留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国六重型车实际道路上污染物和温室气体排放特性研究

葛蕴珊 吕立群 岳崇会 高翠 王军方 尹航

葛蕴珊, 吕立群, 岳崇会, 高翠, 王军方, 尹航. 国六重型车实际道路上污染物和温室气体排放特性研究[J]. 环境科学研究, 2023, 36(11): 2118-2125. doi: 10.13198/j.issn.1001-6929.2023.07.08
引用本文: 葛蕴珊, 吕立群, 岳崇会, 高翠, 王军方, 尹航. 国六重型车实际道路上污染物和温室气体排放特性研究[J]. 环境科学研究, 2023, 36(11): 2118-2125. doi: 10.13198/j.issn.1001-6929.2023.07.08
GE Yunshan, LÜ Liqun, YUE Chonghui, GAO Cui, WANG Junfang, YIN Hang. Research on Characteristics of On-Road Pollutant and Greenhouse Gas Emissions from China-Ⅵ Heavy-Duty Vehicles[J]. Research of Environmental Sciences, 2023, 36(11): 2118-2125. doi: 10.13198/j.issn.1001-6929.2023.07.08
Citation: GE Yunshan, LÜ Liqun, YUE Chonghui, GAO Cui, WANG Junfang, YIN Hang. Research on Characteristics of On-Road Pollutant and Greenhouse Gas Emissions from China-Ⅵ Heavy-Duty Vehicles[J]. Research of Environmental Sciences, 2023, 36(11): 2118-2125. doi: 10.13198/j.issn.1001-6929.2023.07.08

国六重型车实际道路上污染物和温室气体排放特性研究

doi: 10.13198/j.issn.1001-6929.2023.07.08
基金项目: 国家重点研发计划项目(No.2022YFC3701802);青海省科技厅重大专项(2019-GX-A6);国家自然科学基金面上项目(No.52272342)
详细信息
    作者简介:

    葛蕴珊(1965-),男,吉林敦化人,教授,博士,主要从事机动车排放控制研究,geyunshan@bit.edu.cn

    通讯作者:

    尹航(1973-),男,陕西西安人,研究员,博士,主要从事机动车排放控制及法规制定等研究, yinhang@vecc.org.cn

  • 中图分类号: X511

Research on Characteristics of On-Road Pollutant and Greenhouse Gas Emissions from China-Ⅵ Heavy-Duty Vehicles

Funds: National Key Research and Development Program of China (No.2022YFC3701802); Science and Technology Major Project of Qinghai Province, China (No.2019-GX-A6); National Natural Science Foundation of China (No.52272342)
  • 摘要: 重型车实际道路温室气体(GHG)排放控制势在必行,为获取国六重型车温室气体(CO2、N2O、CH4)和常规污染物(NOx、CO、NH3)实际道路排放特征,本研究选取了5辆典型国六重型柴油车和重型天然气(LNG)车,在实际道路上按车载排放测试要求开展了多次实际道路排放试验. 结果表明:国六重型车CO2排放量随发动机负荷的提高呈降低趋势,柴油车和LNG车高速工况下CO2比排放相较市区工况最高分别可降低23.55%和25.80%. LNG车CO2比排放显著低于柴油车,市区、市郊和高速行驶工况下CO2比排放降幅分别为15.68%、21.58%和12.17%,表明LNG车相较柴油车具有显著的CO2减排优势. LNG车CH4排放量显著高于柴油车,CH4比排放为750.75~1 915.08 mg/(kW·h);相反,柴油车N2O排放量高于LNG车,这与柴油车采取选择性催化还原(SCR)后处理技术控制NOx排放有关. 考虑到CH4和N2O较CO2具有更强的温室气体效应,因此应当重视国六重型车N2O和CH4的实际道路排放. 柴油车和LNG车采取的不同技术路线均能有效控制NOx排放,柴油车CO比排放远低于国六限值要求,而LNG车CO排放控制已近失效. 此外,柴油车可有效控制实际道路NH3排放,但LNG车NH3比排放为431.92~1 286.45 mg/(kW·h),采取有效措施保证空燃比闭环精度是减少LNG车CO和NH3排放的前提. 虽然LNG车相较柴油车具有CO2减排优势,但二者的温室效应强度相当. 考虑到LNG车NOx和NH3的实际道路排放显著高于柴油车,而NOx和NH3是大气中臭氧和二次气溶胶的重要前体物,因此将国六重型柴油车替换为国六重型LNG车并非合理选择,也不利于大气环境的臭氧和颗粒物治理.

     

  • 图  1  PEMS安装示意

    Figure  1.  PEMS installation

    图  2  实际道路排放测试路线

    Figure  2.  Real driving emission test route

    图  3  不同行驶工况下试验车辆实际道路上的车速和NOx排放特征

    Figure  3.  Real driving velocity and NOx emission characteristics of test vehicles under different driving conditions

    图  4  不同行驶工况下试验车辆的NOx比排放

    Figure  4.  NOx specific emission of test vehicles under different driving conditions

    图  5  不同行驶工况下试验车辆的CO和NH3比排放

    Figure  5.  CO and NH3 specific emissions of test vehicles under different driving conditions

    图  6  实际道路上CO和NH3排放特征(片段)

    Figure  6.  The real driving CO and NH3 emission characteristics (fragment)

    图  7  不同行驶工况下试验车辆的CO2比排放

    Figure  7.  CO2 specific emission of test vehicles under different driving conditions

    图  8  不同行驶工况下试验车辆的CH4和N2O比排放

    Figure  8.  CH4 and N2O specific emission of test vehicles under different driving conditions

    图  9  不同行驶工况下试验车辆的温室效应强度

    Figure  9.  Greenhouse effect intensity of test vehicles under different driving conditions

    表  1  试验车辆技术参数

    Table  1.   Specifications of test vehicles

    试验车辆 燃料 排量/L 功率/kW 扭矩/(N·m) 行驶里程/km 生产时间 后处理系统
    重型柴油车 D1 柴油 10.5 311 2 200 125 744 2021年3月 DOC
    DPF
    SCR
    ASC
    D2 柴油 12.5 412 2 800 128 283 2021年3月
    D3 柴油 12.5 412 2 100 129 064 2021年3月
    重型LNG车 L1 LNG 11.0 341 2 100 233 222 2020年4月 TWC
    L2 LNG 11.5 341 2 300 272 313 2020年4月
    下载: 导出CSV
  • [1] 生态环境部.《中国移动源环境管理年报(2022年)》[R].北京:生态环境部,2022.
    [2] 黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):385-393. doi: 10.13198/j.issn.1001-6929.2021.11.06

    HUANG Z H,JI L,YIN J,et al.Peak pathway of China´s Road traffic carbon emissions[J].Research of Environmental Sciences,2022,35(2):385-393. doi: 10.13198/j.issn.1001-6929.2021.11.06
    [3] 郭佳栋.重型车实际道路车载排放测试及排放特性研究[D].北京:北京理工大学,2015.
    [4] LV L Q,GE Y S,JI Z,et al.Regulated emission characteristics of in-use LNG and diesel semi-trailer towing vehicles under real driving conditions using PEMS[J].Journal of Environmental Sciences,2020,88:155-164. doi: 10.1016/j.jes.2019.07.020
    [5] WEISS M,BONNEL P,HUMMEL R,et al.On-road emissions of light-duty vehicles in Europe[J].Environmental Science & Technology,2011,45(19):8575-8581.
    [6] VELDERS G J M,GEILENKIRCHEN G P,de LANGE R.Higher than expected NO x emission from trucks may affect attainability of NO2 limit values in the Netherlands[J].Atmospheric Environment,2011,45(18):3025-3033. doi: 10.1016/j.atmosenv.2011.03.023
    [7] LEE J,KIM J,CHON M S,et al.Characteristics of real-driving CO2 and NO x Emissions compared to test modes on Euro-6 LDVs equipped with SCR and LNT[J].Journal of ILASS-Korea,2016,21(4):200-206. doi: 10.15435/JILASSKR.2016.21.4.200
    [8] KWON S,PARK Y,PARK J,et al.Characteristics of on-road NO x emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system[J].Science of the Total Environment,2017,576:70-77. doi: 10.1016/j.scitotenv.2016.10.101
    [9] HATA H,KOKURYO K,OGATA T,et al.Real-world measurement and mechanical-analysis-based verification of NO x and CO2 emissions from an in-use heavy-duty vehicle[J].Atmospheric Measurement Techniques,2021,14(3):2115-2126. doi: 10.5194/amt-14-2115-2021
    [10] WANG X,SONG G H,ZHAI Z Q,et al.Effects of vehicle load on emissions of heavy-duty diesel trucks:a study based on real-world data[J].International Journal of Environmental Research and Public Health,2021,18(8):3877. doi: 10.3390/ijerph18083877
    [11] WANG H H,GE Y S,HAO L J,et al.The real driving emission characteristics of light-duty diesel vehicle at various altitudes[J].Atmospheric Environment,2018,191:126-131. doi: 10.1016/j.atmosenv.2018.07.060
    [12] CHEN Y C,WU X K,HU K J,et al.NO x emissions from diesel cars increase with altitude[J].Transportation Research Part D:Transport and Environment,2023,115:103573. doi: 10.1016/j.trd.2022.103573
    [13] 高继东.城市机动车道路排放因子和排放特性研究[D].天津:天津大学,2008.
    [14] JOHNSON K C,DURBIN T D,COCKER D R,et al.On-road comparison of a portable emission measurement system with a mobile reference laboratory for a heavy-duty diesel vehicle[J].Atmospheric Environment,2009,43(18):2877-2883. doi: 10.1016/j.atmosenv.2009.03.019
    [15] 王燕军,吉喆,尹航,等.重型柴油车污染物排放因子测量的影响因素[J].环境科学研究,2014,27(3):232-238. doi: 10.13198/j.issn.1001-6929.2014.03.02

    WANG Y J,JI Z,YIN H,et al.Study of parameters influencing measurement on heavy duty diesel vehicle´s emission factors[J].Research of Environmental Sciences,2014,27(3):232-238. doi: 10.13198/j.issn.1001-6929.2014.03.02
    [16] 生态环境部,国家市场监督管理总局.重型柴油车污染物排放限值及测量方法(中国第六阶段):GB 17691—2018[S].北京:中国环境科学出版社,2018.
    [17] 吕立群,尹航,王军方,等.基于功基窗口法的国六重型柴油车实际道路排放研究[J].中国环境科学,2021,41(8):3539-3545. doi: 10.19674/j.cnki.issn1000-6923.20210323.001

    LYU L Q,YIN H,WANG J F,et al.Research on real driving emissions from China-Ⅵ heavy-duty diesel vehicles based on work-based window method[J].China Environmental Science,2021,41(8):3539-3545. doi: 10.19674/j.cnki.issn1000-6923.20210323.001
    [18] GRIGORATOS T,FONTARAS G,GIECHASKIEL B,et al.Real world emissions performance of heavy-duty Euro Ⅵ diesel vehicles[J].Atmospheric Environment,2019,201:348-359. doi: 10.1016/j.atmosenv.2018.12.042
    [19] BISHOP G A,STEDMAN D H.Reactive nitrogen species emission trends in three light-/medium-duty United States fleets[J].Environmental Science & Technology,2015,49(18):11234-11240.
    [20] WU Y,ZHANG S J,LI M L,et al.The challenge to NOx emission control for heavy-duty diesel vehicles in China[J].Atmospheric Chemistry and Physics,2012,12(19):9365-9379. doi: 10.5194/acp-12-9365-2012
    [21] YANG L,FRANCO V,MOCK P,et al.Experimental assessment of NO x emissions from 73 euro 6 diesel passenger cars[J].Environmental Science & Technology,2015,49(24):14409-14415.
    [22] McCAFFERY C,ZHU H W,TANG T B,et al.Real-world NO x emissions from heavy-duty diesel,natural gas,and diesel hybrid electric vehicles of different vocations on California roadways[J].Science of the Total Environment,2021,784:147224. doi: 10.1016/j.scitotenv.2021.147224
    [23] ONISHI Y,HAMAUCHI S,SHIBUYA K,et al.Development of on-board NH3 and N2O analyzer utilizing mid-infrared laser absorption spectroscopy[J].SAE Technical Paper,2021.https://doi.org/10.4271/2021-01-0610
    [24] MENDOZA-VILLAFUERTE P,SUAREZ-BERTOA R,GIECHASKIEL B,et al.NO x,NH3,N2O and PN real driving emissions from a Euro Ⅵ heavy-duty vehicle:impact of regulatory on-road test conditions on emissions[J].Science of the Total Environment,2017,609:546-555. doi: 10.1016/j.scitotenv.2017.07.168
    [25] ZHANG Q,LI M H,LI G X,et al.Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC[J].Energy,2017,132:225-237. doi: 10.1016/j.energy.2017.05.039
    [26] ZHANG Q,XU Z S,LI M H,et al.Combustion and emissions of a Euro Ⅵ heavy-duty natural gas engine using EGR and TWC[J].Journal of Natural Gas Science and Engineering,2016,28:660-671. doi: 10.1016/j.jngse.2015.12.015
    [27] ZHANG Q,LI M H,SHAO S D,et al.Ammonia emissions of a natural gas engine at the stoichiometric operation with TWC[J].Applied Thermal Engineering,2018,130:1363-1372. doi: 10.1016/j.applthermaleng.2017.11.098
    [28] NEVALAINEN P,KINNUNEN N M,KIRVESLAHTI A,et al.Formation of NH3 and N2O in a modern natural gas three-way catalyst designed for heavy-duty vehicles:the effects of simulated exhaust gas composition and ageing[J].Applied Catalysis A:General,2018,552:30-37. doi: 10.1016/j.apcata.2017.12.017
    [29] WANG C X,TAN J W,HARLE G,et al.Ammonia formation over Pd/Rh three-way catalysts during lean-to-rich fluctuations:the effect of the catalyst aging,exhaust temperature,lambda,and duration in rich conditions[J].Environmental Science & Technology,2019,53(21):12621-12628.
    [30] 刘彪.柴油机Cu-SSZ-13分子筛SCR催化剂N2O生成机理研究[D].杭州:浙江大学,2021.
    [31] LYU L Q,SUN W Q,FENG P,et al.NH3 and N2O emission durability of the heavy-duty diesel engine with DOC,DPF,SCR,and ASC through the accelerated aging method[J].Fuel,2023,339:126950. doi: 10.1016/j.fuel.2022.126950
    [32] LIU B,YAO D W,WU F,et al.Experimental investigation on N2O formation during the selective catalytic reduction of NO x with NH3 over Cu-SSZ-13[J].Industrial & Engineering Chemistry Research,2019,58(45):20516-20527.
    [33] ZHU M H,LAI J K,WACHS I E.Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts[J].Applied Catalysis B:Environmental,2018,224:836-840. doi: 10.1016/j.apcatb.2017.11.029
    [34] WANG D H,YAO Q,HUI S E,et al.N2O and NO formation from NH3 oxidation over MnO x/TiO2 catalysts[J].Fuel,2018,234:650-655. doi: 10.1016/j.fuel.2018.07.073
    [35] YAO D W,LIU B,WU F,et al.N2O formation mechanism during low-temperature NH3-SCR over Cu-SSZ-13 catalysts with different Cu loadings[J].Industrial & Engineering Chemistry Research,2021,60(28):10083-10093.
    [36] ZHAO Y S,LI Y T,KUMAR A,et al.Separately resolving NOx and VOC contributions to ozone formation[J].Atmospheric Environment,2022,285:119224. doi: 10.1016/j.atmosenv.2022.119224
    [37] BAO Z E,XU H F,LI K W,et al.Effects of NH3 on secondary aerosol formation from toluene/NO x photo-oxidation in different O3 formation regimes[J].Atmospheric Environment,2021,261:118603. doi: 10.1016/j.atmosenv.2021.118603
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  13
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-06-15
  • 网络出版日期:  2023-07-03

目录

    /

    返回文章
    返回