Research Progress on Environmental Exposure and Human Health Effects of Microplastics
-
摘要: 作为一种新型的全球性环境污染物,微塑料日益引起关注. 人体可通过摄食等途径摄入微塑料,进而引起潜在健康风险. 目前有关微塑料的研究日益增加,但关于人体微塑料暴露水平及其潜在健康危害方面的相关研究有限. 本文在梳理微塑料的人体暴露途径及水平的基础上,从体内、体外两方面试验研究总结分析了微塑料暴露对细胞、哺乳模式动物小鼠组织的影响,结果表明:①人类可通过消化道、呼吸道以及皮肤接触的方式摄入微塑料,其中经口摄入是最主要的接触途径. ②在人体多种组织、器官及代谢物中均检测到微塑料的存在,范围为0~134.3个/g. ③动物试验表明,微塑料可以通过血液循环蓄积于心、肝、脾、肺、肾和睾丸等器官中,引起炎症反应、氧化应激、免疫损伤、菌群失调、代谢紊乱等,甚至可能产生跨代效应. ④细胞试验表明,粒径较小的微塑料可穿透细胞膜进入细胞质中,引起细胞形态及功能改变,导致细胞活力下降,影响细胞生长与增殖,还可诱导ROS生成甚至产生DNA损伤等细胞毒性作用. 微塑料的毒性作用可能与其类型、粒径、染毒浓度及受试物类型等有关,建议今后加强环境低浓度下微塑料及其吸附物质在食物链传递过程中毒性蓄积与变化的研究,以及开展流行病学调查,为将来进一步阐释微塑料潜在的毒理机制和评估人体健康风险提供理论依据.Abstract: As a new type of global environmental pollutant, microplastics have attracted increasing attention. However, there is still a lack of research on exposure levels to microplastics and their potential health hazards. This review aims to sort out the pathways and levels of human exposure to microplastics, and to summarize the adverse effects of microplastic exposure on mammalian model animals-mice from in vivo and cultured cells in vitro. The results showed that: (1) Humans can ingest microplastics through digestive tract, respiratory tract, and skin contact, and oral ingestion is the main route of exposure. (2) Microplastics are detected in various tissues, organs, and metabolites of the human body, ranging from 0 to 134.3 per gram. (3) Animal experiments have shown that microplastics can accumulate in the heart, liver, spleen, lung, kidney, testis and other organs through blood circulation, causing inflammatory response, oxidative stress, immune damage, flora disorder, metabolic disorders, and even intergenerational effects. (4) Cell experiments have shown that microplastics with small particle sizes can penetrate cell membrane and enter the cytoplasm, causing changes in cell morphology and function, resulting in decreased cell vitality, affecting cell growth and proliferation, and inducing ROS generation and even DNA damage and other cytotoxic effects. The toxicity of microplastics may be related to its type, particle size, concentration and type of test substance. Further studies on toxic accumulation and changes of microplastics and their adsorbents in the food chain transfer process at low environmental concentrations can be strengthened, as well as epidemiological studies, to provide a theoretical basis for further elucidating the potential toxicological mechanisms of microplastics and assessing human health risks in the future.
-
Key words:
- microplastics /
- exposure /
- health hazards /
- toxic effects
-
表 1 微塑料人体内暴露情况
Table 1. Exposure of microplastics in human body
样本类型 样本来源 检测方法 微塑料丰度 微塑料主要类型 数据来源 代谢物 中国江苏无锡市的8名33~65岁的健康志愿者的人类粪便样本 FTIR 2个/g PP、PET 文献[25] 中国北京市24名年轻男性的粪便样本 FTIR 1~36个/g PET、PS、PE、PVC 文献[28] 中国香港8名居民粪便样本 Raman 50个/g PS、PP、PE 文献[29] 中国江苏南京市某医院50名健康参与者和52名炎症性肠病(IBD)患者的粪便样本 Raman 健康者28.0个/g,IBD患者41.8个/g PET、PA 文献[39] 中国上海市18对母婴的胎粪样本 LDIR 51.4个/g PA、PU1) 文献[38] 意大利34名产妇的母乳样本 Raman 0~2.72个/g PE、PVC、PP 文献[26] 中国江苏南京市四家医院104名手术者的体液样本 Raman 2~38个/mL PP、PS、PTFE2) 文献[43] 血液系统 荷兰22名健康志愿者的血液样本 Py-GC/MS 1.6 μg/mL PET、PE、PS 文献[30] 中国江苏南京市某医院26名心血管手术患者的血栓 Raman 0~15个/样 Phthalocyanine3)、LDPE4) 文献[31] 呼吸系统 中国广东汕头市某医院22名患有不同呼吸系统疾病患者的人类痰液样本 LDIR,FTIR 3.95个/mL PU、PES5)、CPE6) 文献[32] 中国辽宁省8名室内和8名室外工人上呼吸道的痰液和鼻灌洗液样本 LDIR 痰液:室外102.9个/g,室内134.3个/g. 鼻灌洗液:室外0.8个/g,室内2.6个/g PVC、PA 文献[34] 英国13例人肺组织样本 FTIR (1.42±1.50)个/g PET、PP、PS 文献[36] 消化系统 德国6名肝硬化患者和5名没有潜在肝病的成人组织样本 Raman 1.2个/g PS、PVC、PET、PMMA7)、POM8)、PP 文献[37] 马来西亚11名成人的结肠切除手术样本 FTIR (28.1±15.4)个/g PC、PA、PP 文献[44] 生殖系统 中国上海市18对母婴的胎盘样本 LDIR 18个/g PA、PU 文献[38] 中国江苏无锡市的17个胎盘样本 LDIR (2.70±2.65)个/g PVC、PP、PBS9) 文献[24] 伊朗43名产妇的胎盘样本 Raman 2~38个/样本 PE、PS 文献[23] 注:1)PU—聚氨基甲酸酯;2)PTFE—聚四氟乙烯;3)Phthalocyanine—酞菁;4)LDPE—低密度聚乙烯;5)PES—聚醚砜;6)CPE—氯化聚乙烯;7)PMMA—聚甲基丙烯酸甲酯;8)POM—聚甲醛;9)PBS—聚丁二酸丁二醇酯. 表 2 微塑料对模式动物的健康影响
Table 2. Health effects of microplastics on model animals
微塑料类型 尺寸 剂量 染毒方式 染毒时间 生物学效应 数据来源 PS 5、50、100、200 µm 80 mg/kg(以体质量计) 灌胃 10周 胰岛素抵抗,肠道菌群改变 文献[45] PS 1~10、50~100 µm 10 mg/L 饮水 30 d ROS产生,破坏骨骼肌再生 文献[46] PS 0.5、50 µm 0.1、1 mg/L 饮水 5周 黏蛋白降低,肠道菌群失调,肝脂代谢紊乱 文献[47] PS 0.5、4、10 µm 1 mg/d 灌胃 4周 睾丸炎症,血睾屏障破坏 文献[48] PS 4、10 µm 20、40 mg/kg(以体质量计) 灌胃 4周 ROS产生,血睾屏障破坏 文献[49] PS 5.0~5.9 µm 0.01~1 mg/d 灌胃 6周 氧化应激,生殖毒性 文献[50] PS 5 µm 0.5 mg/L 饮水 4周 肠道炎症,黏膜损伤,菌群改变 文献[51] PS 5 µm 0.5 mg/L 饮水 4周 结肠炎症,脂质代谢紊乱 文献[52] PS 5 µm 0.1、1 mg/L 饮水 6周 肠黏液分泌减少,肠道屏障损伤 文献[53] PS 5 µm 12 mg/kg(以体质量计) 吸入 1周 肺泡上皮受损,肺纤维化,氧化应激 文献[54] PS 5 µm 0.1、0.5 mg/d 灌胃 4周 血液毒性,扰乱骨髓细胞功能 文献[55] PS 5 µm 0.1 mg/d 灌胃 43 d 氧化应激,生殖毒性 文献[56] PS 2 µm 0.2、0.4 mg/d 灌胃 4、8周 肾脏损伤,内质网应激,炎症标志物和自噬相关蛋白水平升高 文献[57] PS 1 µm 0.08 mg/kg(以体质量计) 饮水 4周 结肠炎症,加重关节炎 文献[58] PS 800 nm 30 mg/kg(以体质量计) 灌胃 5周 卵巢炎症,卵母质量降低 文献[59] PS 500 nm 0.5 mg/d 灌胃 4周 肝脏炎症,巨噬细胞极化,自然杀伤细胞浸润 文献[60] PS 500 nm 1 mg/L 饮水 90 d 肝脏损伤,氧化应激 文献[61] PS 50、500 nm 0.000 5~1 mg/d 饮食 胚胎第8天~出生后2周 跨代效应,神经发育缺陷 文献[62] PS 50 nm 0.5~50 mg/kg(以体质量计) 灌胃 1周 小胶质细胞活化,神经元损伤 文献[63] PS 20 nm 14.6 ng/kg(以体质量计) 饮水 30 d 红细胞DNA损伤 文献[64] PE 10~150 µm 0.006~0.6 mg/d 饲料 5周 肠道菌群失调,炎症 文献[65] PE 36、116 µm 100 mg/kg(以体质量计) 饲料 6周 肠道损伤,免疫反应,肠道菌群改变 文献[66] PE 40~48 µm 0.125~2 mg/d 灌胃 90 d 免疫损伤,脾脏内淋巴细胞亚群改变 文献[67] PE 1~10 µm 0.002、0.2 mg/kg(以体质量计) 灌胃 30 d 肠道菌群改变,黏蛋白降低,氨基酸代谢增加 文献[68] PVC 2 µm 100 mg/kg(以体质量计) 灌胃 60 d 肝脏损伤,肝脂代谢紊乱,肠道菌群失调 文献[69] PVC 2 µm 100 mg/kg(以体质量计) 灌胃 60 d 肠道黏液分泌降低,屏障功能障碍,肠道菌群失调 文献[70] 表 3 微塑料对细胞的毒性效应
Table 3. Toxic effects of microplastics on cells
微塑料类型 粒径 暴露剂量 受试细胞 毒性效应 数据来源 PS 1、10 μm 0.1 mg/mL A549 抑制细胞增殖,细胞形态改变 文献[92] PS 5 μm 0.1 mg/mL Caco-2 细胞活力下降 文献[93] PS 4 μm 1 mg/cm2 BEAS-2B1) 细胞活力下降,氧化应激,炎症反应,肺上皮屏障破坏 文献[94] PS 0.1、5μm 0.2 mg/mL Caco-2 细胞摄取,ROS增加,线粒体去极化,抑制膜ABC转运蛋白活性 文献[95] PS 100、500 nm 0.1 mg/mL HUVECs 细胞活力下降,细胞膜损伤,诱导自噬 文献[96] PS 200 nm 0.1、0.2 mg/mL RAW264.7、BV22) 氧化应激,细胞膜完整性改变,溶酶体受损 文献[97] PS 100 nm 0.075 mg/mL Hs273) 刺激ROS产生,DNA损伤 文献[98] PS 44、100 nm 0.01 mg/mL AGS4) 内化,细胞质增加,细胞活力改变,炎症反应 文献[99] PS 40~90 nm 0.2 mg/mL Caco2/HT29、Caco2/HT29+Raji-B5) 细胞摄取,跨膜易位 文献[100] PS 75 nm 0.1 mg/mL BEAS-2B 自噬,内质网应激,细胞凋亡 文献[101] PS 60 nm 0.1 mg/mL LS174T、HT29、Caco-2 细胞凋亡 文献[102] PS 60 nm 0.02 mg/mL RAW264.7、BEAS-2B 诱导自噬,细胞凋亡,氧化应激 文献[103] PS 50 nm 0.3、8.1 μg/cm2 Calu-36)、THP-17) 细胞摄取,DNA损伤 文献[104] PS 50 nm 0.1 mg/mL SH-SY5Y 诱导神经突生长收缩,细胞形态改变和肿胀,细胞内成分溢出 文献[105] PS 20 nm 0.2 mg/mL PBMC8)、U9379)、THP-1、DMBM-210) 炎症反应,刺激细胞吞噬 文献[106] PE、PS 3~16 μm、10 μm 0.01 mg/mL T98G、HeLa11) 诱导ROS生成,氧化应激 文献[107] PP ~20 μm、25~200 μm 1 mg/mL PBMC、HMC-112)、
RBL-2H313)、RAW264.7炎症反应,免疫损伤 文献[108] PVC 136.5 μm >75 mg/mL Caco2、HepG2、HepaRG14) 细胞活力下降 文献[109] 注:1)BEAS-2B—人支气管上皮细胞;2)BV2—小鼠小胶质细胞;3)Hs27—人成纤维细胞;4)AGS—人胃腺癌细胞;5)Raji-B—人淋巴瘤细胞;6)Calu-3—人肺癌上皮细胞;7)THP-1—人急性单核细胞白血病细胞;8)PBMC—小鼠外周血单核细胞;9)U937—人淋巴瘤细胞;10)DMBM-2—小鼠单核巨噬细胞;11)HeLa—人宫颈癌细胞;12)HMC-1—人肥大细胞;13)RBL-2H3—人嗜碱性白血病细胞系;14)HepaRG—人肝癌细胞. -
[1] TANG Y Q,LIU Y G,CHEN Y,et al.A review:research progress on microplastic pollutants in aquatic environments[J].Science of the Total Environment,2021,766:142572. doi: 10.1016/j.scitotenv.2020.142572 [2] 安立会,李欢,王菲菲,等.海洋塑料垃圾污染国际治理进程与对策[J].环境科学研究,2022,35(6):1334-1340. doi: 10.13198/j.issn.1001-6929.2022.02.21AN L H,LI H,WANG F F,et al.International governance progress in marine plastic litter pollution and policy recommendations[J].Research of Environmental Sciences,2022,35(6):1334-1340. doi: 10.13198/j.issn.1001-6929.2022.02.21 [3] THOMPSON R C,OLSEN Y,MITCHELL R P,et al.Lost at sea:where is all the plastic?[J].Science,2004,304(5672):838. doi: 10.1126/science.1094559 [4] WANG C,ZHAO J,XING B.Environmental source,fate,and toxicity of microplastics[J].Journal of Hazardous Materials,2021,407:124357. doi: 10.1016/j.jhazmat.2020.124357 [5] SCHMID C,COZZARINI L,ZAMBELLO E.Microplastic's story[J].Marine Pollution Bulletin,2021,162:111820. doi: 10.1016/j.marpolbul.2020.111820 [6] MU Y W,SUN J Y,LI Z Y,et al.Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice[J].Chemosphere,2022,291(Pt 2):132944. [7] MORTENSEN N P,FENNELL T R,JOHNSON L M.Unintended human ingestion of nanoplastics and small microplastics through drinking water,beverages,and food sources[J].NanoImpact,2021,21:100302. doi: 10.1016/j.impact.2021.100302 [8] XU J L,LIN X H,WANG J J,et al.A review of potential human health impacts of micro- and nanoplastics exposure[J].Science of the Total Environment,2022,851(Pt 1):158111. [9] ZARUS G M,MUIANGA C,HUNTER C M,et al.A review of data for quantifying human exposures to micro and nanoplastics and potential health risks[J].Science of the Total Environment,2021,756:144010. doi: 10.1016/j.scitotenv.2020.144010 [10] COX K D,COVERNTON G A,DAVIES H L,et al.Human consumption of microplastics[J].Environmental Science & Technology,2019,53(12):7068-7074. [11] DANOPOULOS E,JENNER L C,TWIDDY M,et al.Microplastic contamination of seafood intended for human consumption:a systematic review and meta-analysis[J].Environmental Health Perspectives,2020,128(12):126002. doi: 10.1289/EHP7171 [12] ZHANG Q,XU E G,LI J N,et al.A review of microplastics in table salt,drinking water,and air:direct human exposure[J].Environmental Science & Technology,2020,54(7):3740-3751. [13] YEE M S L,HII L W,LOOI C K,et al.Impact of microplastics and nanoplastics on human health[J].Nanomaterials,2021,11(2):496. doi: 10.3390/nano11020496 [14] VEIDIS E M,LABEAUD A D,PHILLIPS A A,et al.Tackling the ubiquity of plastic waste for human and planetary health[J].The American Journal of Tropical Medicine and Hygiene,2021,106(1):12-14. [15] 耿阳,胡曼,张益宁等.中国居民经食物摄入和空气吸入微纳塑料暴露特征分析[J].中华疾病控制杂志,2021,25(11):1245-1250,1308. doi: 10.16462/j.cnki.zhjbkz.2021.11.002GENG Y,HU M,ZHANG Y N,et al.Analysis of the characteristics of micro- and nanoplastics exposure to Chinese population via ingestion and inhalation[J].Chinese Journal of Disease Control & Prevention,2021,25(11):1245-1250,1308. doi: 10.16462/j.cnki.zhjbkz.2021.11.002 [16] 戚婵婵,华正罡,蒋莹,等.空气微塑料的分布特征、暴露评估及毒性效应[J].生态毒理学报,2022,17(6):176-187.QI C C,HUA Z G,JIANG Y,et al.Distribution characteristics,exposure assessment and toxic effects of airborne microplastics [J].Asian Journal of Ecotoxicology,2022,17(6):176-187. [17] ZHANG J J,WANG L,KANNAN K.Microplastics in house dust from 12 countries and associated human exposure[J].Environment International,2020,134:105314. doi: 10.1016/j.envint.2019.105314 [18] ZHU X,HUANG W,FANG M Z,et al.Airborne microplastic concentrations in five megacities of northern and southeast China[J].Environmental Science & Technology,2021,55(19):12871-12881. [19] SUN Q,REN S Y,NI H G.Incidence of microplastics in personal care products:an appreciable part of plastic pollution[J].Science of the Total Environment,2020,742:140218. doi: 10.1016/j.scitotenv.2020.140218 [20] RAGUSA A,SVELATO A,SANTACROCE C,et al.Plasticenta:first evidence of microplastics in human placenta[J].Environment International,2021,146:106274. doi: 10.1016/j.envint.2020.106274 [21] BRAUN T,EHRLICH L,HENRICH W,et al.Detection of microplastic in human placenta and meconium in a clinical setting[J].Pharmaceutics,2021,13(7):921. doi: 10.3390/pharmaceutics13070921 [22] RAGUSA A,MATTA M,CRISTIANO L,et al.Deeply in plasticenta:presence of microplastics in the intracellular compartment of human placentas[J].International Journal of Environmental Research and Public Health,2022,19(18):11593. doi: 10.3390/ijerph191811593 [23] AMEREH F,AMJADI N,MOHSENI-BANDPEI A,et al.Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies[J].Environmental Pollution,2022,314:120174. doi: 10.1016/j.envpol.2022.120174 [24] ZHU L,ZHU J Y,ZUO R,et al.Identification of microplastics in human placenta using laser direct infrared spectroscopy[J].Science of the Total Environment.2023,856(Pt 1):159060. [25] LIU S J,GUO J L,LIU X Y,et al.Detection of various microplastics in placentas,meconium,infant feces,breastmilk and infant formula:a pilot prospective study[J].Science of the Total Environment,2023,854:158699. doi: 10.1016/j.scitotenv.2022.158699 [26] RAGUSA A,NOTARSTEFANO V,SVELATO A,et al.Raman microspectroscopy detection and characterisation of microplastics in human breastmilk[J].Polymers,2022,14(13):2700. doi: 10.3390/polym14132700 [27] SCHWABL P,KÖPPEL S,KÖNIGSHOFER P,et al.Detection of various microplastics in human stool:a prospective case series[J].Annals of Internal Medicine,2019,171(7):453-457. doi: 10.7326/M19-0618 [28] ZHANG N,YI B L,HE H R,et al.You are what you eat:microplastics in the feces of young men living in Beijing[J].Science of the Total Environment,2021,767:144345. doi: 10.1016/j.scitotenv.2020.144345 [29] HO Y W,LIM J Y,YEOH Y K,et al.Preliminary findings of the high quantity of microplastics in faeces of Hong Kong residents[J].Toxics,2022,10(8):414. doi: 10.3390/toxics10080414 [30] LESLIE H A,van VELZEN M J M,BRANDSMA S H,et al.Discovery and quantification of plastic particle pollution in human blood[J].Environment International,2022,163:107199. doi: 10.1016/j.envint.2022.107199 [31] WU D,FENG Y,WANG R,et al.Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J].Journal of Advanced Research,2022. [32] HUANG S M,HUANG X X,BI R,et al.Detection and analysis of microplastics in human sputum[J].Environmental Science & Technology,2022,56(4):2476-2486. [33] BAEZA-MARTÍNEZ C,OLMOS S,GONZÁLEZ-PLEITER M,et al.First evidence of microplastics isolated in European citizens' lower airway[J].Journal of Hazardous Materials,2022,438:129439. doi: 10.1016/j.jhazmat.2022.129439 [34] JIANG Y,HAN J C,NA J,et al.Exposure to microplastics in the upper respiratory tract of indoor and outdoor workers[J].Chemosphere,2022,307(Pt 3):136067. [35] AMATO-LOURENÇO L F,CARVALHO-OLIVEIRA R,JÚNIOR G R,et al.Presence of airborne microplastics in human lung tissue[J].Journal of Hazardous Materials,2021,416:126124. doi: 10.1016/j.jhazmat.2021.126124 [36] JENNER L C,ROTCHELL J M,BENNETT R T,et al.Detection of microplastics in human lung tissue using μFTIR spectroscopy[J].Science of the Total Environment,2022,831:154907. doi: 10.1016/j.scitotenv.2022.154907 [37] HORVATITS T,TAMMINGA M,LIU B B,et al.Microplastics detected in cirrhotic liver tissue[J].eBioMedicine,2022,82:104147. doi: 10.1016/j.ebiom.2022.104147 [38] LIU S J,LIU X Y,GUO J L,et al.The association between microplastics and microbiota in placentas and meconium:the first evidence in humans[J].Environmental Science & Technology,2022. [39] YAN Z H,LIU Y F,ZHANG T,et al.Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J].Environmental Science & Technology,2022,56(1):414-421. [40] PAULY J L,STEGMEIER S J,ALLAART H A,et al.Inhaled cellulosic and plastic fibers found in human lung tissue[J].Cancer Epidemiology,Biomarkers & Prevention,1998,7(5):419-428. [41] PRATA J C.Airborne microplastics:consequences to human health?[J].Environmental Pollution,2018,234:115-126. doi: 10.1016/j.envpol.2017.11.043 [42] ATIS S,TUTLUOGLU B,LEVENT E,et al.The respiratory effects of occupational polypropylene flock exposure[J].The European Respiratory Journal,2005,25(1):110-117. doi: 10.1183/09031936.04.00138403 [43] GUAN Q Q,JIANG J,HUANG Y,et al.The landscape of micron-scale particles including microplastics in human enclosed body fluids[J].Journal of Hazardous Materials,2023,442:130138. doi: 10.1016/j.jhazmat.2022.130138 [44] IBRAHIM Y S,TUAN ANUAR S,AZMI A A,et al.Detection of microplastics in human colectomy specimens[J].JGH Open,2020,5(1):116-121. [45] HUANG D J,ZHANG Y,LONG J L,et al.Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation[J].Science of the Total Environment,2022,838:155937. doi: 10.1016/j.scitotenv.2022.155937 [46] WANG S C,LIU J,YAO Y J,et al.Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes[J].Journal of Hazardous Materials,2021,417:125962. doi: 10.1016/j.jhazmat.2021.125962 [47] LU L,WAN Z Q,LUO T,et al.Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J].Science of the Total Environment,2018,631/632:449-458. doi: 10.1016/j.scitotenv.2018.03.051 [48] JIN H B,MA T,SHA X X,et al.Polystyrene microplastics induced male reproductive toxicity in mice[J].Journal of Hazardous Materials,2021,401:123430. doi: 10.1016/j.jhazmat.2020.123430 [49] WEI Y X,ZHOU Y,LONG C L,et al.Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2[J].Environmental Pollution,2021,289:117904. doi: 10.1016/j.envpol.2021.117904 [50] XIE X M,DENG T,DUAN J F,et al.Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway[J].Ecotoxicology and Environmental Safety,2020,190:110133. doi: 10.1016/j.ecoenv.2019.110133 [51] LIU S,LI H,WANG J,et al.Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance[J].Science of the Total Environment,2022,833:155198. doi: 10.1016/j.scitotenv.2022.155198 [52] ZHENG H B,WANG J,WEI X Y,et al.Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis[J].Science of the Total Environment,2021,750:143085. doi: 10.1016/j.scitotenv.2020.143085 [53] JIN Y X,LU L,TU W Q,et al.Impacts of polystyrene microplastic on the gut barrier,microbiota and metabolism of mice[J].Science of the Total Environment,2019,649:308-317. doi: 10.1016/j.scitotenv.2018.08.353 [54] LI X R,ZHANG T T,LV W T,et al.Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice[J].Ecotoxicology and Environmental Safety,2022,232:113238. doi: 10.1016/j.ecoenv.2022.113238 [55] SUN R L,XU K,YU L L,et al.Preliminary study on impacts of polystyrene microplastics on the hematological system and gene expression in bone marrow cells of mice[J].Ecotoxicology and Environmental Safety,2021,218:112296. doi: 10.1016/j.ecoenv.2021.112296 [56] WEI Z L,WANG Y Y,WANG S W,et al.Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice[J].Toxicology,2022,465:153059. doi: 10.1016/j.tox.2021.153059 [57] WANG Y L,LEE Y H,HSU Y H,et al.The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice[J].Environmental Health Perspectives,2021,129(5):57003. [58] RAWLE D J,DUMENIL T,TANG B,et al.Microplastic consumption induces inflammatory signatures in the colon and prolongs a viral arthritis[J].Science of the Total Environment,2022,809:152212. doi: 10.1016/j.scitotenv.2021.152212 [59] LIU Z Q,ZHUAN Q R,ZHANG L Y,et al.Polystyrene microplastics induced female reproductive toxicity in mice[J].Journal of Hazardous Materials,2022,424:127629. doi: 10.1016/j.jhazmat.2021.127629 [60] ZHAO L T,SHI W Y,HU F F,et al.Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells[J].Ecotoxicology and Environmental Safety,2021,227:112882. doi: 10.1016/j.ecoenv.2021.112882 [61] LI S W,MA Y,YE S Z,et al.Polystyrene microplastics trigger hepatocyte apoptosis and abnormal glycolytic flux via ROS-driven calcium overload[J].Journal of Hazardous Materials,2021,417:126025. doi: 10.1016/j.jhazmat.2021.126025 [62] JEONG B,BAEK J Y,KOO J,et al.Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny[J].Journal of Hazardous Materials,2022,426:127815. doi: 10.1016/j.jhazmat.2021.127815 [63] SHAN S,ZHANG Y F,ZHAO H W,et al.Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice[J].Chemosphere,2022,298:134261. doi: 10.1016/j.chemosphere.2022.134261 [64] ESTRELA F N,GUIMARÃES A T B,Da COSTA ARAÚJO A P,et al.Toxicity of polystyrene nanoplastics and zinc oxide to mice[J].Chemosphere,2021,271:129476. doi: 10.1016/j.chemosphere.2020.129476 [65] LI B Q,DING Y F,CHENG X,et al.Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J].Chemosphere,2020,244:125492. doi: 10.1016/j.chemosphere.2019.125492 [66] DJOUINA M,VIGNAL C,DEHAUT A,et al.Oral exposure to polyethylene microplastics alters gut morphology,immune response,and microbiota composition in mice[J].Environmental Research,2022,212:113230. doi: 10.1016/j.envres.2022.113230 [67] PARK E J,HAN J S,PARK E J,et al.Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation[J].Toxicology Letters,2020,324:75-85. doi: 10.1016/j.toxlet.2020.01.008 [68] SUN H Q,CHEN N,YANG X N,et al.Effects induced by polyethylene microplastics oral exposure on colon mucin release,inflammation,gut microflora composition and metabolism in mice[J].Ecotoxicology and Environmental Safety,2021,220:112340. doi: 10.1016/j.ecoenv.2021.112340 [69] CHEN X B,ZHUANG J S,CHEN Q L,et al.Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data[J].Science of the Total Environment,2022,839:155984. doi: 10.1016/j.scitotenv.2022.155984 [70] CHEN X B,ZHUANG J S,CHEN Q L,et al.Polyvinyl chloride microplastics induced gut barrier dysfunction,microbiota dysbiosis and metabolism disorder in adult mice[J].Ecotoxicology and Environmental Safety,2022,241:113809. doi: 10.1016/j.ecoenv.2022.113809 [71] SCHWARZFISCHER M,NIECHCIAL A,LEE S S,et al.Ingested nano- and microsized polystyrene particles surpass the intestinal barrier and accumulate in the body[J].NanoImpact,2022,25:100374. doi: 10.1016/j.impact.2021.100374 [72] STOCK V,BÖHMERT L,LISICKI E,et al.Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo[J].Archives of Toxicology,2019,93(7):1817-1833. doi: 10.1007/s00204-019-02478-7 [73] XIAO J T,JIANG X J,ZHOU Y J,et al.Results of a 30-day safety assessment in young mice orally exposed to polystyrene nanoparticles[J].Environmental Pollution,2022,292:118184. doi: 10.1016/j.envpol.2021.118184 [74] MENG X M,ZHANG J W,WANG W J,et al.Effects of nano- and microplastics on kidney:physicochemical properties,bioaccumulation,oxidative stress and immunoreaction[J].Chemosphere,2022,288:132631. doi: 10.1016/j.chemosphere.2021.132631 [75] FAN Z,XIAO T,LUO H J,et al.A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics[J].Environment International,2022,163:107223. doi: 10.1016/j.envint.2022.107223 [76] LU K,LAI K P,STOEGER T,et al.Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology[J].Journal of Hazardous Materials.2021,416:126069. [77] DANSO I K,WOO J H,LEE K.Pulmonary toxicity of polystyrene,polypropylene,and polyvinyl chloride microplastics in mice[J].Molecules (Basel,Switzerland),2022,27(22):7926. doi: 10.3390/molecules27227926 [78] JING J R,ZHANG L,HAN L,et al.Polystyrene micro-/ nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota,metabolites,and cytokines[J].Environment International,2022,161:107131. doi: 10.1016/j.envint.2022.107131 [79] DENG Y F,YAN Z H,SHEN R Q,et al.Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus)[J].Journal of Hazardous Materials,2021,406:124644. doi: 10.1016/j.jhazmat.2020.124644 [80] LI Z K,ZHU S X,LIU Q,et al.Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats[J].Environmental Pollution,2020,265:115025. doi: 10.1016/j.envpol.2020.115025 [81] PRÜST M,MEIJER J,WESTERINK R H S.The plastic brain:neurotoxicity of micro- and nanoplastics[J].Particle and Fibre Toxicology,2020,17(1):24. doi: 10.1186/s12989-020-00358-y [82] LEE C W,HSU L F,WU I L,et al.Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice[J].Journal of Hazardous Materials,2022,430:128431. doi: 10.1016/j.jhazmat.2022.128431 [83] JIN H B,YANG C,JIANG C Y,et al.Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics[J].Environmental Health Perspectives,2022,130(10):107002. doi: 10.1289/EHP10255 [84] ZAHEER J,KIM H,KO I O,et al.Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder[J].Environment International,2022,161:107121. doi: 10.1016/j.envint.2022.107121 [85] RAFIEE M,DARGAHI L,ESLAMI A,et al.Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure[J].Chemosphere,2018,193:745-753. doi: 10.1016/j.chemosphere.2017.11.076 [86] HOU J,LEI Z,CUI L,et al.Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats[J].Ecotoxicology and Environmental Safety,2021,212:112012. [87] D'ERRICO J N,FOURNIER S B,STAPLETON P A.Ex vivo perfusion of the rodent placenta[J].Journal of Visualized Experiments:JoVE,2019(147):10.3791/59412. [88] LUO T,WANG C Y,PAN Z H,et al.Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring[J].Environmental Science & Technology,2019,53(18):10978-10992. [89] HU J N,QIN X L,ZHANG J W,et al.Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice[J].Reproductive Toxicology,2021,106:42-50. doi: 10.1016/j.reprotox.2021.10.002 [90] LUO T,ZHANG Y,WANG C Y,et al.Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring[J].Environmental Pollution,2019,255:113122. doi: 10.1016/j.envpol.2019.113122 [91] HUANG T,ZHANG W J,LIN T T,et al.Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring[J].Food and Chemical Toxicology,2022,160:112803. doi: 10.1016/j.fct.2021.112803 [92] GOODMAN K E,HARE J T,KHAMIS Z I,et al.Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes[J].Chemical Research in Toxicology,2021,34(4):1069-1081. doi: 10.1021/acs.chemrestox.0c00486 [93] WU S J,WU M,TIAN D C,et al.Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells[J].Environmental Toxicology,2020,35(4):495-506. doi: 10.1002/tox.22885 [94] DONG C D,CHEN C W,CHEN Y C,et al.Polystyrene microplastic particles:in vitro pulmonary toxicity assessment[J].Journal of Hazardous Materials,2020,385:121575. [95] WU B,WU X M,LIU S,et al.Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells[J].Chemosphere,2019,221:333-341. doi: 10.1016/j.chemosphere.2019.01.056 [96] LU Y Y,LI H Y,REN H Y,et al.Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells[J].Journal of Hazardous Materials,2022,421:126770. doi: 10.1016/j.jhazmat.2021.126770 [97] FLORANCE I,RAMASUBBU S,MUKHERJEE A,et al.Polystyrene nanoplastics dysregulate lipid metabolism in murine macrophages in vitro[J].Toxicology,2021,458:152850. doi: 10.1016/j.tox.2021.152850 [98] POMA A N,VECCHIOTTI G,COLAFARINA S,et al.In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line[J].Nanomaterials (Basel,Switzerland),2019,9(9):1299. doi: 10.3390/nano9091299 [99] FORTE M,IACHETTA G,TUSSELLINO M,et al.Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J].Toxicology in Vitro,2016,31:126-136. doi: 10.1016/j.tiv.2015.11.006 [100] DOMENECH J,HERNÁNDEZ A,RUBIO L,et al.Interactions of polystyrene nanoplastics within vitro models of the human intestinal barrier[J].Archives of Toxicology,2020,94(9):2997-3012. doi: 10.1007/s00204-020-02805-3 [101] LIM S L,NG C T,ZOU L,et al.Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J].Nanotoxicology,2019,13(8):1117-1132. doi: 10.1080/17435390.2019.1640913 [102] INKIELEWICZ-STEPNIAK I,TAJBER L,BEHAN G,et al.The role of mucin in the toxicological impact of polystyrene nanoparticles[J].Materials (Basel,Switzerland),2018,11(5):724. doi: 10.3390/ma11050724 [103] CHIU H W,XIA T,LEE Y H,et al.Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress[J].Nanoscale,2015,7(2):736-746. doi: 10.1039/C4NR05509H [104] PAGET V,DEKALI S,KORTULEWSKI T,et al.Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages[J].PLoS One,2015,10(4):e0123297. doi: 10.1371/journal.pone.0123297 [105] BAN M,SHIMODA R,CHEN J.Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles[J].Toxicology in Vitro,2021,76:105225. doi: 10.1016/j.tiv.2021.105225 [106] PRIETL B,MEINDL C,ROBLEGG E,et al.Nano-sized and micro-sized polystyrene particles affect phagocyte function[J].Cell Biology and Toxicology,2014,30(1):1-16. doi: 10.1007/s10565-013-9265-y [107] SCHIRINZI G F,PÉREZ-POMEDA I,SANCHÍS J,et al.Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J].Environmental Research,2017,159:579-587. doi: 10.1016/j.envres.2017.08.043 [108] HWANG J,CHOI D,HAN S,et al.An assessment of the toxicity of polypropylene microplastics in human derived cells[J].Science of the Total Environment,2019,684:657-669. doi: 10.1016/j.scitotenv.2019.05.071 [109] STOCK V,LAURISCH C,FRANKE J,et al.Uptake and cellular effects of PE,PP,PET and PVC microplastic particles[J].Toxicology in Vitro,2021,70:105021. doi: 10.1016/j.tiv.2020.105021 [110] DING Y F,ZHANG R Q,LI B Q,et al.Tissue distribution of polystyrene nanoplastics in mice and their entry,transport,and cytotoxicity to GES-1cells[J].Environmental Pollution,2021,280:116974. doi: 10.1016/j.envpol.2021.116974 [111] XU M K,HALIMU G,ZHANG Q R,et al.Internalization and toxicity:a preliminary study of effects of nanoplastic particles on human lung epithelial cell[J].Science of the Total Environment,2019,694:133794. doi: 10.1016/j.scitotenv.2019.133794 -

计量
- 文章访问数: 221
- HTML全文浏览量: 23
- PDF下载量: 75
- 被引次数: 0