Research on Characteristics of On-Road Pollutant and Greenhouse Gas Emissions from China-Ⅵ Heavy-Duty Vehicles
-
摘要: 重型车实际道路温室气体(GHG)排放控制势在必行,为获取国六重型车温室气体(CO2、N2O、CH4)和常规污染物(NOx、CO、NH3)实际道路排放特征,本研究选取了5辆典型国六重型柴油车和重型天然气(LNG)车,在实际道路上按车载排放测试要求开展了多次实际道路排放试验. 结果表明:国六重型车CO2排放量随发动机负荷的提高呈降低趋势,柴油车和LNG车高速工况下CO2比排放相较市区工况最高分别可降低23.55%和25.80%. LNG车CO2比排放显著低于柴油车,市区、市郊和高速行驶工况下CO2比排放降幅分别为15.68%、21.58%和12.17%,表明LNG车相较柴油车具有显著的CO2减排优势. LNG车CH4排放量显著高于柴油车,CH4比排放为750.75~1 915.08 mg/(kW·h);相反,柴油车N2O排放量高于LNG车,这与柴油车采取选择性催化还原(SCR)后处理技术控制NOx排放有关. 考虑到CH4和N2O较CO2具有更强的温室气体效应,因此应当重视国六重型车N2O和CH4的实际道路排放. 柴油车和LNG车采取的不同技术路线均能有效控制NOx排放,柴油车CO比排放远低于国六限值要求,而LNG车CO排放控制已近失效. 此外,柴油车可有效控制实际道路NH3排放,但LNG车NH3比排放为431.92~1 286.45 mg/(kW·h),采取有效措施保证空燃比闭环精度是减少LNG车CO和NH3排放的前提. 虽然LNG车相较柴油车具有CO2减排优势,但二者的温室效应强度相当. 考虑到LNG车NOx和NH3的实际道路排放显著高于柴油车,而NOx和NH3是大气中臭氧和二次气溶胶的重要前体物,因此将国六重型柴油车替换为国六重型LNG车并非合理选择,也不利于大气环境的臭氧和颗粒物治理.Abstract: Controlling on-road greenhouse gas (GHG) emissions from heavy-duty vehicles is imperative. In order to study the on-road emission characteristics of GHG (CO2, N2O, CH4) and regulated emissions (NOx, CO, NH3) from China-Ⅵ heavy-duty vehicles, five typical China-Ⅵ heavy-duty diesel and heavy-duty liquid natural gas (LNG) vehicles were selected to conduct on-road emission tests according to the on-road emission test protocol of China-Ⅵ emission regulation. The results show that the CO2 emissions of China-Ⅵ heavy-duty vehicles decreased with the increased engine load. The CO2-specific emissions of diesel and LNG vehicles under highway conditions were reduced by 23.55% and 25.80%, respectively, compared with the urban condition. The CO2-specific emissions of LNG vehicles were significantly lower than those of diesel vehicles. The CO2 emissions from LNG vehicles have decreased by 15.68%, 21.58% and 12.17% under urban, suburb, and motorway driving conditions, respectively, indicating that LNG vehicles have significant CO2 emission reduction advantages compared to diesel vehicles. The CH4 emissions of LNG vehicles were significantly higher than those of diesel vehicles, with CH4-specific emissions ranging from 750.75 mg/(kW·h) to 1915.08 mg/(kW·h). On the contrary, the N2O emissions of diesel vehicles were higher than those of LNG vehicles, which is related to the adoption of the selected catalytic reduction (SCR) system to control NOx emissions. Considering the significant GHG effects of CH4 and N2O, attention should be paid to the N2O and CH4 emissions of China-Ⅵ heavy-duty vehicles. Different technical routes taken by diesel vehicles and LNG vehicles can effectively control NOx emissions. The CO emissions of diesel vehicles were much lower than the NOx limit of China-Ⅵ emission regulations, while the CO emission control of LNG vehicles nearly failed. In addition, diesel vehicles can effectively control the on-road NH3 emissions, but the NH3-specific emissions of LNG vehicles were 431.92-1286.45 mg/(kW·h). Taking effective measures to ensure the closed-loop accuracy of the air-fuel ratio is the prerequisite for reducing CO and NH3 emissions from LNG vehicles. The research results show that although LNG vehicles have CO2 emission reduction advantages compared with diesel vehicles, the greenhouse effect intensity of the two is similar. Considering that the on-road NOx and NH3 emissions of LNG vehicles are significantly higher than those of diesel vehicles, and NOx and NH3 are essential precursors of ozone and secondary aerosols in the atmosphere, it is not a reasonable to replace China-Ⅵ heavy-duty diesel vehicles with China-Ⅵ heavy-duty LNG vehicles, and it is not conducive to the control of ozone and particulate matter in the atmospheric environment.
-
Key words:
- greenhouse gases /
- heavy-duty diesel vehicle /
- heavy-duty LNG vehicle /
- on-road emission
-
表 1 试验车辆技术参数
Table 1. Specifications of test vehicles
试验车辆 燃料 排量/L 功率/kW 扭矩/(N·m) 行驶里程/km 生产时间 后处理系统 重型柴油车 D1 柴油 10.5 311 2 200 125 744 2021年3月 DOC
DPF
SCR
ASCD2 柴油 12.5 412 2 800 128 283 2021年3月 D3 柴油 12.5 412 2 100 129 064 2021年3月 重型LNG车 L1 LNG 11.0 341 2 100 233 222 2020年4月 TWC L2 LNG 11.5 341 2 300 272 313 2020年4月 -
[1] 生态环境部.《中国移动源环境管理年报(2022年)》[R].北京:生态环境部,2022. [2] 黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):385-393. doi: 10.13198/j.issn.1001-6929.2021.11.06HUANG Z H,JI L,YIN J,et al.Peak pathway of China´s Road traffic carbon emissions[J].Research of Environmental Sciences,2022,35(2):385-393. doi: 10.13198/j.issn.1001-6929.2021.11.06 [3] 郭佳栋.重型车实际道路车载排放测试及排放特性研究[D].北京:北京理工大学,2015. [4] LV L Q,GE Y S,JI Z,et al.Regulated emission characteristics of in-use LNG and diesel semi-trailer towing vehicles under real driving conditions using PEMS[J].Journal of Environmental Sciences,2020,88:155-164. doi: 10.1016/j.jes.2019.07.020 [5] WEISS M,BONNEL P,HUMMEL R,et al.On-road emissions of light-duty vehicles in Europe[J].Environmental Science & Technology,2011,45(19):8575-8581. [6] VELDERS G J M,GEILENKIRCHEN G P,de LANGE R.Higher than expected NO x emission from trucks may affect attainability of NO2 limit values in the Netherlands[J].Atmospheric Environment,2011,45(18):3025-3033. doi: 10.1016/j.atmosenv.2011.03.023 [7] LEE J,KIM J,CHON M S,et al.Characteristics of real-driving CO2 and NO x Emissions compared to test modes on Euro-6 LDVs equipped with SCR and LNT[J].Journal of ILASS-Korea,2016,21(4):200-206. doi: 10.15435/JILASSKR.2016.21.4.200 [8] KWON S,PARK Y,PARK J,et al.Characteristics of on-road NO x emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system[J].Science of the Total Environment,2017,576:70-77. doi: 10.1016/j.scitotenv.2016.10.101 [9] HATA H,KOKURYO K,OGATA T,et al.Real-world measurement and mechanical-analysis-based verification of NO x and CO2 emissions from an in-use heavy-duty vehicle[J].Atmospheric Measurement Techniques,2021,14(3):2115-2126. doi: 10.5194/amt-14-2115-2021 [10] WANG X,SONG G H,ZHAI Z Q,et al.Effects of vehicle load on emissions of heavy-duty diesel trucks:a study based on real-world data[J].International Journal of Environmental Research and Public Health,2021,18(8):3877. doi: 10.3390/ijerph18083877 [11] WANG H H,GE Y S,HAO L J,et al.The real driving emission characteristics of light-duty diesel vehicle at various altitudes[J].Atmospheric Environment,2018,191:126-131. doi: 10.1016/j.atmosenv.2018.07.060 [12] CHEN Y C,WU X K,HU K J,et al.NO x emissions from diesel cars increase with altitude[J].Transportation Research Part D:Transport and Environment,2023,115:103573. doi: 10.1016/j.trd.2022.103573 [13] 高继东.城市机动车道路排放因子和排放特性研究[D].天津:天津大学,2008. [14] JOHNSON K C,DURBIN T D,COCKER D R,et al.On-road comparison of a portable emission measurement system with a mobile reference laboratory for a heavy-duty diesel vehicle[J].Atmospheric Environment,2009,43(18):2877-2883. doi: 10.1016/j.atmosenv.2009.03.019 [15] 王燕军,吉喆,尹航,等.重型柴油车污染物排放因子测量的影响因素[J].环境科学研究,2014,27(3):232-238. doi: 10.13198/j.issn.1001-6929.2014.03.02WANG Y J,JI Z,YIN H,et al.Study of parameters influencing measurement on heavy duty diesel vehicle´s emission factors[J].Research of Environmental Sciences,2014,27(3):232-238. doi: 10.13198/j.issn.1001-6929.2014.03.02 [16] 生态环境部,国家市场监督管理总局.重型柴油车污染物排放限值及测量方法(中国第六阶段):GB 17691—2018[S].北京:中国环境科学出版社,2018. [17] 吕立群,尹航,王军方,等.基于功基窗口法的国六重型柴油车实际道路排放研究[J].中国环境科学,2021,41(8):3539-3545. doi: 10.19674/j.cnki.issn1000-6923.20210323.001LYU L Q,YIN H,WANG J F,et al.Research on real driving emissions from China-Ⅵ heavy-duty diesel vehicles based on work-based window method[J].China Environmental Science,2021,41(8):3539-3545. doi: 10.19674/j.cnki.issn1000-6923.20210323.001 [18] GRIGORATOS T,FONTARAS G,GIECHASKIEL B,et al.Real world emissions performance of heavy-duty Euro Ⅵ diesel vehicles[J].Atmospheric Environment,2019,201:348-359. doi: 10.1016/j.atmosenv.2018.12.042 [19] BISHOP G A,STEDMAN D H.Reactive nitrogen species emission trends in three light-/medium-duty United States fleets[J].Environmental Science & Technology,2015,49(18):11234-11240. [20] WU Y,ZHANG S J,LI M L,et al.The challenge to NOx emission control for heavy-duty diesel vehicles in China[J].Atmospheric Chemistry and Physics,2012,12(19):9365-9379. doi: 10.5194/acp-12-9365-2012 [21] YANG L,FRANCO V,MOCK P,et al.Experimental assessment of NO x emissions from 73 euro 6 diesel passenger cars[J].Environmental Science & Technology,2015,49(24):14409-14415. [22] McCAFFERY C,ZHU H W,TANG T B,et al.Real-world NO x emissions from heavy-duty diesel,natural gas,and diesel hybrid electric vehicles of different vocations on California roadways[J].Science of the Total Environment,2021,784:147224. doi: 10.1016/j.scitotenv.2021.147224 [23] ONISHI Y,HAMAUCHI S,SHIBUYA K,et al.Development of on-board NH3 and N2O analyzer utilizing mid-infrared laser absorption spectroscopy[J].SAE Technical Paper,2021.https://doi.org/10.4271/2021-01-0610 [24] MENDOZA-VILLAFUERTE P,SUAREZ-BERTOA R,GIECHASKIEL B,et al.NO x,NH3,N2O and PN real driving emissions from a Euro Ⅵ heavy-duty vehicle:impact of regulatory on-road test conditions on emissions[J].Science of the Total Environment,2017,609:546-555. doi: 10.1016/j.scitotenv.2017.07.168 [25] ZHANG Q,LI M H,LI G X,et al.Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC[J].Energy,2017,132:225-237. doi: 10.1016/j.energy.2017.05.039 [26] ZHANG Q,XU Z S,LI M H,et al.Combustion and emissions of a Euro Ⅵ heavy-duty natural gas engine using EGR and TWC[J].Journal of Natural Gas Science and Engineering,2016,28:660-671. doi: 10.1016/j.jngse.2015.12.015 [27] ZHANG Q,LI M H,SHAO S D,et al.Ammonia emissions of a natural gas engine at the stoichiometric operation with TWC[J].Applied Thermal Engineering,2018,130:1363-1372. doi: 10.1016/j.applthermaleng.2017.11.098 [28] NEVALAINEN P,KINNUNEN N M,KIRVESLAHTI A,et al.Formation of NH3 and N2O in a modern natural gas three-way catalyst designed for heavy-duty vehicles:the effects of simulated exhaust gas composition and ageing[J].Applied Catalysis A:General,2018,552:30-37. doi: 10.1016/j.apcata.2017.12.017 [29] WANG C X,TAN J W,HARLE G,et al.Ammonia formation over Pd/Rh three-way catalysts during lean-to-rich fluctuations:the effect of the catalyst aging,exhaust temperature,lambda,and duration in rich conditions[J].Environmental Science & Technology,2019,53(21):12621-12628. [30] 刘彪.柴油机Cu-SSZ-13分子筛SCR催化剂N2O生成机理研究[D].杭州:浙江大学,2021. [31] LYU L Q,SUN W Q,FENG P,et al.NH3 and N2O emission durability of the heavy-duty diesel engine with DOC,DPF,SCR,and ASC through the accelerated aging method[J].Fuel,2023,339:126950. doi: 10.1016/j.fuel.2022.126950 [32] LIU B,YAO D W,WU F,et al.Experimental investigation on N2O formation during the selective catalytic reduction of NO x with NH3 over Cu-SSZ-13[J].Industrial & Engineering Chemistry Research,2019,58(45):20516-20527. [33] ZHU M H,LAI J K,WACHS I E.Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts[J].Applied Catalysis B:Environmental,2018,224:836-840. doi: 10.1016/j.apcatb.2017.11.029 [34] WANG D H,YAO Q,HUI S E,et al.N2O and NO formation from NH3 oxidation over MnO x/TiO2 catalysts[J].Fuel,2018,234:650-655. doi: 10.1016/j.fuel.2018.07.073 [35] YAO D W,LIU B,WU F,et al.N2O formation mechanism during low-temperature NH3-SCR over Cu-SSZ-13 catalysts with different Cu loadings[J].Industrial & Engineering Chemistry Research,2021,60(28):10083-10093. [36] ZHAO Y S,LI Y T,KUMAR A,et al.Separately resolving NOx and VOC contributions to ozone formation[J].Atmospheric Environment,2022,285:119224. doi: 10.1016/j.atmosenv.2022.119224 [37] BAO Z E,XU H F,LI K W,et al.Effects of NH3 on secondary aerosol formation from toluene/NO x photo-oxidation in different O3 formation regimes[J].Atmospheric Environment,2021,261:118603. doi: 10.1016/j.atmosenv.2021.118603 -