Life Cycle Prediction Assessment of Hydrogen Fuel Cells and Diesel Heavy-Duty Commercial Vehicles for 2035
-
摘要: 氢燃料电池重型商用车(fuel cell heavy commercial vehicles,FCHCV)在推广交通领域碳减排方面具有广阔的应用前景,但对环境是否友好仍需进一步研究. 为准确衡量FCHCV相对于柴油重型商用车(diesel heavy commercial vehicles, DHCV)的环境效益,基于生命周期评价理论和《节能与新能源汽车技术路线图2.0》,构建面向2035年基于不同氢能路径的FCHCV与DHCV的材料消耗、能源消耗、碳排放和污染物排放预测评价模型,科学量化预测不同氢能路径下FCHCV相较于DHCV的全生命周期环境影响和节能减排潜力,梳理并搭建了FCHCV与DHCV的物质流、能量流和排放流的数据清单,采用GaBi软件与CML2001方法体系对数据清单进行了计算,并对比分析了全生命周期环境影响预测结果. 结果表明:目前,FCHCV的全生命周期材料消耗量高于DHCV,主要原因是锂电池的材料消耗量较高,基于光伏电解水制氢路径的FCHCV的节能减排效果较好,对环境产生的负面效益较低. 到2035年,基于光伏电解水制氢的FCHCV的全生命周期化石能源消耗量、碳排放和酸化潜值较DHCV分别低41.78%、79.09%、55.30%,但基于混合电力电解水制氢的FCHCV的全生命周期化石能源消耗量、碳排放量和酸化潜值较DHCV分别高56.80%、10.47%和45.01%. 研究显示,以可再生能源制氢为基础的FCHCV在未来具有较大的节能减排和降低环境负面效益潜力,但以混合电力制氢为基础的FCHCV未来与DHCV在节能减排和环境保护方面竞争力较小.Abstract: Fuel cell heavy commercial vehicles (FCHCV) have broad application prospects in reducing transportation carbon emissions, but whether they are environmentally friendly still needs to be studied. In order to accurately measure the environmental benefits of FCHCV compared to diesel heavy commercial vehicles (DHCV), based on the theory of life cycle assessment and the ‘Roadmap 2.0 for Energy Conservation and New Energy Vehicle Technology’, a prediction and evaluation model for material consumption, energy consumption, carbon emissions, and pollutant emissions of FCHCV based on different hydrogen energy paths and diesel heavy commercial vehicles (DHCV) is constructed for the year 2035. The model scientifically quantifies the life cycle environmental impact and energy-saving and emission reduction potential of FCHCV based on different hydrogen energy paths compared to DHCV. A data list of material flow, energy flow, and discharge flow for FCHCV and DHCV was compiled and constructed. The data list was calculated using GaBi software and CML2001 method system, and the results of life cycle environmental impact prediction were compared and analyzed. The results show that the current life cycle material consumption of FCHCV is higher than that of DHCV, mainly due to the high material consumption of lithium batteries. FCHCV based on the photovoltaic electrolysis water hydrogen production path has good energy saving and emission reduction effects, and low negative environmental benefits. By 2035, the life cycle fossil energy consumption, carbon emissions and acidification potential of FCHCV based on photovoltaic electrolysis of water for hydrogen production will be 41.78%, 79.09% and 55.30% lower than DHCV. However, the life cycle fossil energy consumption, carbon emissions and acidification potential of FCHCV based on hybrid electric electrolysis of water for hydrogen production will be 56.80%,10.47% and 45.01% higher than DHCV. Therefore, FCHCV based on renewable energy for hydrogen production has great potential for energy conservation, emission reduction, and reduction of negative environmental benefits in the future. However, FCHCV based on hybrid electricity for hydrogen production has less competitiveness in energy conservation, emission reduction, and environmental protection compared to DHCV in the future.
-
表 1 DHCV与FCHCV基本特征参数
Table 1. Basic characteristic parameters of DHCV and FCHCV
参数名称 DHCV FCHCV 车身长度×宽度×高度 7.06 m×2.55 m×3.98 m 7.06 m×2.55 m×3.98 m 整车质量/t 8.8 9.0 牵引总质量/t 40 40 最高车速/(km/h) 110 110 燃料电池额定功率/kW 162 锂电池容量/(kW·h) 117.1 电动机峰值功率/kW 360 发动机最大输出功率/kW 390 燃料电池寿命/h 30 000 百公里氢能消耗量/
[kg/(100 km)]14.911) 燃油经济性/[L/(100 km)] 40 低温启动温度/℃ −30 注:1)14.91 kg/(100 km)代表49 t重型牵引车在C-WTVC驾驶循环下测算的百公里氢耗量. 表 2 FCHCV的预测情景
Table 2. Predictive scenarios for fuel cell heavy commercial vehicles
年份 百公里氢耗量/
[kg/(100 km)]牵引车挂牵比率
变化率/%整备
质量/t电解水制取1 N·m3的
氢能耗电量/(kW·h)氢能运输
方式电力结构占比/% 煤电 水电 核电 光伏发电 风电 其他 2022 14.91 — 9.00 4 高压气氢 71 15 3 2 4 5 2035 10.00 15 7.83 3 管道运输 40 12 9 17 19 3 表 3 2022年和2035年FCHCV动力系统数据清单
Table 3. FCHCV powertrain data list in 2022 and 2035
部件 材料清单 投入用量 部件 材料清单 投入用量 2022年 2035年 2022年 2035年 燃料电池堆栈1) 膜电极 质子交换膜 异丙醇 2.27 kg 1.96 kg BOP 钢 167.67 kg 145.87 kg 水 2.27 kg 1.96 kg 锻造铝 9.72 kg 8.46 kg 电能 3.48 MJ 3.01 MJ 高密度聚乙烯 36.45 kg 31.71 kg 热能 2.15 MJ 1.86 MJ 乙烯 19.44 kg 16.91 kg 四氟乙烯 1.73 kg 1.49 kg 橡胶 7.29 kg 6.34 kg 硫酸 1.30 kg 1.12 kg 其他 2.43 kg 2.11 kg 聚乙烯 4.15 kg 3.58 kg 气体扩散层 石墨 16.82 kg 1.57 kg 电机和电控单元 铜 14.40 kg 12.53 kg 聚四氟乙烯2) 33.63 kg 3.14 kg 钢 71.10 kg 61.86 kg 碳纤维3) 302.70 kg 28.24 kg 钕铁硼5) 0.90 kg 0.78 kg 电能 1 204.06 MJ 112.32 MJ 铝合金 3.60 kg 3.13 kg 储氢罐 化石能源消耗6) — — 催化层 铂碳催化剂4) 0.23 kg 0.20 kg 碳纤维 410.40 kg 357.05 kg 碳黑 0.35 kg 0.30 kg 环氧树脂 164.16 kg 142.82 kg Nafion DE-521 2.80 kg 2.42 kg 泡沫 27.36 kg 23.80 kg 水 0.23 kg 0.20 kg 玻璃纤维 27.36 kg 23.80 kg 甲醇 0.23 kg 0.20 kg 高强度聚乙烯 47.88 kg 41.65 kg 电能 3437.08 MJ 2800.06 MJ 铝基体 6.84 kg 5.95 kg 组装 电能 506.03 MJ 436.98 MJ 锂电池 磷酸铁锂 128.70 kg 111.97 kg 冷却垫片 橡胶 42.59 kg 36.79 kg 聚氯乙烯 40.95 kg 35.63 kg 5.54 MJ 4.78 MJ 石墨 239.85 kg 208.67 kg 端板 铝 24.68 kg 21.28 kg 58.50 kg 50.90 kg 24.68 kg 21.28 kg 35.10 kg 30.54 kg 双极板 石墨 163.67 kg 141.48 kg 聚乙烯 70.20 kg 61.07 kg 醋酸乙烯酯 22.0 kg 60.63 kg 其他 11.70 kg 10.18 kg 电能 5143.82 MJ 4446.38 MJ 电能 2.67 MJ 1358.90 MJ 注:1)1 kW的燃料电池堆栈由1.434 kg的双极板、0.261 kg的冷却剂垫片、0.265 kg的膜电极和0.302 kg的端板组成[22]. 2)聚四氟乙烯的清单在GaBi数据库中没有,用高强度聚乙烯代替. 3)生产0.9 kg碳纤维需要消耗0.9 kg的聚丙烯腈、88.7 MJ热能和235.87 MJ的电能[22]. 4)生产1 g铂碳催化剂需要消耗0.6 MJ的电能和0.09 MJ的热能[22]. 5)生产1 kg钕铁硼需要消耗0.697 kg的铁和3.37 kg的硬煤[33]. 6)电机厂的制造化石能源消耗强度为生产1 kg标准煤所使用的电能,生产电机需要消耗59%的煤和32%的电能[30]. 表 4 2022年和2035年FCHCV车身底盘、DHCV原材料获取阶段数据清单
Table 4. FCHCV body chassis and DHCV raw material acquisition stage data list in 2022 and 2035
车型 年份 部件 使用量/kg 钢 铝 铸铁 铜 镁 橡胶 玻璃纤维 塑料 其他 FCHCV 2022 车身 1 861.08 21.67 51.47 2.71 178.79 471.37 121.91 底盘 3 555.36 43.20 272.16 99.36 181.44 142.56 25.92 2035 车身 1 619.14 18.85 44.78 2.36 155.55 410.09 106.06 底盘 3 093.16 37.58 236.78 86.44 157.85 124.03 22.55 DHCV 2022 发动机 330.94 389.34 114.02 9.27 41.72 41.72 变速器 153.90 153.90 153.90 25.65 25.65 车身 1 898.18 22.10 52.50 480.76 306.69 底盘 3 947.93 47.97 302.21 110.33 201.47 158.30 28.78 2035 发动机 281.67 331.37 97.04 7.89 35.50 35.50 变速器 130.99 130.99 130.99 21.83 21.83 车身 1 615.56 18.81 44.68 409.18 261.03 底盘 3 360.13 40.83 257.21 93.90 171.48 134.73 24.50 注:由于缺少2035年车身各材料占比预测数据,2035年各原材料使用量参考《节能与新能源汽车技术路线图2.0》,即各原材料使用量相较于2022年降低13%. 表 5 4种氢能路径下1 kg氢气的生命周期能耗、碳排放和污染物排放量
Table 5. Life cycle energy consumption, carbon emissions, and pollutant emissions of 1 kg hydrogen under 4 hydrogen energy pathways
氢能路径 ADP(f)/MJ GWP/kg AP/kg EP/kg POCP/kg HTP/kg 煤气化+高压气氢 3.31×102 2.75×101 1.66×10−2 8.26×10−4 4.78×10−3 8.30×10−3 甲烷重整+高压气氢 3.98×102 2.03×101 2.46×10−2 1.55×10−3 4.98×10−3 1.20×10−2 混合电力电解水+高压气氢 4.09×102 3.47×101 7.66×10−2 9.75×10−3 8.28×10−3 3.30×10−2 光伏电解水+高压气氢 1.52×102 3.21×100 1.26×10−2 9.26×10−4 4.13×10−3 1.00×10−4 表 6 车辆行驶单位公里所需的柴油燃料在生产和使用过程产生的碳排放量及污染物排放量
Table 6. Carbon emissions and pollutant emissions during the production and use of diesel fuel
kg 阶段 GWP AP EP POCP HTP 柴油生产 1.68×10−1 7.63×10−4 7.6×10−5 1.10×10−4 2.86×10−2 柴油使用 1.64×100 2.36×10−3 6.23×10−4 1.92×10−4 5.71×10−3 总计 1.81×100 3.12×10−3 7.00×10−4 3.02×10−4 3.43×10−2 表 7 传统部件材料回收的能源消耗和回收效率
Table 7. Energy consumption and recycling efficiency of traditional component material recycling
材料 预处理能耗/(kW·h) 回收效率/% 废渣处理率/% 钢 4.23 75 25 铝 0.80 46 54 铁 2.24 80 20 铜 9.54 90 10 橡胶 37 63 表 8 2022年和2035年DHCV的全生命周期评价结果
Table 8. DHCV life cycle assessment results for 2022 and 2035
年份 阶段 ADP(e)/kg ADP(f)/MJ GWP/kg AP/kg EP/kg POCP/kg HTP/kg 2022 Ⅰ 5.82×10−1 3.43×105 3.13×104 1.14×102 7.83×100 1.23×101 1.02×104 Ⅱ 1.25×10−3 2.34×105 2.21×104 4.81×101 6.29×100 3.23×100 9.57×102 Ⅲ 0.00×100 6.80×106 7.23×105 1.25×103 2.80×102 1.21×102 1.37×104 Ⅳ −4.97×10−1 −1.41×105 −1.28×104 −5.35×101 −3.22×100 −6.48×100 −5.13×103 总计 8.62×10−2 7.24×106 7.64×105 1.36×103 2.91×102 1.30×102 1.98×104 2035 Ⅰ 5.16×10−1 3.04×105 2.77×104 1.01×102 6.94×100 1.09×101 9.04×103 Ⅱ 1.11×10−3 2.07×105 1.96×104 4.26×101 5.58×100 2.87×100 8.49×102 Ⅲ 0.00×100 5.10×106 5.42×105 9.37×102 2.10×102 9.06×101 1.03×104 Ⅳ −4.41×10−1 −1.25×105 −1.13×104 −4.74×101 −2.85×100 −5.74×100 −4.55×103 总计 7.64×10−2 5.49×106 5.78×105 1.03×103 2.19×102 9.86×101 1.56×104 表 9 2022年和2035年基于4种氢能路径的FCHCV全生命周期评价结果
Table 9. FCHCV life cycle assessment results based on four hydrogen energy pathways in 2022 and 2035
年份 氢能路径 ADP(e)/kg ADP(f)/MJ GWP/kg AP/kg EP/kg POCP/kg HTP/kg 2022 煤气化 2.86×10−1 2.05×107 1.71×106 1.16×103 6.84×101 2.97×102 2.21×104 甲烷重整 2.86×10−1 2.45×107 1.28×106 1.63×103 1.12×102 3.09×102 2.23×104 混合电力电解水 2.86×10−1 2.52×107 2.14×106 4.73×103 6.01×102 5.06×102 2.36×104 光伏电解水 2.86×10−1 9.85×106 2.63×105 9.17×102 7.43×101 2.59×102 2.16×104 2035 煤气化 2.61×10−1 1.34×107 1.11×106 6.90×102 4.82×101 1.37×102 1.86×104 甲烷重整 2.61×10−1 1.61×107 8.23×105 1.01×103 7.70×101 1.45×102 1.88×104 混合电力电解水 2.61×10−1 8.61×106 6.39×105 1.49×103 1.90×102 1.70×102 1.86×104 光伏电解水 2.61×10−1 3.20×106 1.21×105 4.61×102 4.54×101 1.05×102 1.84×104 表 10 2022年和2035年FCHCV原材料获取阶段各部件全生命周期评价结果
Table 10. Evaluation results of FCHCV raw material acquisition for various components in 2022 and 2035
年份 部件 ADP(e)/kg ADP(f)/MJ GWP/kg AP/kg EP/kg POCP/kg HTP/kg 2022 燃料电池堆栈 4.42×10−3 6.45×104 5.25×103 1.28×101 1.45×100 9.53×10−1 2.56×103 锂电池 2.39×10−1 6.99×104 9.47×103 3.38×101 1.71×100 2.10×100 3.04×103 储氢罐 7.84×10−3 3.60×105 3.09×104 6.53×101 9.08×100 4.73×100 1.40×103 电机与电控单元 4.77×10−2 1.02×104 1.03×103 4.80×100 3.05×10−1 3.71×10−1 5.41×102 BOP 2.32×10−2 1.04×104 7.16×102 4.10×100 1.89×10−1 2.13×10−1 1.44×104 车身 1.98×10−1 6.67×104 5.98×103 1.90×101 1.13×100 2.42×100 9.07×102 底盘 3.25×10−1 1.32×105 1.07×104 3.22×101 2.57×100 4.44×100 1.66×103 总计 8.45×10−1 7.14×105 6.40×104 1.72×102 1.64×101 1.52×101 2.45×104 2035 燃料电池堆栈 4.83×10−3 4.19×104 3.20×103 8.30×100 8.78×10−1 6.38×10−1 2.19×103 锂电池 2.08×10−1 5.14×104 7.34×103 2.75×101 1.24×100 1.70×100 2.62×103 储氢罐 1.30×10−2 2.24×105 1.83×104 3.88×101 5.47×100 2.91×100 9.74×102 电机与电控单元 4.15×10−2 8.25×103 8.34×102 4.05×100 2.48×10−1 3.14×10−1 4.69×102 BOP 2.02×10−2 9.05×103 6.23×102 3.57×100 1.64×10−1 1.85×10−1 1.25×104 车身 1.72×10−1 5.80×104 5.20×103 1.65×101 9.83×10−1 2.11×100 7.89×102 底盘 2.83×10−1 1.15×105 9.31×103 2.80×101 2.24×100 3.86×100 1.44×103 总计 7.43×10−1 5.07×105 4.48×104 1.27×102 1.12×101 1.17×101 2.10×104 -
[1] 李雪迎,白璐,杨庆榜,等.我国终点型生命周期影响评价模型及基准值初步研究[J].环境科学研究,2021,34(11):2778-2786.LI X Y,BAI L,YANG Q B,et al.Preliminary study on endpoint life cycle impact assessment model and normalisation value in China[J].Research of Environmental Sciences,2021,34(11):2778-2786. [2] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(4):469-477.SHAO Z G,YI B L.Developing trend and present status of hydrogen energy and fuel cell development[J].Bulletin of Chinese Academy of Sciences,2019,34(4):469-477. [3] 谭旭光,余卓平.燃料电池商用车产业发展现状与展望[J].中国工程科学,2020,22(5):152-158. doi: 10.15302/J-SSCAE-2020.05.019TAN X G,YU Z P.Development status and prospects of fuel cell commercial vehicle industry[J].Strategic Study of CAE,2020,22(5):152-158. doi: 10.15302/J-SSCAE-2020.05.019 [4] 侯明,邵志刚,俞红梅,等.2019年氢燃料电池研发热点回眸[J].科技导报,2020,38(1):137-150.HOU M,SHAO Z G,YU H M,et al.Review of hot topics on hydrogen fuel cell in 2019[J].Science & Technology Review,2020,38(1):137-150. [5] 赵子贤,邵超峰,陈珏.中国省域私人电动汽车全生命周期碳减排效果评估[J].环境科学研究,2021,34(9):2076-2085.ZHAO Z X,SHAO C F,CHEN J.Effects of private electric vehicles on carbon emission reduction in China during whole life cycle[J].Research of Environmental Sciences,2021,34(9):2076-2085. [6] WANNIARACHCHI S,HEWAGE K,WIRASINGHE C,et al.Hydrogen fuel supply chains for vehicular emissions mitigation:a feasibility assessment for North American freight transport sector[J].International Journal of Sustainable Transportation,2023,17(8):855-869. doi: 10.1080/15568318.2022.2116739 [7] WANNIARACHCHI S,HEWAGE K,WIRASINGHE C,et al.Transforming road freight transportation from fossils to hydrogen:opportunities and challenges[J].International Journal of Sustainable Transportation,2023,17(5):552-572. doi: 10.1080/15568318.2022.2068389 [8] SUN S H,ERTZ M.Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion[J].Renewable and Sustainable Energy Reviews,2022,153:111769. doi: 10.1016/j.rser.2021.111769 [9] STETTLER M E J,WOO M,AINALIS D,et al.Review of well-to-wheel lifecycle emissions of liquefied natural gas heavy goods vehicles[J].Applied Energy,2023,333:120511. doi: 10.1016/j.apenergy.2022.120511 [10] EL HANNACH M,AHMADI P,GUZMAN L,et al.Life cycle assessment of hydrogen and diesel dual-fuel class 8 heavy duty trucks[J].International Journal of Hydrogen Energy,2019,44(16):8575-8584. doi: 10.1016/j.ijhydene.2019.02.027 [11] YEOW L W,YAN Y T,CHEAH L.Life cycle greenhouse gas emissions of alternative fuels and powertrains for medium-duty trucks:a Singapore case study[J].Transportation Research Part D:Transport and Environment,2022,105:103258. doi: 10.1016/j.trd.2022.103258 [12] BOOTO G K,AAMODT E K,HANCKE R.Comparative life cycle assessment of heavy-duty drivetrains:a Norwegian study case[J].Transportation Research Part D:Transport and Environment,2021,95:102836. doi: 10.1016/j.trd.2021.102836 [13] LEE D Y,ELGOWAINY A,KOTZ A,et al.Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks[J].Journal of Power Sources,2018,393:217-229. doi: 10.1016/j.jpowsour.2018.05.012 [14] ALONSO-VILLAR A,DAVÍÐSDÓTTIR B,STEFÁNSSON H,et al.Technical,economic,and environmental feasibility of alternative fuel heavy-duty vehicles in Iceland[J].Journal of Cleaner Production,2022,369:133249. doi: 10.1016/j.jclepro.2022.133249 [15] GUSTAFSSON M,SVENSSON N,EKLUND M,et al.Well-to-wheel greenhouse gas emissions of heavy-duty transports:influence of electricity carbon intensity[J].Transportation Research Part D:Transport and Environment,2021,93:102757. doi: 10.1016/j.trd.2021.102757 [16] 涂小岳,徐建全,陈轶嵩,等.液化天然气商用车与柴油商用车生命周期能耗差异评价[J].中国机械工程,2013,24(23):3211-3215.TU X Y,XU J Q,CHEN Y S,et al.An evaluation of differences between LNG and diesel commercial vehicle´s life cycle energy consumption[J].China Mechanical Engineering,2013,24(23):3211-3215. [17] ZHANG X Z,LIN Z H,CRAWFORD C,et al.Techno-economic comparison of electrification for heavy-duty trucks in China by 2040[J].Transportation Research Part D:Transport and Environment,2022,102:103152. doi: 10.1016/j.trd.2021.103152 [18] CHEN Y S,LAN L B,HAO Z,et al.Cradle-grave energy consumption,greenhouse gas and acidification emissions in current and future fuel cell vehicles:study based on five hydrogen production methods in China[J].Energy Reports,2022,8:7931-7944. doi: 10.1016/j.egyr.2022.06.021 [19] 陈轶嵩,兰利波,杜轶群,等.基于全生命周期评价理论的EREV/BEV/ICEV环境效益及减碳经济性评估[J].环境科学学报,2023,43(2):516-527.CHEN Y S,LAN L B,DU Y Q,et al.Evaluation of environmental benefits and carbon reduction economy of EREV/BEV/ICEV based on life cycle assessment theory[J].Acta Scientiae Circumstantiae,2023,43(2):516-527. [20] 陈轶嵩,兰利波,郝卓,等.氢燃料电池汽车动力系统生命周期评价及关键参数对比[J].环境科学,2022,43(8):4402-4412.CHEN Y S,LAN L B,HAO Z,et al.Life cycle assessment and key parameters comparison of hydrogen fuel cell vehicle power system[J].Environmental Science,2022,43(8):4402-4412. [21] 付佩,兰利波,陈颖,等.面向2035的节能与新能源汽车全生命周期碳排放预测评价[J].环境科学,2023,44(4):2365-2374.FU P,LAN L B,CHEN Y,et al.Life cycle prediction assessment of energy saving and new energy vehicles for 2035[J].Environmental Science,2023,44(4):2365-2374. [22] EVANGELISTI S,TAGLIAFERRI C,BRETT D J L,et al.Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles[J].Journal of Cleaner Production,2017,142:4339-4355. doi: 10.1016/j.jclepro.2016.11.159 [23] SIMONS A,BAUER C.A life-cycle perspective on automotive fuel cells[J].Applied Energy,2015,157:884-896. doi: 10.1016/j.apenergy.2015.02.049 [24] USAI L,HUNG C R,VÁSQUEZ F,et al.Life cycle assessment of fuel cell systems for light duty vehicles,current state-of-the-art and future impacts[J].Journal of Cleaner Production,2021,280:125086. doi: 10.1016/j.jclepro.2020.125086 [25] BENITEZ A,WULF C,de PALMENAER A,et al.Ecological assessment of fuel cell electric vehicles with special focus on type Ⅳ carbon fiber hydrogen tank[J].Journal of Cleaner Production,2021,278:123277. doi: 10.1016/j.jclepro.2020.123277 [26] QIAO Q Y,ZHAO F Q,LIU Z W,et al.Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China[J].Applied Energy,2017,204:1399-1411. doi: 10.1016/j.apenergy.2017.05.041 [27] 马金秋.匹配不同动力电池的纯电动汽车全生命周期评价研究[D].西安:长安大学,2019. [28] YANG Y,LAN L B,HAO Z,et al.Life cycle prediction assessment of battery electrical vehicles with special focus on different lithium-ion power batteries in China[J].Energies,2022,15(15):5321. doi: 10.3390/en15155321 [29] 丁锐,秦训鹏,董书洲.电动汽车驱动电机再制造生命周期评价[J].环境污染与防治,2021,43(11):1410-1415.DING R,QIN X P,DONG S Z.Life cycle assessment of remanufactured drive motor on electric vehicle[J].Environmental Pollution & Control,2021,43(11):1410-1415. [30] 周博雅.电动汽车生命周期的能源消耗、碳排放和成本收益研究[D].北京:清华大学,2016. [31] 许海波.增程式电动汽车全生命周期评价研究[D].西安:长安大学,2021. [32] 马骊溟,许海波,陈轶嵩,等.增程式电动汽车全生命周期节能减排绩效评价[J].汽车工程学报,2021,11(2):107-114.MA L M,XU H B,CHEN Y S,et al.Evaluation of energy saving and emission reduction over the whole life cycle of an extended range electric vehicle[J].Chinese Journal of Automotive Engineering,2021,11(2):107-114. [33] 刘凯辉,徐建全.电动汽车生命周期评价研究进展[J].机电技术,2016,39(1):127-131.LIU K H,XU J Q.Research progress on life cycle assessment of electric vehicles[J].Mechanical & Electrical Technology,2016,39(1):127-131. [34] 凌文,刘玮,李育磊,等.中国氢能基础设施产业发展战略研究[J].中国工程科学,2019,21(3):76-83. doi: 10.15302/J-SSCAE-2019.03.003LING W,LIU W,LI Y L,et al.Development strategy of hydrogen infrastructure industry in China[J].Strategic Study of CAE,2019,21(3):76-83. doi: 10.15302/J-SSCAE-2019.03.003 [35] SIDDIQUI O,DINCER I.A well to pump life cycle environmental impact assessment of some hydrogen production routes[J].International Journal of Hydrogen Energy,2019,44(12):5773-5786. doi: 10.1016/j.ijhydene.2019.01.118 [36] VALENTE A,IRIBARREN D,DUFOUR J.Comparative life cycle sustainability assessment of renewable and conventional hydrogen[J].Science of the Total Environment,2021,756:144132. doi: 10.1016/j.scitotenv.2020.144132 [37] ZHANG J X,LING B,HE Y,et al.Life cycle assessment of three types of hydrogen production methods using solar energy[J].International Journal of Hydrogen Energy,2022,47(30):14158-14168. doi: 10.1016/j.ijhydene.2022.02.150 [38] LI W C,BAI H T,YIN J F,et al.Life cycle assessment of end-of-life vehicle recycling processes in China:take Corolla taxis for example[J].Journal of Cleaner Production,2016,117:176-187. doi: 10.1016/j.jclepro.2016.01.025 [39] ENGEL J.Development perspectives of lithium-ion recycling processes for electric vehicle batteries[D].Kingston:University of Rhode Island,2016. [40] HAO H,QIAO Q Y,LIU Z W,et al.Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production:the China 2025 case[J].Resources,Conservation and Recycling,2017,122:114-125. doi: 10.1016/j.resconrec.2017.02.005 -