留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向2035年的氢燃料与柴油重型商用车全生命周期环境影响预测研究

张硕 张春梅 蔡旭 兰利波 张建章 张溆祺 陈轶嵩

张硕, 张春梅, 蔡旭, 兰利波, 张建章, 张溆祺, 陈轶嵩. 面向2035年的氢燃料与柴油重型商用车全生命周期环境影响预测研究[J]. 环境科学研究, 2023, 36(10): 1892-1904. doi: 10.13198/j.issn.1001-6929.2023.08.12
引用本文: 张硕, 张春梅, 蔡旭, 兰利波, 张建章, 张溆祺, 陈轶嵩. 面向2035年的氢燃料与柴油重型商用车全生命周期环境影响预测研究[J]. 环境科学研究, 2023, 36(10): 1892-1904. doi: 10.13198/j.issn.1001-6929.2023.08.12
ZHANG Shuo, ZHANG Chunmei, CAI Xu, LAN Libo, ZHANG Jianzhang, ZHANG Xuqi, CHEN Yisong. Life Cycle Prediction Assessment of Hydrogen Fuel Cells and Diesel Heavy-Duty Commercial Vehicles for 2035[J]. Research of Environmental Sciences, 2023, 36(10): 1892-1904. doi: 10.13198/j.issn.1001-6929.2023.08.12
Citation: ZHANG Shuo, ZHANG Chunmei, CAI Xu, LAN Libo, ZHANG Jianzhang, ZHANG Xuqi, CHEN Yisong. Life Cycle Prediction Assessment of Hydrogen Fuel Cells and Diesel Heavy-Duty Commercial Vehicles for 2035[J]. Research of Environmental Sciences, 2023, 36(10): 1892-1904. doi: 10.13198/j.issn.1001-6929.2023.08.12

面向2035年的氢燃料与柴油重型商用车全生命周期环境影响预测研究

doi: 10.13198/j.issn.1001-6929.2023.08.12
基金项目: 国家重点研发计划项目(No.2021YFE0192900);陕西省重点研发计划项目(No.2021LLRH-04-04-02);长安大学中央高校基本科研业务费专项资金项目(No.300102223207)
详细信息
    作者简介:

    张硕(1985-),女,陕西渭南人,副教授,博士,主要从事新能源汽车技术与全生命周期评价研究,zhangshuozs@chd.edu.cn

    通讯作者:

    陈轶嵩(1988-),男,陕西西安人,教授,博士,博导,主要从事氢燃料电池汽车与新能源汽车全生命周期评价研究,chenyisong_1988@163.com

  • 中图分类号: X32

Life Cycle Prediction Assessment of Hydrogen Fuel Cells and Diesel Heavy-Duty Commercial Vehicles for 2035

Funds: National Key Research and Development Program of China (No.2021YFE0192900);Key Research and Development Project of Shaanxi Province, China (No.2021LLRH-04-04-02);Fundamental Research Funds for the Central Universities, Chang′an University, China (No.300102223207)
  • 摘要: 氢燃料电池重型商用车(fuel cell heavy commercial vehicles,FCHCV)在推广交通领域碳减排方面具有广阔的应用前景,但对环境是否友好仍需进一步研究. 为准确衡量FCHCV相对于柴油重型商用车(diesel heavy commercial vehicles, DHCV)的环境效益,基于生命周期评价理论和《节能与新能源汽车技术路线图2.0》,构建面向2035年基于不同氢能路径的FCHCV与DHCV的材料消耗、能源消耗、碳排放和污染物排放预测评价模型,科学量化预测不同氢能路径下FCHCV相较于DHCV的全生命周期环境影响和节能减排潜力,梳理并搭建了FCHCV与DHCV的物质流、能量流和排放流的数据清单,采用GaBi软件与CML2001方法体系对数据清单进行了计算,并对比分析了全生命周期环境影响预测结果. 结果表明:目前,FCHCV的全生命周期材料消耗量高于DHCV,主要原因是锂电池的材料消耗量较高,基于光伏电解水制氢路径的FCHCV的节能减排效果较好,对环境产生的负面效益较低. 到2035年,基于光伏电解水制氢的FCHCV的全生命周期化石能源消耗量、碳排放和酸化潜值较DHCV分别低41.78%、79.09%、55.30%,但基于混合电力电解水制氢的FCHCV的全生命周期化石能源消耗量、碳排放量和酸化潜值较DHCV分别高56.80%、10.47%和45.01%. 研究显示,以可再生能源制氢为基础的FCHCV在未来具有较大的节能减排和降低环境负面效益潜力,但以混合电力制氢为基础的FCHCV未来与DHCV在节能减排和环境保护方面竞争力较小.

     

  • 图  1  FCHCV与DHCV实车实景对比

    Figure  1.  Comparison diagram of FCHCV and DHCV actual vehicle

    图  2  系统边界

    Figure  2.  System boundary

    图  3  2022年和2035年DHCV、FCHCV的全生命周期材料资源消耗量〔ADP(e)〕

    Figure  3.  Life cycle ADP(e) for DHCV and FCHCV in 2022 and 2035

    图  4  2022年和2035年DHCV、FCHCV原材料获取阶段各部件的材料资源消耗量〔ADP(e)〕

    Figure  4.  ADP(e) of various components during the raw material acquisition phase of DHCV and FCHCV in 2022 and 2035

    图  5  2022年和2035年DHCV、FCHCV的全生命周期化石能源消耗量〔ADP(f)〕

    注:Coal表示基于煤气化制氢的FCHCV,SMR表示甲烷重整制氢的FCHCV,Ele.CN表示基于混合电力电解水制氢的FCHCV,Ele.PV表示基于光伏电解水制氢的FCHCV,下同.

    Figure  5.  Life cycle ADP(f) of DHCV and FCHCV in 2022 and 2035

    图  6  2022年和2035年DHCV、FCHCV的全生命周期碳排放量(GWP)

    注:Coal+CUSS表示煤气化制氢匹配CCUS技术的FCHCV,SMR+CUSS表示甲烷重整制氢匹配CUSS技术的FCHCV,下同.

    Figure  6.  Life cycle GWP of DHCV and FCHCV in 2022 and 2035

    图  7  2022年和2035年DHCV、FCHCV全生命周期污染物排放结果

    Figure  7.  Results of life cycle pollutant emissions from DHCV and FCHCV in 2022 and 2035

    表  1  DHCV与FCHCV基本特征参数

    Table  1.   Basic characteristic parameters of DHCV and FCHCV

    参数名称DHCVFCHCV
    车身长度×宽度×高度7.06 m×2.55 m×3.98 m7.06 m×2.55 m×3.98 m
    整车质量/t8.89.0
    牵引总质量/t4040
    最高车速/(km/h)110110
    燃料电池额定功率/kW162
    锂电池容量/(kW·h)117.1
    电动机峰值功率/kW360
    发动机最大输出功率/kW390
    燃料电池寿命/h30 000
    百公里氢能消耗量/
    [kg/(100 km)]
    14.911)
    燃油经济性/[L/(100 km)]40
    低温启动温度/℃−30
    注:1)14.91 kg/(100 km)代表49 t重型牵引车在C-WTVC驾驶循环下测算的百公里氢耗量.
    下载: 导出CSV

    表  2  FCHCV的预测情景

    Table  2.   Predictive scenarios for fuel cell heavy commercial vehicles

    年份百公里氢耗量/
    [kg/(100 km)]
    牵引车挂牵比率
    变化率/%
    整备
    质量/t
    电解水制取1 N·m3
    氢能耗电量/(kW·h)
    氢能运输
    方式
    电力结构占比/%
    煤电水电核电光伏发电风电其他
    202214.919.004高压气氢71153245
    203510.00157.833管道运输4012917193
    下载: 导出CSV

    表  3  2022年和2035年FCHCV动力系统数据清单

    Table  3.   FCHCV powertrain data list in 2022 and 2035

    部件材料清单投入用量部件材料清单投入用量
    2022年2035年2022年2035年
    燃料电池堆栈1) 膜电极 质子交换膜 异丙醇 2.27 kg 1.96 kg BOP 167.67 kg 145.87 kg
    2.27 kg 1.96 kg 锻造铝 9.72 kg 8.46 kg
    电能 3.48 MJ 3.01 MJ 高密度聚乙烯 36.45 kg 31.71 kg
    热能 2.15 MJ 1.86 MJ 乙烯 19.44 kg 16.91 kg
    四氟乙烯 1.73 kg 1.49 kg 橡胶 7.29 kg 6.34 kg
    硫酸 1.30 kg 1.12 kg 其他 2.43 kg 2.11 kg
    聚乙烯 4.15 kg 3.58 kg
    气体扩散层 石墨 16.82 kg 1.57 kg 电机和电控单元 14.40 kg 12.53 kg
    聚四氟乙烯2) 33.63 kg 3.14 kg 71.10 kg 61.86 kg
    碳纤维3) 302.70 kg 28.24 kg 钕铁硼5) 0.90 kg 0.78 kg
    电能 1 204.06 MJ 112.32 MJ 铝合金 3.60 kg 3.13 kg
    储氢罐 化石能源消耗6)
    催化层 铂碳催化剂4) 0.23 kg 0.20 kg 碳纤维 410.40 kg 357.05 kg
    碳黑 0.35 kg 0.30 kg 环氧树脂 164.16 kg 142.82 kg
    Nafion DE-521 2.80 kg 2.42 kg 泡沫 27.36 kg 23.80 kg
    0.23 kg 0.20 kg 玻璃纤维 27.36 kg 23.80 kg
    甲醇 0.23 kg 0.20 kg 高强度聚乙烯 47.88 kg 41.65 kg
    电能 3437.08 MJ 2800.06 MJ 铝基体 6.84 kg 5.95 kg
    组装 电能 506.03 MJ 436.98 MJ 锂电池 磷酸铁锂 128.70 kg 111.97 kg
    冷却垫片 橡胶 42.59 kg 36.79 kg 聚氯乙烯 40.95 kg 35.63 kg
    5.54 MJ 4.78 MJ 石墨 239.85 kg 208.67 kg
    端板 24.68 kg 21.28 kg 58.50 kg 50.90 kg
    24.68 kg 21.28 kg 35.10 kg 30.54 kg
    双极板 石墨 163.67 kg 141.48 kg 聚乙烯 70.20 kg 61.07 kg
    醋酸乙烯酯 22.0 kg 60.63 kg 其他 11.70 kg 10.18 kg
    电能 5143.82 MJ 4446.38 MJ 电能 2.67 MJ 1358.90 MJ
    注:1)1 kW的燃料电池堆栈由1.434 kg的双极板、0.261 kg的冷却剂垫片、0.265 kg的膜电极和0.302 kg的端板组成[22]. 2)聚四氟乙烯的清单在GaBi数据库中没有,用高强度聚乙烯代替. 3)生产0.9 kg碳纤维需要消耗0.9 kg的聚丙烯腈、88.7 MJ热能和235.87 MJ的电能[22]. 4)生产1 g铂碳催化剂需要消耗0.6 MJ的电能和0.09 MJ的热能[22]. 5)生产1 kg钕铁硼需要消耗0.697 kg的铁和3.37 kg的硬煤[33]. 6)电机厂的制造化石能源消耗强度为生产1 kg标准煤所使用的电能,生产电机需要消耗59%的煤和32%的电能[30].
    下载: 导出CSV

    表  4  2022年和2035年FCHCV车身底盘、DHCV原材料获取阶段数据清单

    Table  4.   FCHCV body chassis and DHCV raw material acquisition stage data list in 2022 and 2035

    车型年份部件使用量/kg
    铸铁橡胶玻璃纤维塑料其他
    FCHCV2022车身1 861.0821.6751.472.71178.79471.37121.91
    底盘3 555.3643.20272.1699.36181.44142.5625.92
    2035车身1 619.1418.8544.782.36155.55410.09106.06
    底盘3 093.1637.58236.7886.44157.85124.0322.55
    DHCV2022发动机330.94389.34114.029.2741.7241.72
    变速器153.90153.90153.9025.6525.65
    车身1 898.1822.1052.50480.76306.69
    底盘3 947.9347.97302.21110.33201.47158.3028.78
    2035发动机281.67331.3797.047.8935.5035.50
    变速器130.99130.99130.9921.8321.83
    车身1 615.5618.8144.68409.18261.03
    底盘3 360.1340.83257.2193.90171.48134.7324.50
    注:由于缺少2035年车身各材料占比预测数据,2035年各原材料使用量参考《节能与新能源汽车技术路线图2.0》,即各原材料使用量相较于2022年降低13%.
    下载: 导出CSV

    表  5  4种氢能路径下1 kg氢气的生命周期能耗、碳排放和污染物排放量

    Table  5.   Life cycle energy consumption, carbon emissions, and pollutant emissions of 1 kg hydrogen under 4 hydrogen energy pathways

    氢能路径ADP(f)/MJGWP/kgAP/kgEP/kgPOCP/kgHTP/kg
    煤气化+高压气氢3.31×1022.75×1011.66×10−28.26×10−44.78×10−38.30×10−3
    甲烷重整+高压气氢3.98×1022.03×1012.46×10−21.55×10−34.98×10−31.20×10−2
    混合电力电解水+高压气氢4.09×1023.47×1017.66×10−29.75×10−38.28×10−33.30×10−2
    光伏电解水+高压气氢1.52×1023.21×1001.26×10−29.26×10−44.13×10−31.00×10−4
    下载: 导出CSV

    表  6  车辆行驶单位公里所需的柴油燃料在生产和使用过程产生的碳排放量及污染物排放量

    Table  6.   Carbon emissions and pollutant emissions during the production and use of diesel fuel kg

    阶段GWPAPEPPOCPHTP
    柴油生产1.68×10−17.63×10−47.6×10−51.10×10−42.86×10−2
    柴油使用1.64×1002.36×10−36.23×10−41.92×10−45.71×10−3
    总计1.81×1003.12×10−37.00×10−43.02×10−43.43×10−2
    下载: 导出CSV

    表  7  传统部件材料回收的能源消耗和回收效率

    Table  7.   Energy consumption and recycling efficiency of traditional component material recycling

    材料预处理能耗/(kW·h)回收效率/%废渣处理率/%
    4.237525
    0.804654
    2.248020
    9.549010
    橡胶3763
    下载: 导出CSV

    表  8  2022年和2035年DHCV的全生命周期评价结果

    Table  8.   DHCV life cycle assessment results for 2022 and 2035

    年份阶段ADP(e)/kgADP(f)/MJGWP/kgAP/kgEP/kgPOCP/kgHTP/kg
    20225.82×10−13.43×1053.13×1041.14×1027.83×1001.23×1011.02×104
    1.25×10−32.34×1052.21×1044.81×1016.29×1003.23×1009.57×102
    0.00×1006.80×1067.23×1051.25×1032.80×1021.21×1021.37×104
    −4.97×10−1−1.41×105−1.28×104−5.35×101−3.22×100−6.48×100−5.13×103
    总计8.62×10−27.24×1067.64×1051.36×1032.91×1021.30×1021.98×104
    20355.16×10−13.04×1052.77×1041.01×1026.94×1001.09×1019.04×103
    1.11×10−32.07×1051.96×1044.26×1015.58×1002.87×1008.49×102
    0.00×1005.10×1065.42×1059.37×1022.10×1029.06×1011.03×104
    −4.41×10−1−1.25×105−1.13×104−4.74×101−2.85×100−5.74×100−4.55×103
    总计7.64×10−25.49×1065.78×1051.03×1032.19×1029.86×1011.56×104
    下载: 导出CSV

    表  9  2022年和2035年基于4种氢能路径的FCHCV全生命周期评价结果

    Table  9.   FCHCV life cycle assessment results based on four hydrogen energy pathways in 2022 and 2035

    年份氢能路径ADP(e)/kgADP(f)/MJGWP/kgAP/kgEP/kgPOCP/kgHTP/kg
    2022煤气化2.86×10−12.05×1071.71×1061.16×1036.84×1012.97×1022.21×104
    甲烷重整2.86×10−12.45×1071.28×1061.63×1031.12×1023.09×1022.23×104
    混合电力电解水2.86×10−12.52×1072.14×1064.73×1036.01×1025.06×1022.36×104
    光伏电解水2.86×10−19.85×1062.63×1059.17×1027.43×1012.59×1022.16×104
    2035煤气化2.61×10−11.34×1071.11×1066.90×1024.82×1011.37×1021.86×104
    甲烷重整2.61×10−11.61×1078.23×1051.01×1037.70×1011.45×1021.88×104
    混合电力电解水2.61×10−18.61×1066.39×1051.49×1031.90×1021.70×1021.86×104
    光伏电解水2.61×10−13.20×1061.21×1054.61×1024.54×1011.05×1021.84×104
    下载: 导出CSV

    表  10  2022年和2035年FCHCV原材料获取阶段各部件全生命周期评价结果

    Table  10.   Evaluation results of FCHCV raw material acquisition for various components in 2022 and 2035

    年份部件ADP(e)/kgADP(f)/MJGWP/kgAP/kgEP/kgPOCP/kgHTP/kg
    2022燃料电池堆栈4.42×10−36.45×1045.25×1031.28×1011.45×1009.53×10−12.56×103
    锂电池2.39×10−16.99×1049.47×1033.38×1011.71×1002.10×1003.04×103
    储氢罐7.84×10−33.60×1053.09×1046.53×1019.08×1004.73×1001.40×103
    电机与电控单元4.77×10−21.02×1041.03×1034.80×1003.05×10−13.71×10−15.41×102
    BOP2.32×10−21.04×1047.16×1024.10×1001.89×10−12.13×10−11.44×104
    车身1.98×10−16.67×1045.98×1031.90×1011.13×1002.42×1009.07×102
    底盘3.25×10−11.32×1051.07×1043.22×1012.57×1004.44×1001.66×103
    总计8.45×10−17.14×1056.40×1041.72×1021.64×1011.52×1012.45×104
    2035燃料电池堆栈4.83×10−34.19×1043.20×1038.30×1008.78×10−16.38×10−12.19×103
    锂电池2.08×10−15.14×1047.34×1032.75×1011.24×1001.70×1002.62×103
    储氢罐1.30×10−22.24×1051.83×1043.88×1015.47×1002.91×1009.74×102
    电机与电控单元4.15×10−28.25×1038.34×1024.05×1002.48×10−13.14×10−14.69×102
    BOP2.02×10−29.05×1036.23×1023.57×1001.64×10−11.85×10−11.25×104
    车身1.72×10−15.80×1045.20×1031.65×1019.83×10−12.11×1007.89×102
    底盘2.83×10−11.15×1059.31×1032.80×1012.24×1003.86×1001.44×103
    总计7.43×10−15.07×1054.48×1041.27×1021.12×1011.17×1012.10×104
    下载: 导出CSV
  • [1] 李雪迎,白璐,杨庆榜,等.我国终点型生命周期影响评价模型及基准值初步研究[J].环境科学研究,2021,34(11):2778-2786.

    LI X Y,BAI L,YANG Q B,et al.Preliminary study on endpoint life cycle impact assessment model and normalisation value in China[J].Research of Environmental Sciences,2021,34(11):2778-2786.
    [2] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(4):469-477.

    SHAO Z G,YI B L.Developing trend and present status of hydrogen energy and fuel cell development[J].Bulletin of Chinese Academy of Sciences,2019,34(4):469-477.
    [3] 谭旭光,余卓平.燃料电池商用车产业发展现状与展望[J].中国工程科学,2020,22(5):152-158. doi: 10.15302/J-SSCAE-2020.05.019

    TAN X G,YU Z P.Development status and prospects of fuel cell commercial vehicle industry[J].Strategic Study of CAE,2020,22(5):152-158. doi: 10.15302/J-SSCAE-2020.05.019
    [4] 侯明,邵志刚,俞红梅,等.2019年氢燃料电池研发热点回眸[J].科技导报,2020,38(1):137-150.

    HOU M,SHAO Z G,YU H M,et al.Review of hot topics on hydrogen fuel cell in 2019[J].Science & Technology Review,2020,38(1):137-150.
    [5] 赵子贤,邵超峰,陈珏.中国省域私人电动汽车全生命周期碳减排效果评估[J].环境科学研究,2021,34(9):2076-2085.

    ZHAO Z X,SHAO C F,CHEN J.Effects of private electric vehicles on carbon emission reduction in China during whole life cycle[J].Research of Environmental Sciences,2021,34(9):2076-2085.
    [6] WANNIARACHCHI S,HEWAGE K,WIRASINGHE C,et al.Hydrogen fuel supply chains for vehicular emissions mitigation:a feasibility assessment for North American freight transport sector[J].International Journal of Sustainable Transportation,2023,17(8):855-869. doi: 10.1080/15568318.2022.2116739
    [7] WANNIARACHCHI S,HEWAGE K,WIRASINGHE C,et al.Transforming road freight transportation from fossils to hydrogen:opportunities and challenges[J].International Journal of Sustainable Transportation,2023,17(5):552-572. doi: 10.1080/15568318.2022.2068389
    [8] SUN S H,ERTZ M.Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion[J].Renewable and Sustainable Energy Reviews,2022,153:111769. doi: 10.1016/j.rser.2021.111769
    [9] STETTLER M E J,WOO M,AINALIS D,et al.Review of well-to-wheel lifecycle emissions of liquefied natural gas heavy goods vehicles[J].Applied Energy,2023,333:120511. doi: 10.1016/j.apenergy.2022.120511
    [10] EL HANNACH M,AHMADI P,GUZMAN L,et al.Life cycle assessment of hydrogen and diesel dual-fuel class 8 heavy duty trucks[J].International Journal of Hydrogen Energy,2019,44(16):8575-8584. doi: 10.1016/j.ijhydene.2019.02.027
    [11] YEOW L W,YAN Y T,CHEAH L.Life cycle greenhouse gas emissions of alternative fuels and powertrains for medium-duty trucks:a Singapore case study[J].Transportation Research Part D:Transport and Environment,2022,105:103258. doi: 10.1016/j.trd.2022.103258
    [12] BOOTO G K,AAMODT E K,HANCKE R.Comparative life cycle assessment of heavy-duty drivetrains:a Norwegian study case[J].Transportation Research Part D:Transport and Environment,2021,95:102836. doi: 10.1016/j.trd.2021.102836
    [13] LEE D Y,ELGOWAINY A,KOTZ A,et al.Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks[J].Journal of Power Sources,2018,393:217-229. doi: 10.1016/j.jpowsour.2018.05.012
    [14] ALONSO-VILLAR A,DAVÍÐSDÓTTIR B,STEFÁNSSON H,et al.Technical,economic,and environmental feasibility of alternative fuel heavy-duty vehicles in Iceland[J].Journal of Cleaner Production,2022,369:133249. doi: 10.1016/j.jclepro.2022.133249
    [15] GUSTAFSSON M,SVENSSON N,EKLUND M,et al.Well-to-wheel greenhouse gas emissions of heavy-duty transports:influence of electricity carbon intensity[J].Transportation Research Part D:Transport and Environment,2021,93:102757. doi: 10.1016/j.trd.2021.102757
    [16] 涂小岳,徐建全,陈轶嵩,等.液化天然气商用车与柴油商用车生命周期能耗差异评价[J].中国机械工程,2013,24(23):3211-3215.

    TU X Y,XU J Q,CHEN Y S,et al.An evaluation of differences between LNG and diesel commercial vehicle´s life cycle energy consumption[J].China Mechanical Engineering,2013,24(23):3211-3215.
    [17] ZHANG X Z,LIN Z H,CRAWFORD C,et al.Techno-economic comparison of electrification for heavy-duty trucks in China by 2040[J].Transportation Research Part D:Transport and Environment,2022,102:103152. doi: 10.1016/j.trd.2021.103152
    [18] CHEN Y S,LAN L B,HAO Z,et al.Cradle-grave energy consumption,greenhouse gas and acidification emissions in current and future fuel cell vehicles:study based on five hydrogen production methods in China[J].Energy Reports,2022,8:7931-7944. doi: 10.1016/j.egyr.2022.06.021
    [19] 陈轶嵩,兰利波,杜轶群,等.基于全生命周期评价理论的EREV/BEV/ICEV环境效益及减碳经济性评估[J].环境科学学报,2023,43(2):516-527.

    CHEN Y S,LAN L B,DU Y Q,et al.Evaluation of environmental benefits and carbon reduction economy of EREV/BEV/ICEV based on life cycle assessment theory[J].Acta Scientiae Circumstantiae,2023,43(2):516-527.
    [20] 陈轶嵩,兰利波,郝卓,等.氢燃料电池汽车动力系统生命周期评价及关键参数对比[J].环境科学,2022,43(8):4402-4412.

    CHEN Y S,LAN L B,HAO Z,et al.Life cycle assessment and key parameters comparison of hydrogen fuel cell vehicle power system[J].Environmental Science,2022,43(8):4402-4412.
    [21] 付佩,兰利波,陈颖,等.面向2035的节能与新能源汽车全生命周期碳排放预测评价[J].环境科学,2023,44(4):2365-2374.

    FU P,LAN L B,CHEN Y,et al.Life cycle prediction assessment of energy saving and new energy vehicles for 2035[J].Environmental Science,2023,44(4):2365-2374.
    [22] EVANGELISTI S,TAGLIAFERRI C,BRETT D J L,et al.Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles[J].Journal of Cleaner Production,2017,142:4339-4355. doi: 10.1016/j.jclepro.2016.11.159
    [23] SIMONS A,BAUER C.A life-cycle perspective on automotive fuel cells[J].Applied Energy,2015,157:884-896. doi: 10.1016/j.apenergy.2015.02.049
    [24] USAI L,HUNG C R,VÁSQUEZ F,et al.Life cycle assessment of fuel cell systems for light duty vehicles,current state-of-the-art and future impacts[J].Journal of Cleaner Production,2021,280:125086. doi: 10.1016/j.jclepro.2020.125086
    [25] BENITEZ A,WULF C,de PALMENAER A,et al.Ecological assessment of fuel cell electric vehicles with special focus on type Ⅳ carbon fiber hydrogen tank[J].Journal of Cleaner Production,2021,278:123277. doi: 10.1016/j.jclepro.2020.123277
    [26] QIAO Q Y,ZHAO F Q,LIU Z W,et al.Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China[J].Applied Energy,2017,204:1399-1411. doi: 10.1016/j.apenergy.2017.05.041
    [27] 马金秋.匹配不同动力电池的纯电动汽车全生命周期评价研究[D].西安:长安大学,2019.
    [28] YANG Y,LAN L B,HAO Z,et al.Life cycle prediction assessment of battery electrical vehicles with special focus on different lithium-ion power batteries in China[J].Energies,2022,15(15):5321. doi: 10.3390/en15155321
    [29] 丁锐,秦训鹏,董书洲.电动汽车驱动电机再制造生命周期评价[J].环境污染与防治,2021,43(11):1410-1415.

    DING R,QIN X P,DONG S Z.Life cycle assessment of remanufactured drive motor on electric vehicle[J].Environmental Pollution & Control,2021,43(11):1410-1415.
    [30] 周博雅.电动汽车生命周期的能源消耗、碳排放和成本收益研究[D].北京:清华大学,2016.
    [31] 许海波.增程式电动汽车全生命周期评价研究[D].西安:长安大学,2021.
    [32] 马骊溟,许海波,陈轶嵩,等.增程式电动汽车全生命周期节能减排绩效评价[J].汽车工程学报,2021,11(2):107-114.

    MA L M,XU H B,CHEN Y S,et al.Evaluation of energy saving and emission reduction over the whole life cycle of an extended range electric vehicle[J].Chinese Journal of Automotive Engineering,2021,11(2):107-114.
    [33] 刘凯辉,徐建全.电动汽车生命周期评价研究进展[J].机电技术,2016,39(1):127-131.

    LIU K H,XU J Q.Research progress on life cycle assessment of electric vehicles[J].Mechanical & Electrical Technology,2016,39(1):127-131.
    [34] 凌文,刘玮,李育磊,等.中国氢能基础设施产业发展战略研究[J].中国工程科学,2019,21(3):76-83. doi: 10.15302/J-SSCAE-2019.03.003

    LING W,LIU W,LI Y L,et al.Development strategy of hydrogen infrastructure industry in China[J].Strategic Study of CAE,2019,21(3):76-83. doi: 10.15302/J-SSCAE-2019.03.003
    [35] SIDDIQUI O,DINCER I.A well to pump life cycle environmental impact assessment of some hydrogen production routes[J].International Journal of Hydrogen Energy,2019,44(12):5773-5786. doi: 10.1016/j.ijhydene.2019.01.118
    [36] VALENTE A,IRIBARREN D,DUFOUR J.Comparative life cycle sustainability assessment of renewable and conventional hydrogen[J].Science of the Total Environment,2021,756:144132. doi: 10.1016/j.scitotenv.2020.144132
    [37] ZHANG J X,LING B,HE Y,et al.Life cycle assessment of three types of hydrogen production methods using solar energy[J].International Journal of Hydrogen Energy,2022,47(30):14158-14168. doi: 10.1016/j.ijhydene.2022.02.150
    [38] LI W C,BAI H T,YIN J F,et al.Life cycle assessment of end-of-life vehicle recycling processes in China:take Corolla taxis for example[J].Journal of Cleaner Production,2016,117:176-187. doi: 10.1016/j.jclepro.2016.01.025
    [39] ENGEL J.Development perspectives of lithium-ion recycling processes for electric vehicle batteries[D].Kingston:University of Rhode Island,2016.
    [40] HAO H,QIAO Q Y,LIU Z W,et al.Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production:the China 2025 case[J].Resources,Conservation and Recycling,2017,122:114-125. doi: 10.1016/j.resconrec.2017.02.005
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  24
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-08-16
  • 网络出版日期:  2023-08-23

目录

    /

    返回文章
    返回