j.etap.2021.103740 [11] LIU Z,DU Q Q,GUAN Q Y,et al.A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China[J].Science of the Total Environment,2023,857:159543. doi: 10.1016/j.scitotenv.2022.159543 [12] MUMTAZ M,POIRIER K A,COLAMN J.Risk assessment for chemical mixtures:fine-tuning the hazard index approach[J].Journal of Clean Technology,Environmental Toxicology and Occupational Medicine,1997,6(2):189-204. [13] US EPA.Supplementart guidance for conducting health risk assessment of chemical mixtures[EB/OL].Washington DC:United States Environmental Protection Agency,(2016-02-18)[2022-12-02].https://cfpub.epa.gov/ncea/raf/chem_mix.htm. [14] ZUO T T,JIN H Y,CHEN A Z,et al.Novel integrated tiered cumulative risk assessment of heavy metals in food homologous traditional Chinese medicine based on a real-life-exposure scenario[J].Frontiers in Pharmacology,2022,13:908986. doi: 10.3389/fphar.2022.908986 [15] ATSDR.Guidence manual for the assessment of joint toxic action of chemical mixtures[EB/OL].Washington DC:United States Department of Health &Hnuman Services,(2004-05-01)[2022-10-11].https://www.atsdr.cdc.gov/interactionprofiles/Ip-ga/ipga.pdf. [16] PRZYBYLA J,McCLURE P R,ZACCARIA K J,et al.Chemical interactions and mixtures in public health risk assessment:an analysis of ATSDR's interaction profile database[J].Regulatory Toxicology and Pharmacology,2021,125:104981. doi: 10.1016/j.yrtph.2021.104981 [17] 刘丽君,韩静磊,钱益斌,等.利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险[J].环境化学,2019,38(5):1014-1020.LIU L J,HAN J L,QIAN Y B,et al.Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods[J].Environmental Chemistry,2019,38(5):1014-1020. [18] 陈希超,朱晓辉,林必桂,等.华南某电子垃圾拆解区周边住宅室内灰尘重金属对儿童的非致癌健康风险评估[J].中华预防医学杂志,2019,53(4):360-364.CHEN X C,ZHU X H,LIN B G,et al.Children's non-carcinogenic health risk assessment of heavy metals exposure to residential indoor dust around an e-waste dismantling area in South China[J].Chinese Journal of Preventive Medicine,2019,53(4):360-364. [19] 罗巍巍,冯涛,屠德刚,等.基于靶器官和证据权重模型评估土壤重金属健康风险[J].四川环境,2022,41(5):275-280. doi: 10.14034/j.cnki.schj.2022.05.041LUO W W,FENG T,TU D G,et al.Health risk assessment of soil heavy metals based on target organs and weight of evidence model[J].Sichuan Environment,2022,41(5):275-280. doi: 10.14034/j.cnki.schj.2022.05.041 [20] 冯茜丹,刘志磊,陈启宇,等.PM10中重金属的健康风险评估及修正方法比较[J].中国环境科学,2022,42(10):4880-4888. doi: 10.3969/j.issn.1000-6923.2022.10.046FENG X D,LIU Z L,CHEN Q Y,et al.Comparison of health risk assessment and correction methods of heavy metals in PM10[J].China Environmental Science,2022,42(10):4880-4888. doi: 10.3969/j.issn.1000-6923.2022.10.046 [21] RUBY M V,SCHOOF R,BRATTIN W,et al.Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J].Environmental Science & Technology,1999,33(21):3697-3705. [22] RUBY M V,DAVIS A,SCHOOF R,et al.Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J].Environmental Science & Technology,1996,30(2):422-430. [23] OOMEN A G,HACK A,MINEKUS M,et al.Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J].Environmental Science & Technology,2002,36(15):3326-3334. [24] LUO X S,YU S,LI X D.The mobility,bioavailability,and human bioaccessibility of trace metals in urban soils of Hong Kong[J].Applied Geochemistry,2012,27(5):995-1004. doi: 10.1016/j.apgeochem.2011.07.001 [25] GEDIK K.Bioaccessibility of heavy metals in Rapa whelk Rapana venosa (Valenciennes,1846):assessing human health risk using an in vitro digestion model[J].Human and Ecological Risk Assessment:an International Journal,2018,24(1):202-213. doi: 10.1080/10807039.2017.1373329 [26] HU X,ZHANG Y,LUO J,et al.Bioaccessibility and health risk of arsenic,mercury and other metals in urban street dusts from a mega-city,Nanjing,China[J].Environmental Pollution,2011,159(5):1215-1221. doi: 10.1016/j.envpol.2011.01.037 [27] DAS S,JEAN J S,KAR S.Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils,Central India[J].Ecotoxicology and Environmental Safety,2013,92:252-257. doi: 10.1016/j.ecoenv.2013.02.016 [28] GUNEY M,ZAGURY G J,DOGAN N,et al.Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds,parks and picnic areas[J].Journal of Hazardous Materials,2010,182(1/2/3):656-664. [29] LUO X S,DING J,XU B,et al.Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils[J].Science of the Total Environment,2012,424:88-96. doi: 10.1016/j.scitotenv.2012.02.053 [30] ZHENG N,LIU J S,WANG Q C,et al.Health risk assessment of heavy metal exposure to street dust in the zinc smelting district,northeast of China[J].Science of the Total Environment,2010,408(4):726-733. doi: 10.1016/j.scitotenv.2009.10.075 [31] 农业部.农田土壤环境质量监测技术规范:NY/T 395—2012[S].北京:中国农业出版社,2012. [32] 生态环境部.土壤 pH值的测定 电位法:HJ 962—2018[S]北京:生态环境部,2018. [33] 国家质量监督检验检疫总局.土壤质量 总汞、总砷、总铅的测定 原子荧光法:GB/T 22105—2008 [S].北京:中国标准出版社,2008. [34] 国家环境保护总局.土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法:GB/T 17141—1997[S].北京:国家环境保护局,1997. [35] 生态环境部.土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法:HJ 491—2019[S].北京:中国环境出版社,2019. [36] 生态环境部,国家市场监督管理总局.土壤环境质量 农用地土壤污染风险管控标准:GB 15618—2018[S].北京:中国标准出版社,2018. [37] 沈洪艳,安冉,师华定,等.湖南省某典型流域农用地土壤重金属污染及影响因素[J].环境科学研究,2021,34(3):715-724. doi: 10.13198/j.issn.1001-6929.2020.10.06SHEN H Y,AN R,SHI H D,et al.Heavy metal pollution and influencing factors of agricultural land in a typical watershed in Hunan Province[J].Research of Environmental Sciences,2021,34(3):715-724. doi: 10.13198/j.issn.1001-6929.2020.10.06 [38] 吕柏楠,王超,师华定,等.基于受体模型与地统计的耕地土壤重金属污染源解析[J].环境科学研究,2021,34(12):2962-2969.LÜ B N,WANG C,SHI H D,et al.Analysis of heavy metal pollution sources in cultivated land soil based on receptor model and geostatistics[J].Research of Environmental Sciences,2021,34(12):2962-2969. [39] 环境保护部.中国人群暴露参数手册(儿童卷:6-17岁)[M].北京:中国环境科学出版社,2013:192-203. [40] LIAO Y L,LI D Y,ZHANG N X.Comparison of interpolation models for estimating heavy metals in soils under various spatial characteristics and sampling methods[J].Transactions in GIS,2018,22(2):409-434. doi: 10.1111/tgis.12319 [41] 王红利,王浩新,曾凡辉,等.磷酸锌中重金属对双组分聚氨酯防腐涂料性能的影响[J].中国涂料,2014,29(1):56-58. doi: 10.3969/j.issn.1006-2556.2014.01.016WANG H L,WANG H X,ZENG F H,et al.The effect of the heavy metal in the zinc phosphate on the performance of 2K anticorrosive polyurethane coatings[J].China Coatings,2014,29(1):56-58. doi: 10.3969/j.issn.1006-2556.2014.01.016 [42] 陈祥彬,陈欢欢,于泽清.磷化工业固废中铅镉离子的固化试验[J].工程建设,2021,53(3):7-12.CHEN X B,CHEN H H,YU Z Q.Experimental study on solidification method of Pb and Cd ions in phosphating industrial solid waste[J].Engineering Construction,2021,53(3):7-12. [43] AHMAD I,ANSARI T M.Occurrence and translocation of heavy metals in phosphate ores and fertilisers by GFAAS[J].International Journal of Environmental Analytical Chemistry,2022,102(1):196-221. doi: 10.1080/03067319.2020.1720008 [44] POHL H R,MUMTAZ M M,SCINICARIELLO F,et al.Binary weight-of-evidence evaluations of chemical interactions:15 years of experience[J].Regulatory Toxicology and Pharmacology,2009,54(3):264-271. doi: 10.1016/j.yrtph.2009.05.003 [45] ATSDR.Interaction profile:arsenic,cadmium,chromium and lead[EB/OL].Washington DC:United States Department of Health &Human Services,(2009-09-01)[2022-10-11].https://www.atsdr.cdc.gov/interactionprofiles/ip04.html. [46] WILBUR S B,HANSEN H,POHL H,et al.Using the ATSDR guidance manual for the assessment of joint toxic action of chemical mixtures[J].Environmental Toxicology and Pharmacology,2004,18(3):223-230. doi: 10.1016/j.etap.2003.03.001 [47] ZHANG T T,TIAN Z,SUN L P,et al.Effect of different cadmium levels in Boletus griseus on bioaccessibility,bioavailability,and intestinal flora by establishing a complete bionic digestion system in vitro[J].Journal of Food Science,2022,87(8):3677-3689. doi: 10.1111/1750-3841.16231 [48] SUN L Q,SUN C Y,LIU F,et al.Health risk assessment of oral bioaccessibility of heavy metal in soil from coalfield in Huaibei City,China[J].Human and Ecological Risk Assessment:An International Journal,2019,25(8):2045-2055. doi: 10.1080/10807039.2018.1485480 [49] 钟来进,唐直婕,胡忻,等.大气颗粒物中有害成分的吸入生物可给性研究[J].化学进展,2021,33(10):1766-1779.ZHONG L J,TANG Z J,HU X,et al.Advances of in vitro inhalation bioaccessibility for the contaminants in atmospheric particulate matters[J].Progress in Chemistry,2021,33(10):1766-1779. [50] TIAN H Q,WANG Y Z,XIE J F,et al.Effects of soil properties and land use types on the bioaccessibility of Cd,Pb,Cr,and Cu in Dongguan City,China[J].Bulletin of Environmental Contamination and Toxicology,2020,104(1):64-70. doi: 10.1007/s00128-019-02740-9 [51] ROUSSEL H,WATERLOT C,PELFRÊNE A,et al.Cd,Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters[J].Archives of Environmental Contamination and Toxicology,2010,58(4):945-954. doi: 10.1007/s00244-009-9425-5 [52] YIN N Y,ZHAO Y L,WANG P F,et al.Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils[J].Environmental Pollution,2021,279:116943. doi: 10.1016/j.envpol.2021.116943 [53] ZHU X D,YANG F,WEI C Y.Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations[J].Environmental Science and Pollution Research,2015,22(18):13939-13949. doi: 10.1007/s11356-015-4617-1 [54] LIU B L,AI S W,ZHANG W Y,et al.Assessment of the bioavailability,bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China[J].Science of the Total Environment,2017,609:822-829. doi: 10.1016/j.scitotenv.2017.07.215 [55] LIU L L,LIU Q Y,MA J,et al.Heavy metal(loid)s in the topsoil of urban parks in Beijing,China:concentrations,potential sources,and risk assessment[J].Environmental Pollution,2020,260:114083. doi: 10.1016/j.envpol.2020.114083 [56] 马娇阳,田稳,王坤,等.污染场地土壤重金属的生物可给性及毒性研究[J].中国环境科学,2021,41(10):4885-4893.MA J Y,TIAN W,WANG K,et al.Bioaccessibility and their toxic effects of heavy metal in field soils from an electronic disassembly plant[J].China Environmental Science,2021,41(10):4885-4893. [57] CAO P Q,FUJIMORI T,JUHASZ A,et al.Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie,Accra,Ghana[J].Chemosphere,2020,240:124909. doi: 10.1016/j.chemosphere.2019.124909 [58] 尹娟,邓超冰,王晓飞,等.基于农田土壤重金属生物可给性的人体健康风险评价[J].江西农业学报,2016,28(12):110-114. doi: 10.19386/j.cnki.jxnyxb.2016.12.22YIN J,DENG C B,WANG X F,et al.Assessment of human health risk from heavy metals in farmland soil based on their bioaccessibility[J].Acta Agriculturae Jiangxi,2016,28(12):110-114. doi: 10.19386/j.cnki.jxnyxb.2016.12.22 [59] 郑瑞,彭超,钟茂生,等.基于我国人群胃肠消化特征的土壤中As的人体可给性研究[J].中国环境科学,2019,39(1):235-242.ZHENG R,PENG C,ZHONG M S,et al.Study on arsenic bioaccessibility in soil based on Chinese gastrointestinal digestion characteristics[J].China Environmental Science,2019,39(1):235-242. [60] 雷国龙,韩丹,钟茂生,等.我国人群胃肠消化环境中土壤Pb的人体可给性[J].环境科学研究,2020,33(10):2430-2436. doi: 10.13198/j.issn.1001-6929.2020.03.12LEI G L,HAN D,ZHONG M S,et al.Bioaccessibility of lead in soil based on Chinese gastrointestinal digestion characteristics[J].Research of Environmental Sciences,2020,33(10):2430-2436. doi: 10.13198/j.issn.1001-6929.2020.03.12 [61] 辛玘璘.基于GIS和随机-模糊耦合的土壤重金属健康风险评价[D].大连:大连理工大学,2020. -