留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MODPATH模型的单井抽出-回渗循环地下水水力控制程度的关键影响因素研究

王新港 杨昱 王磊 徐祥健 韩旭 夏甫 邓圣 肖瀚 姜永海

王新港, 杨昱, 王磊, 徐祥健, 韩旭, 夏甫, 邓圣, 肖瀚, 姜永海. 基于MODPATH模型的单井抽出-回渗循环地下水水力控制程度的关键影响因素研究[J]. 环境科学研究, 2023, 36(9): 1791-1801. doi: 10.13198/j.issn.1001-6929.2023.07.04
引用本文: 王新港, 杨昱, 王磊, 徐祥健, 韩旭, 夏甫, 邓圣, 肖瀚, 姜永海. 基于MODPATH模型的单井抽出-回渗循环地下水水力控制程度的关键影响因素研究[J]. 环境科学研究, 2023, 36(9): 1791-1801. doi: 10.13198/j.issn.1001-6929.2023.07.04
WANG Xingang, YANG Yu, WANG Lei, XU Xiangjian, HAN Xu, XIA Fu, DENG Sheng, XIAO Han, JIANG Yonghai. Study of Key Influencing Factors on the Degree of Hydraulic Control of Groundwater in Single-Well Pumping-Percolation Cycle Based on the MODPATH Model[J]. Research of Environmental Sciences, 2023, 36(9): 1791-1801. doi: 10.13198/j.issn.1001-6929.2023.07.04
Citation: WANG Xingang, YANG Yu, WANG Lei, XU Xiangjian, HAN Xu, XIA Fu, DENG Sheng, XIAO Han, JIANG Yonghai. Study of Key Influencing Factors on the Degree of Hydraulic Control of Groundwater in Single-Well Pumping-Percolation Cycle Based on the MODPATH Model[J]. Research of Environmental Sciences, 2023, 36(9): 1791-1801. doi: 10.13198/j.issn.1001-6929.2023.07.04

基于MODPATH模型的单井抽出-回渗循环地下水水力控制程度的关键影响因素研究

doi: 10.13198/j.issn.1001-6929.2023.07.04
基金项目: 国家重点研发计划项目(No.2019YFC1806202)
详细信息
    作者简介:

    王新港(1997-),男,河北邯郸人,wxg971518@126.com

    通讯作者:

    ①王磊(1979-),男,天津人,讲师,博士,主要从事废弃高分子材料的处理与改性研究,28166950@qq.com

    ②肖瀚(1989-),男,江苏南京人,副研究员,博士,主要从事地下水污染数值模拟研究,hxiao0716@163.com

  • 中图分类号: X523

Study of Key Influencing Factors on the Degree of Hydraulic Control of Groundwater in Single-Well Pumping-Percolation Cycle Based on the MODPATH Model

Funds: National Key Research and Development Program of China (No.2019YFC1806202)
  • 摘要: 为研究单井抽出-回渗循环地下水水力控制程度(抽水井对回渗水的捕获率)和关键因素对水力控制程度的影响机制,构建了基于GMS模拟软件的MODPATH地下水流线示踪模型,根据实验室尺度砂柱物理模型的实测水位数据校准,结合渗透系数为0.009、0.02、0.04、0.09 cm/s四种不同水文地质条件和抽出回渗量为1、2.5、5、10 cm3/s四种水动力条件以及25、30、32、35 cm四种回渗半径的情景设置,模拟了地下水质点的迁移轨迹,刻画了抽水井的捕获范围,量化了抽水井对地下水流场的水力控制程度,并构建了水力控制程度与关键参数之间的定量关系. 结果表明:①砂柱物理模型在1、2.5、5、10 cm3/s四种流量下达到抽出-回渗平衡时,捕获率分别为95.63%、97.69%、97.93%和98.17%;②物理模型内抽水井捕获范围均小于回渗范围且捕获率随流量增加而变大;③回渗范围和含水层渗透系数一定时,随着抽出-回渗量的增大,捕获范围和捕获率均增大;④当回渗范围和抽出-回渗量一定时,随着含水层渗透系数的增大,捕获范围和捕获率均减小;⑤当含水层渗透系数和抽出-回渗量一定时,随着回渗范围的增大,捕获范围和捕获率均减小;⑥根据64种情景的拟合结果,水力控制程度与含水层渗透性强弱、抽出-回渗量大小和回渗半径之间存在定量关系—η=100%×[0.9ln(Q/K)−0.4R+104]〔η为水力控制程度(%),Q为抽出-回渗量,K为含水层渗透系数,R为回渗半径〕. 研究显示,单井抽出-回渗循环地下水水力控制程度与抽出-回渗量、含水层渗透系数和回渗范围间存在对应关系,可以有效指导实际场地工程应用中实现水力控制的关键参数的设计.

     

  • 图  1  单井抽出-回渗同步循环地下水水力控制技术试验装置

    Figure  1.  Conceptual diagram of single well pumping-recharge synchronous cyclical groundwater hydraulic control technique device

    图  2  单井抽出-回渗同步循环地下水水力控制技术试验装置

    注:K表示含水层渗透系数,cm/s;Q为抽出-回渗量,cm3/s;R为回渗半径,cm. 下同.

    Figure  2.  Conceptual diagram of single well pumping-recharge synchronous cyclical groundwater hydraulic control technique device

    图  3  模拟结果与实测结果的精度分析

    Figure  3.  Conceptual diagram of single well pumping-rech

    图  4  不同流量下回渗水质点的迁移轨迹

    Figure  4.  Migration trajectory of re-infiltration water mass at different flow rates

    图  5  不同情景下抽水井的捕获半径和捕获率

    Figure  5.  Capture radius and capture rate of pumping well under different scenarios

    图  6  捕获率与含水层渗透性强弱和抽出-回渗量大小之间的定量关系的数据拟合结果

    Figure  6.  Data fitting of quantitative relationship between capture rate and aquifer permeability strength and magnitude of extraction-return seepage

    表  1  不同水文地质条件和水动力条件的情景设置

    Table  1.   Scenarios with different hydrogeological and hydrodynamic conditions

    情景设置R/cmK/(cm/s)Q/(cm3/s)情景设置R/cmK/(cm/s)Q/(cm3/s)
    情景1250.0091情景33320.0091
    情景2250.0092.5情景34320.0092.5
    情景3250.0095情景35320.0095
    情景4250.00910情景36320.00910
    情景5250.021情景37320.021
    情景6250.022.5情景38320.022.5
    情景7250.025情景39320.025
    情景8250.0210情景40320.0210
    情景9250.041情景41320.041
    情景10250.042.5情景42320.042.5
    情景11250.045情景43320.045
    情景12250.0410情景44320.0410
    下载: 导出CSV
     续表
    情景设置R/cmK/(cm/s)Q/(cm3/s)情景设置R/cmK/(cm/s)Q/(cm3/s)
    情景13250.091情景45320.091
    情景14250.092.5情景46320.092.5
    情景15250.095情景47320.095
    情景16250.0910情景48320.0910
    情景17300.0091情景49350.0091
    情景18300.0092.5情景50350.0092.5
    情景19300.0095情景51350.0095
    情景20300.00910情景52350.00910
    情景21300.021情景53350.021
    情景22300.022.5情景54350.022.5
    情景23300.025情景55350.025
    情景24300.0210情景56350.0210
    情景25300.041情景57350.041
    情景26300.042.5情景58350.042.5
    情景27300.045情景59350.045
    情景28300.0410情景60350.0410
    情景29300.091情景61350.091
    情景30300.092.5情景62350.092.5
    情景31300.095情景63350.095
    情景32300.0910情景64350.0910
    下载: 导出CSV

    表  2  不同情景下抽水井的捕获半径和捕获率

    Table  2.   Capture radius and capture rate of pumping well under different scenarios

    渗透系数
    (K)/(cm/s)
    回渗
    半径(R)/cm
    抽出-回渗量
    (Q)/(cm3/s)
    捕获
    半径/cm
    捕获
    率/%
    渗透系数
    (K)/(cm/s)
    回渗
    半径(R)/cm
    抽出-回渗量
    (Q)/(cm3/s)
    捕获
    半径/cm
    捕获
    率/%
    0.00925124.6797.340.0225124.6297.02
    2.524.8298.532.524.7698.11
    524.9499.56524.8798.98
    1024.9899.881024.9499.56
    30129.4296.1830129.3995.98
    2.529.7098.012.529.5196.75
    529.8298.78529.7097.98
    1029.8999.631029.7598.34
    32131.2995.6332131.2595.34
    2.531.6397.692.531.3896.17
    531.6797.93531.6497.75
    1031.7198.171031.7098.11
    35133.5491.8535133.5091.62
    2.534.2895.942.533.6392.34
    534.5697.49534.3796.41
    1034.5797.551034.5697.53
    0.0425124.5996.770.0925124.5996.77
    2.524.7597.992.524.6397.09
    524.7998.34524.7698.11
    1024.8398.641024.8098.43
    30129.3495.6530129.2895.26
    2.529.4096.022.529.3895.88
    529.5697.10529.5597.03
    1029.7098.011029.5897.24
    32131.2395.2332131.2295.18
    2.531.2995.592.531.2595.38
    531.6297.61531.4596.61
    1031.6497.761031.4996.81
    35133.4591.3335133.4191.15
    2.533.5992.132.533.4691.40
    534.0794.78533.6892.58
    1034.3996.541034.0994.87
    下载: 导出CSV
  • [1] 任黎明,秦冰,桑军强,等.石化污染场地地下水修复治理挑战与对策[J].石油炼制与化工,2021,52(4):119-126. doi: 10.3969/j.issn.1005-2399.2021.04.020

    REN L M,QIN B,SANG J Q,et al.Challenges and countermeasures of groundwater remediation and treatment in petrochemical contaminated sites[J].Petroleum Processing and Petrochemicals,2021,52(4):119-126. doi: 10.3969/j.issn.1005-2399.2021.04.020
    [2] 费宇红,刘雅慈,李亚松,等.中国地下水污染修复方法和技术应用展望[J].中国地质,2022,49(2):420-434.

    FEI Y H,LIU Y C,LI Y S,et al.Prospect of groundwater pollution remediation methods and technologies in China[J].Geology in China,2022,49(2):420-434.
    [3] PUIGSERVER D,CARMONA J M,CORTÉS A,et al.Subsoil heterogeneities controlling porewater contaminant mass and microbial diversity at a site with a complex pollution history[J].Journal of Contaminant Hydrology,2013,144(1):1-19. doi: 10.1016/j.jconhyd.2012.10.009
    [4] XIE D H,HE Q Y,ZHANG X X,et al.Study on the pollutant emissions characteristics of typical petrochemical enterprises in Hainan Province[J].IOP Conference Series:Earth and Environmental Science,2019,233:052017. doi: 10.1088/1755-1315/233/5/052017
    [5] 宋易南,侯德义,赵勇胜,等.京津冀化工场地地下水污染修复治理对策研究[J].环境科学研究,2020,33(6):1345-1356.

    SONG Y N,HOU D Y,ZHAO Y S,et al.Remediation strategies for contaminated groundwater at chemical industrial sites in the Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2020,33(6):1345-1356.
    [6] JAFARINEJAD S,JIANG S C.Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters[J].Journal of Environmental Chemical Engineering,2019,7(5):103326. doi: 10.1016/j.jece.2019.103326
    [7] CHARMONDUSIT K,KEARTPAKPRAEK K.Eco-efficiency evaluation of the petroleum and petrochemical group in the map Ta Phut Industrial Estate,Thailand[J].Journal of Cleaner Production,2011,19(2/3):241-252.
    [8] 王新港,杨昱,徐祥健,等.单井抽出-回渗同步循环地下水水力控制模型研究[J].环境科学研究,2023,36(1):180-187. doi: 10.13198/j.issn.1001-6929.2022.08.05

    WANG X G,YANG Y,XU X J,et al.Study on hydraulic control model of groundwater in single well pumping-infiltration synchronous circulation[J].Research of Environmental Sciences,2023,36(1):180-187. doi: 10.13198/j.issn.1001-6929.2022.08.05
    [9] 宫志强,刘明柱,刘伟江,等.单井捕获地下水污染羽的优化方法[J].环境工程学报,2019,13(10):2468-2474. doi: 10.12030/j.cjee.201812028

    GONG Z Q,LIU M Z,LIU W J,et al.Optimal method of groundwater pollution plume capture by single well[J].Chinese Journal of Environmental Engineering,2019,13(10):2468-2474. doi: 10.12030/j.cjee.201812028
    [10] ZHANG H,XU Y X,KANYERERE T.A modelling approach to improving water security in a drought-prone area,West Coast,South Africa[J].Physics and Chemistry of the Earth,Parts A/B/C,2019,114:102797. doi: 10.1016/j.pce.2019.08.005
    [11] WOODWARD S J R,WÖHLING T,STENGER R.Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths:the role of geological and hydrological site information[J].Journal of Hydrology,2016,534:680-694. doi: 10.1016/j.jhydrol.2016.01.045
    [12] SHANDILYA R N,BRESCIANI E,KANG P K,et al.Influence of hydrogeological and operational parameters on well pumping capacity[J].Journal of Hydrology,2022,608:127643. doi: 10.1016/j.jhydrol.2022.127643
    [13] BARRASH W,CLEMO T,FOX J J,et al.Field,laboratory,and modeling investigation of the skin effect at wells with slotted casing,boise hydrogeophysical research site[J].Journal of Hydrology,2006,326(1/2/3/4):181-198.
    [14] HOUBEN G J.Review:hydraulics of water wells-head losses of individual components[J].Hydrogeology Journal,2015,23(8):1659-1675. doi: 10.1007/s10040-015-1313-7
    [15] BRESCIANI E,SHANDILYA R N,KANG P K,et al.Well radius of influence and radius of investigation:what exactly are they and how to estimate them?[J].Journal of Hydrology,2020,583:124646. doi: 10.1016/j.jhydrol.2020.124646
    [16] SAUL V,McKINLEY R M.How areal heterogeneities affect pulse-test results[J].Society of Petroleum Engineers Journal,1970,10(2):181-191. doi: 10.2118/2569-PA
    [17] ZHA Y Y,YEH T C J,ILLMAN W A,et al.Exploitation of pump-and-treat remediation systems for characterization of hydraulic heterogeneity[J].Journal of Hydrology,2019,573:324-340. doi: 10.1016/j.jhydrol.2019.03.089
    [18] 向锐,徐亚,刘景财,等.基于敏感性分析的危险废物填埋场工程和地质屏障参数优化[J].环境科学研究,2020,33(3):643-651.

    XIANG R,XU Y,LIU J C,et al.Optimization of engineering and geological barrier parameters of hazardous waste landfills by sensitivity analysis[J].Research of Environmental Sciences,2020,33(3):643-651.
    [19] 郇环,刘兵,朱岗辉,等.基于野外原位抽注试验和同位素技术的含水层反硝化速率研究[J].环境科学研究,2020,33(9):1991-2000.

    HUAN H,LIU B,ZHU G H,et al.Denitrification rate in aquifer based on in-situ pumping/injecting test and isotope technique[J].Research of Environmental Sciences,2020,33(9):1991-2000.
    [20] 万鹏,张旭,李广贺,等.基于模拟-优化模型的某场地污染地下水抽水方案设计[J].环境科学研究,2016,29(11):1608-1616.

    WAN P,ZHANG X,LI G H,et al.Designof contaminant groundwater pumping scheme based on a simulation optimization model[J].Research of Environmental Sciences,2016,29(11):1608-1616.
    [21] 张帅,王旭升,姜永海,等.双井抽灌处理地下水污染的回收率理论公式[J].水利学报,2020,51(5):589-596.

    ZHANG S,WANG X S,JIANG Y H,et al.Theoretical equation of recovery ratio for treatment on groundwater contamination with paired wells of extraction-injection[J].Journal of Hydraulic Engineering,2020,51(5):589-596.
    [22] SHAN C.An analytical solution for the capture zone of two arbitrarily located wells[J].Journal of Hydrology,1999,222(1/2/3/4):123-128.
    [23] 姜烈,何江涛,姜永海,等.地下水硝酸盐污染抽出处理优化方法模拟研究[J].环境科学,2014,35(7):2572-2578.

    JIANG L,HE J T,JIANG Y H,et al.Simulation of nitrate pollution in groundwater using pump-and-treat optimization method[J].Environmental Science,2014,35(7):2572-2578.
    [24] 徐绍辉,朱学愚.地下水石油污染治理的水力截获技术及数值模拟[J].水利学报,1999,30(1):71-76. doi: 10.3321/j.issn:0559-9350.1999.01.013

    XU S H,ZHU X Y.Hydraulic capture technique for remedy of ground water contaminated by petroleum and its numerical model[J].Journal of Hydraulic Engineering,1999,30(1):71-76. doi: 10.3321/j.issn:0559-9350.1999.01.013
    [25] 汪成,陈坚,牛浩博,等.基于数值模拟的某污染区地下水风险管控值确定[J].环境工程,2022,40(11):159-164.

    WANG C,CHEN J,NIU H B,et al.Determination of groundwater risk management and control value in a polluted area based on numerical simulation[J].Environmental Engineering,2022,40(11):159-164.
    [26] 郭飞,朱学愚,刘建立,等.山东淄博裂隙岩溶水中污染物运移的数值模拟及治污措施[J].水利学报,2004,35(7):57-63. doi: 10.3321/j.issn:0559-9350.2004.07.010

    GUO F,ZHU X Y,LIU J L,et al.Numerical modeling of contaminant transport in fracture-karst aquifer and measures for pollution remediation[J].Journal of Hydraulic Engineering,2004,35(7):57-63. doi: 10.3321/j.issn:0559-9350.2004.07.010
    [27] DOBLE R C,PICKETT T,CROSBIE R S,et al.Emulation of recharge and evapotranspiration processes in shallow groundwater systems[J].Journal of Hydrology,2017,555:894-908. doi: 10.1016/j.jhydrol.2017.10.065
    [28] CHEN Z,HUANG J T,ZHAN H B,et al.Optimization schemes for deep foundation pit dewatering under complicated hydrogeological conditions using MODFLOW-USG[J].Engineering Geology,2022,303:106653. doi: 10.1016/j.enggeo.2022.106653
    [29] TSAI J P,CHANG L C,CHANG P Y,et al.Spatial-temporal pattern recognition of groundwater head variations for recharge zone identification[J].Journal of Hydrology,2017,549:351-362. doi: 10.1016/j.jhydrol.2017.03.047
    [30] CHEN Z,GÓMEZ-HERNÁNDEZ J J,XU T,et al.Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter[J].Journal of Hydrology,2018,564:1074-1084. doi: 10.1016/j.jhydrol.2018.07.073
    [31] 任加国,龚克,马福俊,等.基于BP神经网络的污染场地土壤重金属和PAHs含量预测[J].环境科学研究,2021,34(9):2237-2247. doi: 10.13198/j.issn.1001-6929.2021.04.22

    REN J G,GONG K,MA F J,et al.Prediction of heavy metal and PAHs content in polluted soil based on BP neural network[J].Research of Environmental Sciences,2021,34(9):2237-2247. doi: 10.13198/j.issn.1001-6929.2021.04.22
    [32] LAMONTAGNE J R,BARBER C A,VOGEL R M.Improved estimators of model performance efficiency for skewed hydrologic data[J].Water Resources Research,2020.doi: 10.1029/2020WR027101.
    [33] MELAKU N D,WANG J Y.A modified SWAT module for estimating groundwater table at Lethbridge and Barons,Alberta,Canada[J].Journal of Hydrology,2019,575:420-431. doi: 10.1016/j.jhydrol.2019.05.052
    [34] 《工程地质手册》编委会.工程地质手册[M].4版.北京:中国建筑工业出版社,2007:1002-1003.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  24
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 修回日期:  2023-06-25
  • 网络出版日期:  2023-07-03

目录

    /

    返回文章
    返回