Study on Barium Transformation and Environmental Risk during Oil-Based Drill Cuttings Incineration
-
摘要: 油基岩屑焚烧处置技术已被广泛应用,为探究油基岩屑焚烧尾渣的主要环境风险及其形成机制,有效防控油基岩屑利用处置环境风险,通过实际样品采集和实验室模拟等方式,结合XRD、SEM-EDS、同步热分析等多种表征方法,针对四川省天然气开采油基岩屑典型回转窑焚烧处置过程中钡的转化以及焚烧尾渣的环境风险特征开展了研究. 结果表明:钡是油基岩屑中的主要重金属,油基岩屑经焚烧后,尾渣中钡的酸浸浸出毒性水平大幅上升,平均值达到333.0 mg/L,超过《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3—2007)标准限值;在还原气氛下,800 ℃时模拟焚烧尾渣可交换态钡含量和钡的酸浸浸出毒性水平出现大幅上升,平均值分别达到8 675.74 mg/kg和244.38 mg/L,并在1 100 ℃时进一步上升,不同油基岩屑的浸出毒性发生这种跃升的温度条件存在差异. 这种现象产生的主要原因是油基岩屑中的硫酸钡在800 ℃以上会发生碳热还原反应生成硫化钡,并与氯化氢等反应产生氯化钡,这种还原转化过程主要发生在硫酸钡晶体颗粒表面,并最终形成了被可溶性钡外壳包裹的硫酸钡晶体颗粒. 研究显示,可溶性钡是油基岩屑焚烧尾渣的主要环境风险,其产生主要与硫酸钡的碳热还原反应有关,钻井岩屑还原性高温热处理过程产生的可溶性钡环境风险应得到广泛关注和有效防控,建议从标准政策制定、风险源头防控和尾渣末端治理等方面进行控制.Abstract: The incineration technology of oil-based drill cuttings has been widely used. In order to effectively control the environmental risks in the utilization and disposal of oil-based drill cuttings, the main environmental risks and formation mechanisms of the incineration tailings of oil-based drill cuttings were explored. This study investigated the conversion of barium and the environmental risk characteristics of incineration tailings in typical rotary kiln incineration disposal process of oil-based drill cuttings from natural gas exploitation in Sichuan Province. Various characterization methods such as XRD, SEM-EDS, and simultaneous thermal analysis were used, including actual sample collection and laboratory simulations. The results indicated that barium was the main heavy metal in oil-based drill cuttings. After incineration of oil-based drill cuttings, the acid leaching toxicity of barium in the tailings increased significantly, with an average value of 333.0 mg/L, which exceeded the corresponding limit. In reducing atmosphere, the exchangeable state and extraction toxicity by acid leaching of barium from simulated incineration tailings increased significantly at 800 ℃, with the average values reaching 8675.74 mg/kg and 244.38 mg/L, respectively. These values further increased at 1100 ℃. The temperature conditions under which this extraction toxicity jump occurs varied among different oil-based drill cuttings. The main reason for this phenomenon was that the barium sulfate in oil-based drill cuttings was transformed into barium sulfide through carbothermic reduction reaction above 800 ℃, and reacted with hydrogen chloride to form barium chloride. This reduction conversion process mainly occurred on the surface of barium sulfate crystal particles, and eventually formed barium sulfate crystal particles with soluble barium shells. The research shows the soluble barium is the main environmental risk of incineration tailings of oil-based drill cuttings, which is mainly related to the carbothermal reduction reaction of barium sulfate. The environmental risk of soluble barium from the reductive high-temperature heat treatment processes of drilling cuttings should be widely concerned and effectively prevented. It is recommended that standard policy development, risk source prevention and tailing end treatment should be used for control.
-
Key words:
- oil-based drill cutting /
- incineration /
- barium /
- carbothermic reduction
-
表 1 模拟焚烧试验用典型油基岩屑重金属含量
Table 1. Heavy metal content of typical oil-based drill cuttings for simulated incineration experiments
样品名称 含量/(mg/kg) Ba As Mn Ni Zn V Cr Cu Pb Cd 油基岩屑A 64 783.0±596.5 17.3±0.6 576.5±18.0 32.3±0.2 517.5±31.0 51.7±1.0 29.0±1.7 40.7±1.9 721.2±6.5 ND 油基岩屑B 69 183.4±4 720.8 24.3±1.0 509.9±7.2 68.9±1.5 283.6±7.9 434.4±3.6 55.7±0.6 58.1±0.9 275.6±3.7 ND 注:ND表示未检出. 表 2 几种重晶石中钡总量、酸可溶钡含量和钡浸出毒性水平
Table 2. The total barium content, acid-soluble barium content and extraction toxicity by acid and water leaching in several barites
指标 平均值 标准差 中位数 最大值 最小值 钡总量(XRF检测法)/(mg/kg) 529 675.0 23 706.7 525 800.0 563 700.0 503 400.0 酸可溶钡含量/(mg/kg) 13 516.2 16 957.2 6 243.9 41 548.0 29.2 钡酸浸浸出毒性水平/(mg/L) 18.9 11.1 20.2 31.4 3.8 钡水浸浸出毒性水平/(mg/L) 17.8 9.1 18.1 27.8 7.3 表 3 油基岩屑在还原和非还原气氛下不同温度模拟焚烧尾渣中钡的BCR分级形态及酸浸浸出毒性水平浓度显著性差异分析
Table 3. Analysis of significant differences of BCR graded forms and extraction toxicity by acid leaching of barium of oil-based drill cuttings in simulated incineration tailings at different temperatures in reducing and non-reducing atmospheres
指标 温度/℃ t值 P值 可交换态钡 300 2.564* 0.047 500 −0.491 0.643 800 −2.198 0.079 1 100 −2.646* 0.046 可还原态钡 300 1.486 0.168 500 2.012 0.072 800 −1.011 0.336 1 100 −6.081** 0.000 可氧化态钡 300 0.916 0.398 500 7.351** 0.001 800 5.064** 0.004 1 100 7.881** 0.001 钡的酸浸浸出毒性水平 300 1.237 0.254 500 0.025 0.980 800 −2.133 0.086 1 100 −2.691* 0.043 注:*表示在P<0.05下差异显著;**表示在P<0.01下差异显著. 表 4 油基岩屑实际焚烧尾渣元素组成分析
Table 4. Elemental composition analysis of actual incineration tailing of oil-based drill cuttings
氧化物形式(不代表实际物相组成) 含量/% 相对标准偏差/% BaO 29.76 0.29 CaO 29.55 0.16 SiO2 16.59 0.35 SO3 13.86 0.26 Al2O3 4.38 0.71 Fe2O3 2.29 0.42 MgO 2.17 0.89 Cl 1.22 0.75 F 0.68 11.30 SrO 0.49 0.29 Na2O 0.40 3.82 K2O 0.34 1.47 TiO2 0.21 6.14 P2O5 0.11 4.41 MnO 0.05 4.59 ZnO 0.02 3.57 PbO 0.02 7.70 -
[1] 国家能源局.中国天然气发展报告(2022)[M].北京:石油工业出版社,2021. [2] WANG X L,QIU Y Y,CHEN J,et al.Evaluating natural gas supply security in China:an exhaustible resource market equilibrium model[J].Resources Policy,2022,76:102562. doi: 10.1016/j.resourpol.2022.102562 [3] SHAIKH F,JI Q,FAN Y.Evaluating China's natural gas supply security based on ecological network analysis[J].Journal of Cleaner Production,2016,139:1196-1206. doi: 10.1016/j.jclepro.2016.09.002 [4] 何晋越,冉航,邹媛,等.川渝地区天然气产业发展现状与“十四五”展望[J].天然气与石油,2022,40(3):117-123. doi: 10.3969/j.issn.1006-5539.2022.03.018HE J Y,RAN H,ZOU Y,et al.Development status and prospect of the ‘14th Five-Year Plan’ of natural gas in Sichuan-Chongqing area[J].Natural Gas and Oil,2022,40(3):117-123. doi: 10.3969/j.issn.1006-5539.2022.03.018 [5] 陈红硕.川渝地区油基岩屑处理技术研究现状及展望[J].石油化工应用,2022,41(5):1-5.CHEN H S.Research status and prospect of oil-based cuttings treatment technology in Sichuan-Chongqing area[J].Petrochemical Industry Application,2022,41(5):1-5. [6] 于劲磊,向启贵,蒋国斌,等.深、浅层页岩气区块油基岩屑污染特征研究[J].石油与天然气化工,2021,50(4):124-129.YU J L,XIANG Q G,JIANG G B,et al.Research on pollution characteristics of oil-base cuttings from deep and shallow shale gas development[J].Chemical Engineering of Oil & Gas,2021,50(4):124-129. [7] 吴娜,聂志强,李开环,等.页岩气开采钻井固体废物的污染特性[J].中国环境科学,2019,39(3):1094-1100.WU N,NIE Z Q,LI K H,et al.Pollution characteristics of solid waste in shale gas mining drilling[J].China Environmental Science,2019,39(3):1094-1100. [8] WANG S,QIN J H,XIE B X,et al.Volatilization behavior of polycyclic aromatic hydrocarbons from the oil-based residues of shale drill cuttings[J].Chemosphere,2022,288:132455. doi: 10.1016/j.chemosphere.2021.132455 [9] HU Y S,MU S Q,ZHANG J J,et al.Regional distribution,properties,treatment technologies,and resource utilization of oil-based drilling cuttings:a review[J].Chemosphere,2022,308:136145. doi: 10.1016/j.chemosphere.2022.136145 [10] DENG Y,YIN H,CHEN Z Q,et al.Research progress and prospects on the treating and disposal for waste oil-based drilling cuttings from shale gas wells[J].Geofluids,2022,2022:1-15. [11] 杨德敏,袁建梅,程方平,等.油气开采钻井固体废物处理与利用研究现状[J].化工环保,2019,39(2):129-136.YANG D M,YUAN J M,CHENG F P,et al.Current situation of treatment and utilization of drilling solid waste in oil and gas exploitation[J].Environmental Protection of Chemical Industry,2019,39(2):129-136. [12] GUO Q,GEEHAN T,OVALLE A.Increased assurance of drill cuttings re-injection:challenges,recent advances and case studies[J].Spe Drilling & Completion,2007,22:99-105. [13] 谢水祥,蒋官澄,陈勉,等.废弃油基钻井液资源回收与无害化处置[J].环境科学研究,2011,24(5):540-547.XIE S X,JIANG G C,CHEN M,et al.Resource recycling and harmless treatment for waste oil-based drilling fluid[J].Research of Environmental Sciences,2011,24(5):540-547. [14] 孙根行,王丽芳,符丹,等.废弃油基钻井岩屑焚烧处理基础[J].钻井液与完井液,2017,34(3):59-63.SUN G X,WANG L F,FU D,et al.Burning of drill cuttings from wells drilled with waste oil base drilling fluid[J].Drilling Fluid & Completion Fluid,2017,34(3):59-63. [15] 万志鹏,马玉峰.含油污泥流化悬浮焚烧技术及污染物排放[J].洁净煤技术,2015,21(1):121-124.WAN Z P,MA Y F.Oily sludge fluidization-suspension incineration technology and pollutant emission analysis[J].Clean Coal Technology,2015,21(1):121-124. [16] 中华人民共和国生态环境部,国家市场监督管理总局.危险废物鉴别标准 通则:GB 5085.7—2019[S].北京:中国环境出版集团有限公司,2019. [17] 崔长颢,刘美佳,葛金林,等.燃煤锅炉协同处置油基岩屑碳排放核算及降碳贡献度分析[J].环境科学研究,2022,35(2):540-546.CUI C H,LIU M J,GE J L,et al.Carbon emission during co-processing of oil-based drill cuttings in coal-fired boiler and CO2 mitigation prediction[J].Research of Environmental Sciences,2022,35(2):540-546. [18] URE A M,QUEVAUVILLER P,MUNTAU H,et al.Speciation of heavy metals in soils and sediments.an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities[J].International Journal of Environmental Analytical Chemistry,1993,51(1/2/3/4):135-151. [19] RAURET G,LÓPEZ-SÁNCHEZ J F,SAHUQUILLO A,et al.Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring,1999,1(1):57-61. doi: 10.1039/a807854h [20] 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版),2014,50(3):476-486.WANG S F,ZOU C N,DONG D Z,et al.Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(3):476-486. [21] 王玉满,董大忠,李新景,等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业,2015,35(3):12-21.WANG Y M,DONG D Z,LI X J,et al.Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J].Natural Gas Industry,2015,35(3):12-21. [22] 岳超先,熊汉桥,苏晓明,等.加重剂类型对油基钻井液性能的影响评价[J].钻井液与完井液,2017,34(1):83-86. doi: 10.3969/j.issn.1001-5620.2017.01.015YUE C X,XIONG H Q,SU X M,et al.Effects of different types of weighting agents on the performance of oil base drilling fluids[J].Drilling Fluid & Completion Fluid,2017,34(1):83-86. doi: 10.3969/j.issn.1001-5620.2017.01.015 [23] 马志忠,赵海英,于锡山,等.钡及可溶性化合物毒性研究进展[J].职业与健康,2004,20(12):26-27. doi: 10.3969/j.issn.1004-1257.2004.12.011MA Z Z,ZHAO H Y,YU X S,et al.Research progress on toxicity of Barium and soluble compounds[J].Occupation and Health,2004,20(12):26-27. doi: 10.3969/j.issn.1004-1257.2004.12.011 [24] 夏元洵.化学物质毒性全书[M].上海:上海科学技术文献出版社,1991. [25] XU T,WANG L A,ZHANG H J,et al.Pyrolysis kinetics and environmental risks of oil-based drill cuttings at China's largest shale gas exploitation site[J].Ecotoxicology and Environmental Safety,2022,246:114189. doi: 10.1016/j.ecoenv.2022.114189 [26] 宋薇,刘建国,聂永丰.含油污泥的热解特性研究[J].燃料化学学报,2008,36(3):286-290.SONG W,LIU J G,NIE Y F.Pyrolysis properties of oil sludge[J].Journal of Fuel Chemistry and Technology,2008,36(3):286-290. [27] LV Q W,WANG L A,MA S D,et al.Pyrolysis of oil-based drill cuttings from shale gas field:kinetic,thermodynamic,and product properties[J].Fuel,2022,323:124332. doi: 10.1016/j.fuel.2022.124332 [28] 黄慧,聂志强,孟棒棒,等.不同处理工艺页岩气钻井岩屑的污染特性[J].环境科学研究,2020,33(3):777-782.HUANG H,NIE Z Q,MENG B B,et al.Pollution characteristics of typical field shale gas drilling cuttings with different treatment processes[J].Research of Environmental Sciences,2020,33(3):777-782. [29] 任存治,孟颖,涂赣峰,等.重晶石碳热还原过程中硫化钡和氧化钡的生成与转化[J].有色矿冶,1997,13(2):27-30.REN C Z,MENG Y,TU G F,et al.Formation and transformation of Barium sulfide and Barium oxide during carbothermal reduction of barite[J].Non-Ferrous Mining and Metallurgy,1997,13(2):27-30. [30] 陈琨,张煜,张怡,等.碳热还原硫酸钡反应热力学及动力学研究[J].化工矿物与加工,2017,46(5):24-28.CHEN K,ZHANG Y,ZHANG Y,et al.Thermodynamics and kinetic study on Barium sulfate reaction of carbothermic reduction[J].Industrial Minerals & Processing,2017,46(5):24-28. [31] ZHANG Y,NIE D P,CAO J X.Thermodynamic and kinetics study of carbothermal reduction of barite[J].Journal of Chemical Engineering of Japan,2019,52(6):478-483. doi: 10.1252/jcej.19we005 [32] 陈琨.硫酸钡碳热还原过程的研究[D].贵阳:贵州大学,2017. [33] 陈竹铭.钡盐生产中重晶石还原焙烧的探讨[J].无机盐工业,1982,14(12):2-7.CHEN Z M.Discussion on reduction roasting of barite in Barium salt production[J].Inorganic Chemicals Inoustry,1982,14(12):2-7. [34] JAMSHIDI E,EBRAHIM H A.A new clean process for Barium carbonate preparation by barite reduction with methane[J].Chemical Engineering and Processing:Process Intensification,2008,47(9/10):1567-1577. [35] 张千.高氯含量油基岩屑对锅炉运行影响的计算分析[J].动力工程学报,2020,40(9):707-712. doi: 10.19805/j.cnki.jcspe.2020.09.003ZHANG Q.Effects of high chlorine oil-based cuttings on the operation of a boiler[J].Journal of Chinese Society of Power Engineering,2020,40(9):707-712. doi: 10.19805/j.cnki.jcspe.2020.09.003 [36] 陈云华,郭健,解丽娟.含油污泥固化与燃煤混烧的可行性[J].油气田环境保护,2010,20(4):33-34.CHEN Y H,GUO J,XIE L J.A feasibility study on oily sludge solidification and coal-firing[J].Environmental Protection of Oil & Gas Fields,2010,20(4):33-34. [37] 王朝强,梅绪东,张春,等.页岩气水基钻屑制备烧结砖性能研究[J].非金属矿,2018,41(3):43-45.WANG C Q,MEI X D,ZHANG C,et al.Research on the preparation of sintered brick by water-based drilling cuttings of shale gas[J].Non-Metallic Mines,2018,41(3):43-45. [38] 刘成,唐凯靖.页岩气油基钻屑热解灰渣制烧结砖性能研究[J].非金属矿,2021,44(4):88-91.LIU C,TANG K J.Study on properties of sintered brick prepared by shale gas oil based drilling cuttings pyrolytic ash residue[J].Non-Metallic Mines,2021,44(4):88-91. [39] LIU T T,TIAN L F,YANG L Y,et al.Emissions of BTEXs,NMHC,PAHs,and PCDD/fs from Co-processing of oil-based drilling cuttings in brick kilns[J].Journal of Environmental Management,2022,304:114170. doi: 10.1016/j.jenvman.2021.114170 [40] XIONG D M,WANG C Q,HUANG X.Particular pollutants,physical properties,and environmental performance of porous ceramsite materials containing oil-based drilling cuttings residues[J].Environmental Science and Pollution Research,2022,29(5):7202-7213. doi: 10.1007/s11356-021-16120-6 -