留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机肥基可降解膜成膜助剂的优选及膜性能研究

杨哲 张婷 龚天成 李东阳 杨天学 王铭 卢欢亮

杨哲, 张婷, 龚天成, 李东阳, 杨天学, 王铭, 卢欢亮. 有机肥基可降解膜成膜助剂的优选及膜性能研究[J]. 环境科学研究, 2023, 36(9): 1755-1764. doi: 10.13198/j.issn.1001-6929.2023.07.11
引用本文: 杨哲, 张婷, 龚天成, 李东阳, 杨天学, 王铭, 卢欢亮. 有机肥基可降解膜成膜助剂的优选及膜性能研究[J]. 环境科学研究, 2023, 36(9): 1755-1764. doi: 10.13198/j.issn.1001-6929.2023.07.11
YANG Zhe, ZHANG Ting, GONG Tiancheng, LI Dongyang, YANG Tianxue, WANG Ming, LU Huanliang. Preferred Film-Forming Additives and Film Properties of Organic Fertilizer-Based Biodegradable Films[J]. Research of Environmental Sciences, 2023, 36(9): 1755-1764. doi: 10.13198/j.issn.1001-6929.2023.07.11
Citation: YANG Zhe, ZHANG Ting, GONG Tiancheng, LI Dongyang, YANG Tianxue, WANG Ming, LU Huanliang. Preferred Film-Forming Additives and Film Properties of Organic Fertilizer-Based Biodegradable Films[J]. Research of Environmental Sciences, 2023, 36(9): 1755-1764. doi: 10.13198/j.issn.1001-6929.2023.07.11

有机肥基可降解膜成膜助剂的优选及膜性能研究

doi: 10.13198/j.issn.1001-6929.2023.07.11
基金项目: 国家重点研发计划项目(No.2020YFD1100301-04);中国工程院战略研究与咨询项目(No.2022-GD-6);广东省省级生态环境专项资金项目(No.粤财资环〔2023〕12号)
详细信息
    作者简介:

    杨哲(1995-),男,河南新乡人,yzhe0708@126.com

    通讯作者:

    ①杨天学(1983-),男,安徽枞阳人,研究员,博士,主要从事固体废弃物处理处置研究,yangtianxue17@163.com

    ②王铭(1982-),男,山东潍坊人,副教授,博士,主要从事环境生态工程研究,firefoxming@qq.com

  • 中图分类号: X705

Preferred Film-Forming Additives and Film Properties of Organic Fertilizer-Based Biodegradable Films

Funds: National Key Research and Development Program of China (No.2020YFD1100301-04); Strategic Research and Consulting Project of Chinese Academy of Engineering (No.2022-GD-6); Special Fund Project for Environmental Protection of Guangdong Province, China (No.Yue Cai Zi Huan [2023]12)
  • 摘要: 研发可降解膜对于缓解由传统塑料膜引起的土壤环境污染具有重要意义. 在不同的生物可降解材料中,利用有机肥中丰富的纤维素、半纤维素和腐殖酸为骨架材料制备生物可降解膜成为一种新的选择,而成膜助剂是有机肥制备可降解膜的关键. 为了探究膜制备过程中成膜助剂对膜性能的影响,分析成膜助剂对有机肥可降解膜的作用机理以及膜的降解规律,以海藻酸钠、丙三醇、戊二醛和羧甲基纤维素钠为成膜助剂,通过正交设计试验,以拉伸强度、断裂伸长率与气体透过性为指标,对成膜助剂最佳浓度进行优化. 结果表明:当海藻酸钠、丙三醇、戊二醛和羧甲基纤维素钠添加量(以质量分数计)分别为0.70%、1.00%、0.20%和1.00%时,有机肥可降解膜的综合性能最佳,其中机械性能中的拉伸强度为16.88 MPa、断裂伸长率为28.47%,氨气和二氧化碳透过系数分别为1.23×10−11和1.03×10−11 g·m/(m2·d·Pa). 光谱学分析结果表明,成膜后羟基、羧基、醛基等官能团含量和结晶度均有增加,因而实现了松散有机肥成为稳定性的可降解膜材料. 土壤掩埋试验结果表明,膜材料降解过程符合二级降解动力学模型,降解速率常数为0.004,32 d降解失重率为58.97%,具有较好的降解性. 因此,成膜助剂对有机肥制备的可降解膜机械性能和气体透过性影响显著,且降解性良好,在农业生产领域具有一定的实用价值.

     

  • 图  1  有机肥和可降解膜材料红外光谱图

    Figure  1.  The FTIR spectra of organic fertilizer and degradable film

    图  2  有机肥和可降解膜材料XRD图谱

    Figure  2.  The XRD diagram of the organic fertilizer and degradable film

    图  3  可降解膜表观形貌随降解时间的变化

    Figure  3.  Variation of degradable film surface morphology with degradation time

    图  4  可降解膜降解过程中失重率随降解时间的变化

    Figure  4.  Variation of weight loss rate with degradation time during film degradation

    图  5  覆盖过程中膜完整性随时间的变化

    Figure  5.  Changes in films integrity with time during mulching

    表  1  正交试验设计

    Table  1.   Orthogonal experimental design

    水平添加量/%
    A(海藻酸钠)B(丙三醇)C(戊二醛)D(羧甲基纤维素钠)
    10.400.50.040.25
    20.551.00.120.50
    30.701.50.200.75
    40.852.00.281.00
    51.002.50.361.25
    下载: 导出CSV

    表  2  正交试验结果

    Table  2.   Results of orthogonal experiment

    试验序号水平性能目标
    A(海藻酸钠)B(丙三醇)C(戊二醛)D(羧甲基
    纤维素钠)
    拉伸强度/MPa断裂伸长率/%氨气透过系数/
    [10−11 g·m/(m2·d·Pa)]
    二氧化碳透过系数/
    [10−11 g·m/(m2·d·Pa)]
    111115.417.133.892.87
    214321.6153.382.911.92
    312539.4112.962.551.59
    415242.9346.302.921.93
    513454.6815.553.572.41
    624211.6543.213.672.28
    722427.679.543.542.32
    825131.0252.282.891.56
    923345.9133.612.481.21
    1021557.124.213.202.31
    1132319.5522.452.411.19
    1235523.3354.922.891.37
    1333234.5325.722.941.45
    1431449.6315.662.511.22
    1534155.4733.553.351.88
    1645512.8435.143.952.78
    1743123.419.233.582.63
    18413311.117.923.012.12
    1944544.3234.212.821.53
    20422510.2613.442.441.36
    2153514.5416.313.562.43
    2251227.981.183.582.37
    2354434.1132.763.362.32
    24521410.188.692.411.23
    2555353.5631.872.992.21
    下载: 导出CSV

    表  3  正交试验结果分析

    Table  3.   Analysis of orthogonal experiment results

    性能目标指标A(海藻酸钠)B(丙三醇)C(戊二醛)D(羧甲基纤维素钠)
    拉伸强度$ \overline{\text{k}}\text{1-1} $4.818.255.104.80
    $ \overline{\text{k}}\text{1-2} $4.679.415.474.80
    $ \overline{\text{k}}\text{1-3} $6.504.616.356.04
    $ \overline{\text{k}}\text{1-4} $6.393.435.796.59
    $ \overline{\text{k}}\text{1-5} $6.072.745.746.22
    R11.836.681.251.80
    断裂伸长率$ \overline{\text{k}}\text{2-1} $27.067.2222.1824.85
    $ \overline{\text{k}}\text{2-2} $28.5713.4225.9725.65
    $ \overline{\text{k}}\text{2-3} $30.4620.0829.8526.33
    $ \overline{\text{k}}\text{2-4} $19.9939.4221.7327.69
    $ \overline{\text{k}}\text{2-5} $18.1644.1024.5219.72
    R212.3036.887.677.97
    氨气透过率$ \overline{\text{k}}\text{3-1} $3.173.243.223.50
    $ \overline{\text{k}}\text{3-2} $3.162.673.113.30
    $ \overline{\text{k}}\text{3-3} $2.823.232.762.95
    $ \overline{\text{k}}\text{3-4} $3.163.223.392.63
    $ \overline{\text{k}}\text{3-5} $3.183.133.003.11
    R30.360.570.630.87
    二氧化碳透过率$ \overline{\text{k}}\text{4-1} $2.142.182.032.31
    $ \overline{\text{k}}\text{4-2} $1.941.541.882.12
    $ \overline{\text{k}}\text{4-3} $1.422.031.731.81
    $ \overline{\text{k}}\text{4-4} $2.081.992.211.42
    $ \overline{\text{k}}\text{4-5} $2.111.971.852.03
    R40.720.640.480.89
    注:$ \overline{\rm{k}} $值为每个因素各个水平对应性能目标的平均值,R为每个因素对应性能目标平均值的极差值.
    下载: 导出CSV

    表  4  不同膜材料的物理性能

    Table  4.   Physical properties of different film materials

    膜材料拉伸强度/MPa断裂伸长率/%氨气透过率系数/[10−11 g·m/(m2·d·Pa)]二氧化碳透过率/[10−11 g·m/(m2·d·Pa)]数据来源
    柠檬酸渣发酵废弃物膜4.238.40文献[24]
    纤维素-腐殖酸混合膜16.7923.07文献[25]
    菜籽渣可降解膜1.014.0文献[26]
    聚丙烯膜4626文献[27]
    低密度聚乙烯膜14063.5文献[27]
    纤维素膜0.080.024文献[27]
    有机肥可降解膜16.8828.471.231.03本研究
    下载: 导出CSV

    表  5  不同可降解膜材料降解情况

    Table  5.   Degradation of different degradable film materials

    膜材料降解时间/d失重率/%数据来源
    柠檬酸渣发酵废弃物膜4043.06文献[38]
    明胶基共混膜3535文献[39]
    腐殖酸可降解膜3050文献[40]
    有机肥可降解膜1449.98本研究
    下载: 导出CSV

    表  6  可降解膜的降解动力学模型

    Table  6.   Kinetic Kinetic models of film degradation

    模型方程降解速率常数(k)R2
    一级降解动力学模型W=57.04×(1−e−0.196t)0.1960.976
    二级降解动力学模型W=17.20t/(1+0.262t)0.0040.996
      注:W为失重率,t为降解时间.
    下载: 导出CSV
  • [1] SUN Y T,YANG W L,SHI H X,et al.Past,present,and future perspectives of biodegradable films for soil:a 30-year systematic review[J].Frontiers in Bioengineering and Biotechnology,2022,10:1006388. doi: 10.3389/fbioe.2022.1006388
    [2] 艾瑞咨询.中国可降解材料市场研究报告[R].上海:上海艾瑞市场咨询有限公司,2022:324-365.
    [3] 杨天学,杨哲,张军平,等.国内外可降解膜研究热点及趋势对比分析[J].中国塑料,2023,37(1):119-132. doi: 10.19491/j.issn.1001-9278.2023.01.018

    YANG T X,YANG Z,ZHANG J P,et al.Comparative analysis of research hotspots and trends of domestic and foreign biodegradable films[J].China Plastics,2023,37(1):119-132. doi: 10.19491/j.issn.1001-9278.2023.01.018
    [4] KIM J W,MAZZA G.Extraction and separation of carbohydrates and phenolic compounds in flax shives with pH-controlled pressurized low polarity water[J].Journal of Agricultural and Food Chemistry,2009,57(5):1805-1813. doi: 10.1021/jf803467y
    [5] 付冰妍,孙向阳,余克非,等.降解园林废弃物专用固体复合菌的构建及其堆肥效应研究[J].环境科学研究,2021,34(5):1231-1237. doi: 10.13198/j.issn.1001-6929.2020.08.16

    FU B Y,SUN X Y,YU K F,et al.Construction of solid composite inoculum for green waste degradation and its effect on composting[J].Research of Environmental Sciences,2021,34(5):1231-1237. doi: 10.13198/j.issn.1001-6929.2020.08.16
    [6] SAJID S,ZVEUSHE O K,DEDIOS V R,et al.Pretreatment of rice straw by newly isolated fungal consortium enhanced lignocellulose degradation and humification during composting[J].Bioresource Technology,2022,354:127150. doi: 10.1016/j.biortech.2022.127150
    [7] 薛颖昊,孙占祥,居学海,等.可降解农用地膜的材料研究与应用现状[J].中国塑料,2020,34(5):87-96.

    XUE Y H,SUN Z X,JU X H,et al.Current status of research and applications of degradable materials for agricultural soil films[J].China Plastics,2020,34(5):87-96.
    [8] 柳芳伟,殷军艺,聂少平.基于多糖基增稠剂产品开发现状与发展趋势[J].中国食品添加剂,2023,34(1):37-45. doi: 10.19804/j.issn1006-2513.2023.01.005

    LIU F W,YIN J Y,NIE S P.Classification,properties and development trend of polysaccharides thickeners[J].China Food Additives,2023,34(1):37-45. doi: 10.19804/j.issn1006-2513.2023.01.005
    [9] 王朋园,杜晓威,刘建业,等.增塑剂对淀粉基复合薄膜性能的影响[J].河北工业科技,2020,37(1):11-16.

    WANG P Y,DU X W,LIU J Y,et al.Effect of plasticizers on the properties of starch-based composite film[J].Hebei Journal of Industrial Science and Technology,2020,37(1):11-16.
    [10] 梁玉芝.半纤维素/壳聚糖复合膜的制备及性能研究[D].济南:齐鲁工业大学,2015.
    [11] 贾超,王利强,卢立新.淀粉基可食膜研究进展[J].食品科学,2013,34(5):289-292.

    JIA C,WANG L Q,LU L X.Research progress of starch-based edible film[J].Food Science,2013,34(5):289-292.
    [12] LU X M,CHEN Z Z,MA Q Y,et al.Preparation and characterization of yellow peach peel/sodium alginate/glycerol antioxidant film applicable for oil package[J].Polymers,2022,14(9):1693. doi: 10.3390/polym14091693
    [13] ALI R S M,MOHAMMAD A A,ZAHEDI Y.Characterisation of a new biodegradable edible film based on sage seed gum:influence of plasticiser type and concentration[J].Food Hydrocolloids,2015,43:290-298. doi: 10.1016/j.foodhyd.2014.05.028
    [14] 苏玲.碱木质素-PVA基交联薄膜的制备与性能研究[D].哈尔滨:东北林业大学,2015.
    [15] 刘昌宁.天然聚合物可降解复合膜的制备及性能研究[D].兰州:兰州交通大学,2015.
    [16] KASEMSIRI P,DULSANG N,PONGSA U,et al.Optimization of biodegradable foam composites from cassava starch,oil palm fiber,chitosan and palm oil using taguchi method and grey relational analysis[J].Journal of Polymers and the Environment,2017,25(2):378-390. doi: 10.1007/s10924-016-0818-z
    [17] 国家质量监督检验检疫总局,中国国家标准化管理委员会.塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件:GB/T 1040.3—2006[S].北京:中国标准出版社,2007.
    [18] 国家质量监督检验检疫总局.塑料薄膜和薄片气体透过性试验方法 压差法:GB/T 1038—2000[S].北京:中国标准出版社,2004.
    [19] LI M,WITT T,XIE F W,et al.Biodegradation of starch films:the roles of molecular and crystalline structure[J].Carbohydrate Polymers,2015,122:115-122. doi: 10.1016/j.carbpol.2015.01.011
    [20] ZHANG J P,HOU J Q,LI M X,et al.A novel process for food waste recycling:a hydrophobic liquid mulching film preparation[J].Environmental Research,2022,212:113332. doi: 10.1016/j.envres.2022.113332
    [21] 王学深.正交试验设计法[J].山西化工,1989,9(3):53-58.

    WANG X S.Orthogonal experimental design method[J].Shanxi Chemical Industry,1989,9(3):53-58.
    [22] NORDIN N,OTHMAN S H,RASHID S A,et al.Effects of glycerol and thymol on physical,mechanical,and thermal properties of corn starch films[J].Food Hydrocolloids,2020,106:105884. doi: 10.1016/j.foodhyd.2020.105884
    [23] OUN A A,RHIM J W.Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films[J].Carbohydrate Polymers,2016,150:187-200. doi: 10.1016/j.carbpol.2016.05.020
    [24] SHI L,AO L L,KANG H,et al.Evaluation of biodegradable films made of waste Mycelium and poly (vinyl alcohol) on the yield of pak-choi[J].Journal of Polymers and the Environment,2012,20(2):492-500. doi: 10.1007/s10924-011-0404-3
    [25] NING R X,LIANG J,SUN Z H,et al.Preparation and characterization of black biodegradable mulch films from multiple biomass materials[J].Polymer Degradation and Stability,2021,183:109411. doi: 10.1016/j.polymdegradstab.2020.109411
    [26] VAICEKAUSKAITE J,OSTRAUSKAITE J,TREINYTE J,et al.Biodegradable linseed oil-based cross-linked polymer composites filled with industrial waste materials for mulching coatings[J].Journal of Polymers and the Environment,2019,27(2):395-404. doi: 10.1007/s10924-018-1360-y
    [27] MAKHLOUFI C,ROIZARD D,FAVRE E.Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation[J].Journal of Membrane Science,2013,441:63-72. doi: 10.1016/j.memsci.2013.03.048
    [28] 刘泽泓,卞兆勇.壳聚糖增强疏水性硅气凝胶的制备及其吸油性能研究[J].环境科学研究,2023,36(2):354-362.

    LIU Z H,BIAN Z Y.Preparation and oil absorption properties of chitosan-enhanced hydrophobic silica aerogel[J].Research of Environmental Sciences,2023,36(2):354-362.
    [29] LI Y Q,KONG D X,WU H.Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy[J].Industrial Crops and Products,2013,41:269-278. doi: 10.1016/j.indcrop.2012.04.056
    [30] 常明,武玉洁,张海燕,等.硅氧树脂Si—O键伸缩振动模式ATR红外光谱研究[J].材料导报,2015,29(16):67-71.

    CHANG M,WU Y J,ZHANG H Y,et al.Fourier transform attenuated total reflection infrared spectroscopy study of polysiloxanes Si-O stretch vibration[J].Materials Review,2015,29(16):67-71.
    [31] SALEHIAN P,KARIMI K,ZILOUEI H,et al.Improvement of biogas production from pine wood by alkali pretreatment[J].Fuel,2013,106:484-489. doi: 10.1016/j.fuel.2012.12.092
    [32] 刘杭忠,邱丽清,关怀民.竹纤维复合亲水膜的制备及性能研究[J].高分子通报,2020(5):39-47.

    LIU H Z,QIU L Q,GUAN H M.Preparation and properties of bamboo fiber hydrophilic membrane[J].Polymer Bulletin,2020(5):39-47.
    [33] 张宇晨.可降解活性包装膜的制备、性能及其在食物无损检测中的应用研究[D].长春:吉林大学,2020.
    [34] 李淑慧,鲍皓明,梁作斌,等.甘肃石英砂矿的成分分析[J].陶瓷学报,2013,34(4):450-454.

    LI S H,BAO H M,LIANG Z B,et al.Composition analysis of Gansu quartz sand[J].Journal of Ceramics,2013,34(4):450-454.
    [35] 海热古·吐逊,吐沙姑·阿不都吾甫,美合日古丽·麦麦提,等.Sm3+掺杂天然钠长石(NaAlSi3O8)荧光粉的发光性质研究[J].人工晶体学报,2017,46(9):1697-1702. doi: 10.3969/j.issn.1000-985X.2017.09.008

    HAIREGU·Tuxun,TUSHAGU·Abuduwufu,MEIHERIGULI·Maimaiti,et al.Luminescent properties of Sm3+ doped natural soda feldspar(NaAlSi3O8) phosphors[J].Journal of Synthetic Crystals,2017,46(9):1697-1702. doi: 10.3969/j.issn.1000-985X.2017.09.008
    [36] JUNIOR M G,TEIXEIRA F G,TONOLI G H D.Effect of the nano-fibrillation of bamboo pulp on the thermal,structural,mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend[J].Cellulose,2018,25(3):1823-1849. doi: 10.1007/s10570-018-1691-9
    [37] 刘敏.可生物降解地膜的应用效果及其降解机理研究[D].北京:中国矿业大学(北京),2011.
    [38] MA Z F,MA Y B,QIN L Z,et al.Preparation and characteristics of biodegradable mulching films based on fermentation industry wastes[J].International Biodeterioration & Biodegradation,2016,111:54-61.
    [39] CHEN L,QIANG T T,CHEN X J,et al.Fabrication and evaluation of biodegradable multi-cross-linked mulch film based on waste gelatin[J].Chemical Engineering Journal,2021,419:129639. doi: 10.1016/j.cej.2021.129639
    [40] 王志信,朱娇娇,谢敏杰,等.腐植酸可降解地膜的生物降解性研究[J].中国农业科技导报,2017,19(5):92-99.

    WANG Z X,ZHU J J,XIE M J,et al.Studies on biodegradation of humic acid degradable mulching film[J].Journal of Agricultural Science and Technology,2017,19(5):92-99.
    [41] RASMUSSEN H,SØRENSEN H R,MEYER A S.Formation of degradation compounds from lignocellulosic biomass in the biorefinery:sugar reaction mechanisms[J].Carbohydrate Research,2014,385:45-57. doi: 10.1016/j.carres.2013.08.029
    [42] 赵阳佳,吕鹏辉,徐小萌,等.7种绿肥作物种子萌发期抗旱性的研究[J].北京农学院学报,2019,34(4):32-35.

    ZHAO Y J,LÜ P H,XU X M,et al.Study on drought tolerance during seed germination in seven green manure crops[J].Journal of Beijing University of Agriculture,2019,34(4):32-35.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  30
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-06-16
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回