Assessment of VOCs Emission Reduction Path and Potential of Industrial Coating
-
摘要: 工业涂装行业是挥发性有机化合物(VOCs)综合治理的重点行业之一,涉及行业广,排放环节多,排放量大. 确定不同行业的排放特点、治理现状与减排潜力是制定差异化的防治技术路线的基础. 本文根据工业涂装行业排放占比,选取家具、汽车整车、汽车零部件、集装箱、机械制造、船舶、钢结构等行业开展源头替代、涂装工艺和设备、无组织排放收集以及末端治理等环节VOCs减排研究,分行业归纳总结VOCs排放特征,梳理VOCs控制技术在各行业的应用情况,评估各行业VOCs全过程控制整体水平,识别工业涂装VOCs控制的薄弱环节,计算不同减排路径下各行业的减排潜力. 结果表明:①工业涂装行业普遍存在低VOCs含量涂料替代不足、自动化涂装方式占比低、无组织收集率偏低以及高端末端治理设施覆盖率偏低等问题,实施工业涂装行业全过程控制具有较大的减排潜力. ②不同工业涂装行业减排重点应有所差别,木质家具、船舶和钢结构的VOCs减排潜力主要为源头替代及工艺改进,其减排潜力分别占本行业总减排潜力的80.3%、75.5%和68.2%,而汽车制造、集装箱、机械制造行业的重点减排环节以无组织收集和末端治理为主,该环节减排潜力分别占本行业总减排量的80.3%、61.5%和58.6%. 研究显示,工业涂装行业VOCs排放尚有较大的减排潜力,不同行业应根据行业特征,从开展源头替代、提升自动化程度、增强无组织收集效率、选取适用末端治理技术等方面开展全流程管控.Abstract: Industrial coating is one of the main sources of VOCs emissions, involving a number of emission processes in a wide range of industrial sectors. Analysis of the emission characteristics, treatment status and emission reduction potential of different industries is the basis for formulating differentiated control technical routes. According to the contribution to the total VOCs emission, seven industrial sectors, including furniture manufacture, vehicles, automobile parts, containers, machinery, ships and steel structures, were selected to carry out the research on VOCs emission reduction due to source substitution, coating process and equipment improvement, fugitive emission collection and end treatment. VOCs emission characteristics and the application of VOCs control techniques in various key industrial coating sectors were summarized, the overall level of VOCs control in the whole process of different industrial coating sectors was evaluated, and the weak links of VOCs control were identified. The emission reduction potential of various industries under different emission reduction paths was estimated. The results show that: (1) There are many problems in the industrial coating sectors, such as insufficient substitution of low VOCs content coatings, low penetration of automatic coating methods, inefficient collection of fugitive emission, and low coverage of high-end terminal treatment facilities. Implementing the whole process control in the industrial coating industry has great emission reduction potential. (2) The emission reduction measures in different industrial coating sectors should be differentiated: in wood furniture, ships, steel structure and other coating sectors, the main emission reduction measures are source substitution and process improvement. The emission reduction potential accounts for 80.3%, 75.5% and 68.2% of the total emission reduction potential of the industries, respectively. The key emission reduction measures in automobile manufacturing, container and construction machinery manufacturing industries are unorganized collection and terminal treatment emission control, and the emission reduction potential accounts for 80.3%, 61.5% and 58.6%, respectively. There is great VOCs emission reduction potential in coating industries. According to the characteristics of the sectors, different industries should carry out the whole process control from the aspects of source substitution, improving automation, enhancing fugitive emission collection efficiency, and selecting suitable end-of-pipe treatment technologies.
-
表 1 工业涂装企业排放情况实测样本数量
Table 1. Number of industrial coating samples
治理技术 涉及行业 非甲烷总烃实测点位及样本数量/个 进口 出口 小计 低温等离子 家具行业 3 3 6 活性炭吸附 家具、机械制造、机械设备零部件行业 4 4 8 UV光解+活性炭 家具行业 11 11 22 催化燃烧 机械设备零部件行业 1 1 2 活性炭吸附+催化燃烧 家具、工程机械、机械制造行业 3 3 6 RTO 汽车零部件行业 2 2 4 沸石转轮+RTO 汽车制造、机械制造行业 9 9 18 沸石转轮+RCO 桥梁钢结构行业 1 1 2 水喷淋+UV光解+溶剂吸收 家具行业 1 1 2 合计 35 35 70 表 2 不同喷漆废气收集情况下无组织排放情况对比
Table 2. Comparison of unorganized emission of different paint exhaust gas collection conditions
项目 采样点位 溶剂型涂料 水性涂料 企业1 企业2 企业3 企业4 企业5 企业6 企业7 无组织排放浓度/(mg/m3) 敞开式喷漆房,工位旁1 m处 165.2 44.3 120.8 25.6 16.1 13.0 4.9 喷漆车间密闭后,密闭车间门口处 26.8 5.3 24.6 2.1 2.4 1.5 1.6 无组织排放浓度下降比例/% 83.7 88.0 79.6 91.7 84.9 88.2 67.1 表 3 木质家具行业不同减排路径下的VOCs减排潜力
Table 3. VOCs emission reduction potential in wood furniture industry under different emission reduction paths
情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 基准情景 溶剂型涂料 手工空气喷涂 密闭方式 等离子体/光催化氧化/活性炭吸附(效率10%左右) — 减排路径1 溶剂型涂料 手工混气喷涂 密闭方式 活性炭吸脱附+CO 67%~71% 减排路径2 溶剂型底漆+水性面漆 手工混气喷涂 密闭方式 活性炭吸脱附+CO 81%~83% 减排路径3 溶剂型光固化底漆+水性面漆 辊涂+自动喷涂 外部集气罩(辊涂)+密闭方式 干式过滤+活性炭吸脱附+CO 83%左右 减排路径4 水性光固化底漆+水性面漆 辊涂+自动喷涂 外部集气罩(辊涂)+密闭方式 干式过滤+活性炭吸脱附+CO 88%左右 减排路径5 水性光固化底漆+水性光固化面漆 自动喷涂 密闭方式(往复式喷涂箱) 活性炭吸附 90%左右 减排路径6 无溶剂光固化底漆+水性面漆 辊涂+自动喷涂 外部集气罩(辊涂)+密闭方式 干式过滤+活性炭吸脱附+CO 91%左右 减排路径7 粉末涂料(酚醛板等人造板) 静电喷涂 密闭喷漆房 旋风+袋式除尘 >99% 表 4 汽车整车制造行业不同减排路径下的VOCs减排潜力(乘用车、货车驾驶舱)
Table 4. VOCs emission reduction potential in different emission reduction paths in the automobile manufacturing industry (passenger car, truck cockpit)
情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 基准情景 溶剂型涂料(SSS) 3C2B体系外板静电喷涂+内板手工混气喷涂 密闭喷漆房 涂装废气未安装治理设施,烘干废气采用燃烧技术(RTO、TNV) — 减排路径1 溶剂型涂料(SSS) 3C2B体系外板静电喷涂+内板手工混气喷涂 密闭喷漆房 涂装废气均采用转轮吸脱附+燃烧技术,烘干采用燃烧技术(RTO、TNV) 78%左右 减排路径2 溶剂型涂料(SSS) 3wet体系+静电喷涂 密闭喷漆房 涂装废气均采用转轮吸脱附+燃烧技术,烘干采用燃烧技术(RTO、TNV) 79%左右 减排路径3 溶剂型中涂+水性面漆+双组分溶剂型清漆(SWS) 3C2B体系外板静电喷涂+内板手工混气喷涂 密闭喷漆房 水性涂料涂装废气直排,溶剂型涂料涂装废气均采用转轮吸脱附+燃烧技术,烘干采用燃烧技术(RTO、TNV) 66%左右 减排路径4 水性中涂+水性面漆+双组分溶剂型清漆(WWS) 3C2B体系+静电喷涂 密闭喷漆房 水性涂料涂装废气直排,溶剂型涂料涂装废气均采用转轮吸脱附+燃烧技术,烘干采用燃烧技术(RTO、TNV) 54%左右 减排路径5 水性中涂+水性面漆+双组分溶剂型清漆(WWS) 3C2B体系+静电喷涂 密闭喷漆房+循环风 涂装废气均采用转轮吸脱附,燃烧技术,烘干采用燃烧技术(RTO、TNV) 84%左右 减排路径6 水性面漆+双组分溶剂型清漆(WS) 2C1B体系+静电喷涂 干式密闭喷漆房+循环风 涂装废气均采用转轮吸脱附,燃烧技术,烘干采用燃烧技术(RTO、TNV) 86%左右 减排路径7 溶剂型高固分面漆+清漆(HS) 2C1B体系+静电喷涂 密闭喷漆房 涂装废气均采用转轮吸脱附,燃烧技术,烘干采用燃烧技术(RTO、TNV) 82%左右 表 5 汽车零部件制造行业不同减排路径下的VOCs减排潜力
Table 5. VOCs emission reduction potential of automobile parts manufacturing industry under different emission reduction paths
汽车零部件 情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 塑料零部件(以保险杠为例) 基准情景 溶剂型涂料 自动空气喷涂 密闭喷漆房 UV光氧+活性炭吸附 — 减排路径1 溶剂型涂料 自动空气喷涂 密闭喷漆房 车间循环风+RTO/RCO 88%左右 减排路径2 溶剂型涂料 自动空气喷涂 密闭喷漆房 活性炭吸脱附/转轮吸脱附+RTO/RCO 66%~77% 减排路径3 溶剂型底漆和清漆、水性色漆 自动空气喷涂 密闭喷漆房 车间循环风+ RTO/RCO 88%左右 减排路径4 溶剂型底漆和清漆、水性色漆 自动空气喷涂 密闭喷漆房 活性炭吸脱附/转轮吸脱附+RTO/RCO 72%~81% 金属零部件 基准情景 溶剂型涂料 手工空气喷涂 密闭喷漆房 UV光氧+活性炭吸附 — 减排路径1 溶剂型涂料 手工空气喷涂 密闭喷漆房 活性炭吸脱附+CO 58%左右 减排路径2 50%替代为水性涂料,其他为溶剂型涂料 自动喷涂 密闭喷漆房 活性炭吸脱附+CO 68%左右 减排路径3 10%替代为粉末涂料,其他为溶剂型涂料 自动喷涂 密闭喷漆房 粉末涂料生产线采用袋式、旋风除尘技术,溶剂型涂料生产线采用活性炭吸脱附+CO技术 63%左右 表 6 集装箱制造行业不同减排路径下的VOCs减排潜力
Table 6. VOCs emission reduction potential of container manufacturing industry under different emission reduction paths
情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 基准情景 溶剂型涂料 外板自动喷涂,内板手工喷涂 密闭喷漆房 活性炭吸脱附/转轮吸脱附+RCO/RTO — 减排路径1 溶剂型涂料 内外板均自动喷涂 密闭喷漆房 活性炭吸脱附/转轮吸脱附+ RCO/RTO 15%~20% 减排路径2 富锌底漆为溶剂型涂料,其他为水性涂料 内外板均自动喷涂 密闭喷漆房 富锌底漆采用活性炭吸脱附/转轮吸脱附+ RTO技术,水性涂料采用活性炭吸附技术+CO 27%~31% 减排路径3 富锌底漆为溶剂型涂料,其他为水性涂料 内外板均自动喷涂 密闭喷漆房 均采用活性炭吸脱附/转轮吸脱附+RCO/CO 16%~21% 表 7 机械制造行业不同减排路径下的VOCs减排潜力
Table 7. VOCs emission reduction potential of machinery manufacturing industry under different emission reduction paths
情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 基准情景 溶剂型涂料 无气喷涂 密闭喷漆房 UV光氧+活性炭吸附 — 减排路径1 溶剂型涂料 无气喷涂 密闭喷漆房 活性炭吸脱附/转轮吸脱附+RCO/CO 58%~77% 减排路径2 20%替代为水性涂料、30%替代为粉末涂料,
其他为溶剂型涂料无气喷涂 密闭喷漆房 活性炭吸脱附/转轮吸脱附+RCO/CO 75%~86% 表 8 船舶制造行业不同减排路径下的VOCs减排潜力
Table 8. VOCs emission reduction potential under different emission reduction paths in shipbuilding industry
情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 基准情景 溶剂型涂料 无气/混气喷涂 分段涂装密闭喷漆房,合拢及其他涂装无组织排放 分段涂装采用活性炭吸附技术 — 减排路径1 溶剂型涂料 无气/混气喷涂 分段涂装密闭喷漆房,合拢及其他涂装无组织排放 分段涂装采用吸附脱附+燃烧 50%左右 减排路径2 高固体分涂料 无气/混气喷涂 分段涂装密闭喷漆房,合拢及其他涂装无组织排放 分段涂装采用活性炭吸附技术 35%左右 减排路径3 高固体分涂料 无气/混气喷涂 分段涂装密闭喷漆房,合拢及其他涂装无组织排放 分段涂装采用吸附脱附+燃烧 68%左右 表 9 钢结构制造行业不同减排路径下的VOCs减排潜力
Table 9. VOCs emission reduction potential of steel structure manufacturing industry under different emission reduction paths
情景 源头替代方式 涂装技术 废气收集方式 末端治理技术 减排潜力 基准情景 溶剂型涂料 无气喷涂 无组织排放 无 — 减排路径1 高固体分涂料 无气喷涂 无组织排放 无 35%左右 减排路径2 水性涂料 无气喷涂 无组织排放 无 50%~60% 减排路径3 高固体分涂料 无气喷涂 密闭喷漆房 吸附+燃烧 87%左右 减排路径4 水性涂料 无气喷涂 密闭喷漆房 活性炭吸附 55%~64% -
[1] WANG H L,SUN S M,NIE L,et al.A review of whole-process control of industrial volatile organic compounds in China[J].Journal of Environmental Sciences,2023,123:127-139. doi: 10.1016/j.jes.2022.02.037 [2] 张涵,姜华,高健,等.我国大气O3污染成因及影响因素综述[J].环境科学研究,2022,35(12):2657-266.ZHANG H,JIANG H,GAO J,et al.Review on the causes and influencing factors of O3 pollution in China[J].Research of Environmental Sciences,2022,35(12):2657-266. [3] DUAN C S,LIAO H,WANG K D,et al.The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources:a systematic quantitative review[J].Environmental Research,2023,216:114386. doi: 10.1016/j.envres.2022.114386 [4] TRAN T D,NGUYEN T X,NGUYEN H T T,et al.Seasonal variation,sources,and health risk assessment of indoor/outdoor BTEX at nursery schools in Hanoi,Vietnam[J].Water,Air,& Soil Pollution,2020,231(6):273. [5] 王瑞鹏,王晓琦,程水源,等.末端治理对工业涂装行业VOCs排放的影响[J].中国环境科学,2022,42(2):593-600. doi: 10.3969/j.issn.1000-6923.2022.02.011WANG R P,WANG X Q,CHENG S Y,et al.Influence of end-of-pipe treatment on VOCs emission in industrial coating industries[J].China Environmental Science,2022,42(2):593-600. doi: 10.3969/j.issn.1000-6923.2022.02.011 [6] 宁淼,邵霞,刘杰,等.对构建工业涂装VOC全过程管控体系的系统思考[J].涂料工业,2017,47(12):42-47.NING M,SHAO X,LIU J,et al.Systematic view on whole process control system of VOC emission in industrial coatings[J].Paint & Coatings Industry,2017,47(12):42-47. [7] 刘锐源,钟美芳,赵晓雅,等.2011—2019年中国工业源挥发性有机物排放特征[J].环境科学,2021,42(11):5169-5179.LIU R Y,ZHONG M F,ZHAO X Y,et al.Characteristics of industrial volatile organic compounds(VOCs) emission in China from 2011 to 2019[J].Environmental Science,2021,42(11):5169-5179. [8] 梁小明,孙西勃,徐建铁,等.中国工业源挥发性有机物排放清单[J].环境科学,2020,41(11):4767-4775.LIANG X M,SUN X B,XU J T,et al.Industrial volatile organic compounds (VOCs) emission inventory in China[J].Environmental Science,2020,41(11):4767-4775. [9] SIMAYI M,SHI Y Q,XI Z Y,et al.Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives[J].Science of the Total Environment,2022,826:153994. doi: 10.1016/j.scitotenv.2022.153994 [10] LIU J W,ZHENG G D.Emission of volatile organic compounds from a small-scale municipal solid waste transfer station:ozone-formation potential and health risk assessment[J].Waste Management,2020,106:193-202. doi: 10.1016/j.wasman.2020.03.031 [11] 陆建海,董事壁,李文娟,等.浙江省工业涂装VOCs治理现状[J].环境保护科学,2018,44(1):113-117.LU J H,DONG S B,LI W J,et al.Present situation of VOCs control technologies for the industrial coating process in Zhejiang Province[J].Environmental Protection Science,2018,44(1):113-117. [12] ÁLVAREZ-HORNOS F J,LAFITA C,MARTÍNEZ-SORIA V,et al.Evaluation of a pilot-scale biotrickling filter as a VOC control technology for the plastic coating sector[J].Biochemical Engineering Journal,2011,58/59:154-161. doi: 10.1016/j.bej.2011.09.009 [13] CHANG C T,LEE C H,WU Y P,et al.Assessment of the strategies for reducing volatile organic compound emissions in the automotive industry in Taiwan[J].Resources,Conservation and Recycling,2002,34(2):117-128. doi: 10.1016/S0921-3449(01)00096-9 [14] PIERUCCI S,del ROSSO R,BOMBARDI D,et al.An innovative sustainable process for VOCs recovery from spray paint booths[J].Energy,2005,30(8):1377-1386. doi: 10.1016/j.energy.2004.02.017 [15] 王家德,金旦军,顾震宇,等.金属表面涂装行业VOCs排放特征及排放系数[J].中国环境科学,2020,40(5):1940-1945. doi: 10.3969/j.issn.1000-6923.2020.05.010WANG J D,JIN D J,GU Z Y,et al.The VOCs emission characteristics ofmetal surface coating industryand its emission factors[J].China Environmental Science,2020,40(5):1940-1945. doi: 10.3969/j.issn.1000-6923.2020.05.010 [16] 李世杰,殷宝辉,赵雪艳,等.家具板材排放VOCs成分谱及排放因子研究[J].环境科学研究,2020,33(4):859-867.LI S J,YIN B H,ZHAO X Y,et al.Composition and emission factors of VOCs released from wood based panels[J].Research of Environmental Sciences,2020,33(4):859-867. [17] GAN G Q,FAN S Y,LI X Y,et al.Adsorption and membrane separation for removal and recovery of volatile organic compounds[J].Journal of Environmental Sciences,2023,123:96-115. doi: 10.1016/j.jes.2022.02.006 [18] JIMÉNEZ-LÓPEZ A M,HINCAPIÉ-LLANOS G A.Identification of factors affecting the reduction of VOC emissions in the paint industry:systematic literature review-SLR[J].Progress in Organic Coatings,2022,170:106945. doi: 10.1016/j.porgcoat.2022.106945 [19] 王旭彰,刘健.船舶涂装污染处理技术研究[J].船舶物资与市场,2022,30(8):33-35.WANG X Z,LIU J.Study on pollution treatment technology of ship painting[J].Marine Equipment/Materials & Marketing,2022,30(8):33-35. [20] 王迪,赵文娟,张玮琦,等.溶剂使用源挥发性有机物排放特征与污染控制对策[J].环境科学研究,2019,32(10):1687-1695.WANG D,ZHAO W J,ZHANG W Q,et al.Emission profile and control countermeasures of volatile organic compounds in solvent-using source[J].Research of Environmental Sciences,2019,32(10):1687-1695. [21] 孙园园,白璐,张玥,等.工业行业源头-过程-末端全过程减排潜力评估研究[J].环境科学研究,2021,34(12):2867-2875.SUN Y Y,BAI L,ZHANG Y,et al.Evaluation of emission reduction potentials of the source-process-end processes of industrial industry[J].Research of Environmental Sciences,2021,34(12):2867-2875. [22] 齐一谨,倪经纬,赵东旭,等.邢台市典型行业VOCs排放特征研究[J].环境科学研究,2021,34(10):2339-2349.QI Y J,NI J W,ZHAO D X,et al.Emission characteristics of volatile organic compounds (VOCs) from typical industrial sectors in Xingtai City[J].Research of Environmental Sciences,2021,34(10):2339-2349. [23] 杨延梅,颜渝森,刘泽伟,等.汽车涂料废物挥发性有机物气相释放特征[J].环境科学研究,2022,35(4):964-970.YANG Y M,YAN Y S,LIU Z W,et al.Gas phase emission characteristics of volatile organic compounds (VOCs) from automotive paint waste[J].Research of Environmental Sciences,2022,35(4):964-970. [24] SUN Y Y,ZHANG Y,ZHAO H H,et al.Synergistic reduction potentials for VOCs in solvent-using industrial sectors:a case study of the packaging and printing industry in China[J].Resources,Conservation and Recycling,2022,187:106638. doi: 10.1016/j.resconrec.2022.106638 [25] DINH T V,CHOI I Y,SON Y S,et al.Volatile organic compounds (VOCs) in surface coating materials:their compositions and potential as an alternative fuel[J].Journal of Environmental Management,2016,168:157-164. [26] 王力明,彭燕坤,王宝成,等.北京市家具制造业涉VOCs原辅料调查研究[J].中国资源综合利用,2022,40(3):78-82. doi: 10.3969/j.issn.1008-9500.2022.03.023WANG L M,PENG Y K,WANG B C,et al.Investigation research on raw and auxiliary materials involving VOCs in Beijing furniture manufacturing industry[J].China Resources Comprehensive Utilization,2022,40(3):78-82. doi: 10.3969/j.issn.1008-9500.2022.03.023 [27] 高菲.汽车涂装VOCs减排途径探究[J].环境与发展,2020,32(1):45-46. doi: 10.16647/j.cnki.cn15-1369/X.2020.01.021GAO F.Study on volatile organic compounds(VOCs) emission reduction ways of automobile coatings[J].Environment and Development,2020,32(1):45-46. doi: 10.16647/j.cnki.cn15-1369/X.2020.01.021 [28] 柯云婷,孙宇航,成海荣,等.我国木器涂料及汽车涂料中挥发性有机物特征[J].环境科学,2020,41(10):4446-4454.KE Y T,SUN Y H,CHENG H R,et al.Characteristics of volatile organic compounds in wood coatings and automotive coatings in China[J].Environmental Science,2020,41(10):4446-4454. [29] 曾春玲,邵霞,刘锐源,等.广东省家具行业基于涂料类型的VOCs排放特征及其环境影响[J].环境科学,2021,42(10):4641-4649.ZENG C L,SHAO X,LIU R Y,et al.Coating-derived VOCs emission characteristics and environmental impacts from the furniture industry in Guangdong Province[J].Environmental Science,2021,42(10):4641-4649. [30] 王海林,张国宁,聂磊,等.我国工业VOCs减排控制与管理对策研究[J].环境科学,2011,32(12):3462-3468.WANG H L,ZHANG G N,NIE L,et al.Study on control and management for industrial volatile organic compounds (VOCs) in China[J].Environmental Science,2011,32(12):3462-3468. [31] 邹文君,修光利,鲍仙华,等.汽车零配件涂装过程VOCs排放特征与案例分析[J].环境科学研究,2019,32(8):1358-1364.ZOU W J,XIU G L,BAO X H,et al.Emission characteristics and case study of volatile organic compounds (VOCs) in typical auto parts painting processes[J].Research of Environmental Sciences,2019,32(8):1358-1364. -

计量
- 文章访问数: 26
- HTML全文浏览量: 2
- PDF下载量: 22
- 被引次数: 0