留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于叶绿素荧光遥感的长江流域植被生产力时空变化及其气候驱动因素

聂冲 陈星安 杨鹊平 朱延忠 徐睿 邓陈宁 周娟

聂冲, 陈星安, 杨鹊平, 朱延忠, 徐睿, 邓陈宁, 周娟. 基于叶绿素荧光遥感的长江流域植被生产力时空变化及其气候驱动因素[J]. 环境科学研究, 2023, 36(11): 2200-2209. doi: 10.13198/j.issn.1001-6929.2023.08.20
引用本文: 聂冲, 陈星安, 杨鹊平, 朱延忠, 徐睿, 邓陈宁, 周娟. 基于叶绿素荧光遥感的长江流域植被生产力时空变化及其气候驱动因素[J]. 环境科学研究, 2023, 36(11): 2200-2209. doi: 10.13198/j.issn.1001-6929.2023.08.20
NIE Chong, CHEN Xing′an, YANG Queping, ZHU Yanzhong, XU Rui, DENG Chenning, ZHOU Juan. Spatial-Temporal Variation of Vegetation Productivity in the Yangtze River Basin and Its Climate Driving Factors Based on Solar-Induced Chlorophyll Fluorescence[J]. Research of Environmental Sciences, 2023, 36(11): 2200-2209. doi: 10.13198/j.issn.1001-6929.2023.08.20
Citation: NIE Chong, CHEN Xing′an, YANG Queping, ZHU Yanzhong, XU Rui, DENG Chenning, ZHOU Juan. Spatial-Temporal Variation of Vegetation Productivity in the Yangtze River Basin and Its Climate Driving Factors Based on Solar-Induced Chlorophyll Fluorescence[J]. Research of Environmental Sciences, 2023, 36(11): 2200-2209. doi: 10.13198/j.issn.1001-6929.2023.08.20

基于叶绿素荧光遥感的长江流域植被生产力时空变化及其气候驱动因素

doi: 10.13198/j.issn.1001-6929.2023.08.20
基金项目: 中央级公益性科研院所基本科研业务费(No.2022YSKY-72);国家重点研发计划项目(No.2022YFC3202104);长江生态环境保护修复联合研究项目(第二期) (No.2022-LHYJ-02-0603)
详细信息
    作者简介:

    聂冲(1991-),女,河北保定人,助理研究员,博士,主要从事生态水文研究,niechong0722@163.com

    通讯作者:

    杨鹊平(1981-),女,吉林长春人,高级工程师,硕士,主要从事环境政策管理研究, yangqp@craes.org.cn

  • 中图分类号: X171;Q948

Spatial-Temporal Variation of Vegetation Productivity in the Yangtze River Basin and Its Climate Driving Factors Based on Solar-Induced Chlorophyll Fluorescence

Funds: Fundamental Research Funds for the Central Public-Interest Scientific Institution, Chinese Research Academy of Environmental Sciences (No.2022YSKY-72); National Key Research and Development Program of China (No.2022YFC3202104); Yangtze River Joint Research Phase Ⅱ Program, China (No.2022-LHYJ-02-0603)
  • 摘要: 植被生产力反映了陆地生态系统通过光合作用固定的有机碳量. 长江流域在我国经济社会发展和生态环境保护中占有重要的战略地位. 然而,由于区域尺度植被生产力估算不够精准,导致了目前长江流域植被生产力现状及演变规律不清、关键驱动因子研究不充分的问题. 本研究选取最新的日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence, SIF)数据来表征长江流域植被生产力,基于全球陆地数据同化系统(GLDAS v.5)数据集,采用偏最小二乘回归方法,系统辨识了长江流域SIF的时空演变规律,解析了SIF对降水、温度、净辐射变化的响应规律. 结果表明:①2001—2020年,长江流域SIF年均值为(0.25±0.08) mW/(m2·nm·sr),SIF随着纬度的增加呈现显著减少的趋势,随着经度的增加呈现先增加后减少的趋势,汉江流域、鄱阳湖流域、洞庭湖流域SIF均相对较高,金沙江石鼓以上流域和金沙江石鼓以下流域SIF均相对较低. ②2001—2020年长江流域SIF有显著增加的趋势,增加速率为0.002 mW/(m2·nm·sr·a),乌江流域、宜宾至宜昌段长江干流区间和鄱阳湖流域的SIF增长率均较高,30.34%的金沙江石鼓以上流域和47.21%的太湖流域SIF存在减少趋势. ③降水、温度和净辐射对长江流域SIF变化的贡献度分别为16.41%±9.59%、49.29%±10.79%和34.30%±14.99%. 研究显示,2001—2020年长江流域植被生产力有显著增加的趋势,温度对长江流域植被生产力变化起着主导作用. 本研究可提高对长江流域植被气候变化适应性的认识,研究成果可为长江流域增汇减排政策的制定及碳中和目标的实现提供科技支撑.

     

  • 图  1  长江流域二级水资源区分布

    注:JSJ-1表示金沙江石鼓以上流域;JSJ-2表示金沙江石鼓以下流域;MTJ表示岷沱江流域;JLJ表示嘉陵江流域;WJ表示乌江流域;UM表示宜宾至宜昌段长江干流区间;DTL表示洞庭湖流域;HJ表示汉江流域;PYL表示鄱阳湖流域;MM表示宜昌至湖口段长江干流区间;LM表示湖口以下长江干流区间;TL表示太湖流域.

    Figure  1.  Distribution map of secondary water resource areas in the Yangtze River Basin (YRB)

    图  2  2001—2020年长江流域多年平均SIF的空间分布格局与统计特征

    Figure  2.  Spatial distribution pattern and statistical characteristics of multi-year average SIF in the YRB from 2001 to 2020

    图  3  2001—2020年长江流域二级水资源区SIF分布

    Figure  3.  Distribution of SIF in the Yangtze River subbasins from 2001 to 2020

    图  4  2001—2020年长江流域年均SIF和气候因子的变化趋势

    Figure  4.  The variation trends of annual SIF and climate factors in the YRB from 2001 to 2020

    图  5  2001—2020年长江流域SIF变化趋势及其显著性

    注:增加*表示显著增加;减少*表示显著减少.

    Figure  5.  Trends and significances of SIF changes in the YRB from 2001 to 2020

    图  6  2001—2020年长江流域二级水资源区SIF变化率

    Figure  6.  Change rate of SIF in the Yangtze River subbasins from 2001 to 2020

    图  7  2001—2020年长江流域SIF对气候因子变化的响应

    Figure  7.  Responses of SIF in the YRB to climate factor changes from 2001 to 2020

  • [1] 朴世龙,岳超,丁金枝,等.试论陆地生态系统碳汇在“碳中和”目标中的作用[J].中国科学:地球科学,2022,52(7):1419-1426. doi: 10.1360/SSTe-2022-0011

    PIAO S L,YUE C,DING J Z,et al.On the role of carbon sink in terrestrial ecosystem in the goal of ‘carbon neutrality’[J].Scientia Sinica (Terrae),2022,52(7):1419-1426. doi: 10.1360/SSTe-2022-0011
    [2] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Global carbon budget 2020[J].Earth System Science Data Discussions,2020.doi: 1010.5194/essd-12-3269-2020.
    [3] 朴世龙,何悦,王旭辉等.中国陆地生态系统碳汇估算:方法、进展、展望[J].中国科学:地球科学,2022,52(6):1010-1020.

    MPIAO S L,HE Y,WANG X H,et al.Estimation of China ′s terrestrial ecosystem carbon sink:methods,progress and prospects[J].Science China Earth Sciences,2022,52(6):1010-1020.
    [4] KEENAN T F,HOLLINGER D Y,BOHRER G,et al.Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J].Nature,2013,499(7458):324-327. doi: 10.1038/nature12291
    [5] ZHANG J H,ZHANG Y L,SUN G,et al.Climate variability masked greening effects on water yield in the Yangtze River Basin during 2001-2018[J].Water Resources Research,2022.doi: 10.1029/2021WR030382.
    [6] LIU Y,LIU H H,CHEN Y,et al.Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices[J].Science of the Total Environment,2022,838:156553. doi: 10.1016/j.scitotenv.2022.156553
    [7] LIU S D,KUHN C,AMATULLI G,et al.The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[J].Proceedings of the National Academy of Sciences of the United States of America,2022,119(11):e2106322119.
    [8] ZHANG Y L,SONG C H,HWANG T,et al.Land cover change-induced decline in terrestrial gross primary production over the conterminous United States from 2001 to 2016[J].Agricultural and Forest Meteorology,2021,308/309:108609. doi: 10.1016/j.agrformet.2021.108609
    [9] 刘录三,黄国鲜,王璠,等.长江流域水生态环境安全主要问题、形势与对策[J].环境科学研究,2020,33(5):1081-1090.

    LIU L S,HUANG G X,WANG F,et al.Main problems,situation and countermeasures of water eco-environment security in the Yangtze River Basin[J].Research of Environmental Sciences,2020,33(5):1081-1090.
    [10] 陈善荣,何立环,林兰钰,等.近40年来长江干流水质变化研究[J].环境科学研究,2020,33(5):1119-1128.

    CHEN S R,HE L H,LIN L Y,et al.Change trends of surface water quality in the mainstream of the Yangtze River during the past four decades[J].Research of Environmental Sciences,2020,33(5):1119-1128.
    [11] 王金南,孙宏亮,续衍雪,等.关于“十四五”长江流域水生态环境保护的思考[J].环境科学研究,2020,33(5):1075-1080.

    WANG J N,SUN H L,XU Y X,et al.Water eco-environment protection framework in the Yangtze River Basin during the ‘14th Five-Year Plan’ period[J].Research of Environmental Sciences,2020,33(5):1075-1080.
    [12] 丁肇慰,肖能文,高晓奇,等.长江流域2000—2015年生态系统质量及服务变化特征[J].环境科学研究,2020,33(5):1308-1314.

    DING Z W,XIAO N W,GAO X Q,et al.Changes of ecosystem quality and services between 2000 and 2015 in Yangtze River Basin[J].Research of Environmental Sciences,2020,33(5):1308-1314.
    [13] 贾松伟.长江流域森林植被碳储量分布特征及动态变化[J].生态与农村环境学报,2018,34(11):997-1002. doi: 10.11934/j.issn.1673-4831.2018.11.006

    JIA S W.Carbon storage distribution and its dynamic changes of forest vegetation in Yangtze River Basin based on continuous forest resources inventory[J].Journal of Ecology and Rural Environment,2018,34(11):997-1002. doi: 10.11934/j.issn.1673-4831.2018.11.006
    [14] QU S,WANG L C,LIN A W,et al.What drives the vegetation restoration in Yangtze River Basin,China:climate change or anthropogenic factors?[J].Ecological Indicators,2018,90:438-450. doi: 10.1016/j.ecolind.2018.03.029
    [15] 叶许春,杨晓霞,刘福红,等.长江流域陆地植被总初级生产力时空变化特征及其气候驱动因子[J].生态学报,2021,41(17):6949-6959.

    YE X C,YANG X X,LIU F H,et al.Spatio-temporal variations of land vegetation gross primary production in the Yangtze River Basin and correlation with meteorological factors[J].Acta Ecologica Sinica,2021,41(17):6949-6959.
    [16] 赵泉博,朱秀芳,谢天,等.中国生态系统GPP变化热点区域检测与归因分析[J].北京师范大学学报(自然科学版),2023,59(2):177-186.

    ZHAO Q B,ZHU X F,XIE T,et al.Detection and attribution analysis of hot spots of GPP change in China ecosystem[J].Journal of Beijing Normal University (Natural Science),2023,59(2):177-186.
    [17] 陈世苹,游翠海,胡中民,等.涡度相关技术及其在陆地生态系统通量研究中的应用[J].植物生态学报,2020,44(4):291-304. doi: 10.17521/cjpe.2019.0351

    CHEN S P,YOU C H,HU Z M,et al.Eddy covariance technique and its applications in flux observations of terrestrial ecosystems[J].Chinese Journal of Plant Ecology,2020,44(4):291-304. doi: 10.17521/cjpe.2019.0351
    [18] PASTORELLO G,TROTTA C,CANFORA E,et al.The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J].Scientific Data,2020,7:225. doi: 10.1038/s41597-020-0534-3
    [19] NIE C,HUANG Y F,ZHANG S,et al.Effects of soil water content on forest ecosystem water use efficiency through changes in transpiration/evapotranspiration ratio[J].Agricultural and Forest Meteorology,2021,308/309:108605. doi: 10.1016/j.agrformet.2021.108605
    [20] 马伟波,赵立君,田佳榕,等.基于地形位置指数的赤水河流域植被时空变化研究[J].环境科学研究,2020,33(12):2705-2712.

    MA W B,ZHAO L J,TIAN J R,et al.Spatiotemporal changes of vegetation in Chishui River Basin based on topographic position index[J].Research of Environmental Sciences,2020,33(12):2705-2712.
    [21] BETTS R A,BOUCHER O,COLLINS M,et al.Projected increase in continental runoff due to plant responses to increasing carbon dioxide[J].Nature,2007,448(7157):1037-1041. doi: 10.1038/nature06045
    [22] JONARD F,de CANNIÈRE S,BRÜGGEMANN N,et al.Value of Sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes:current status and challenges[J].Agricultural and Forest Meteorology,2020,291:108088. doi: 10.1016/j.agrformet.2020.108088
    [23] RYU Y,BERRY J A,BALDOCCHI D D.What is global photosynthesis?History,uncertainties and opportunities[J].Remote Sensing of Environment,2019,223:95-114. doi: 10.1016/j.rse.2019.01.016
    [24] JOINER J,YOSHIDA Y,VASILKOV A P,et al.The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange[J].Remote Sensing of Environment,2014,152:375-391. doi: 10.1016/j.rse.2014.06.022
    [25] CHEN S L,HUANG Y F,GAO S,et al.Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence[J].Science of the Total Environment,2019,663:45-59. doi: 10.1016/j.scitotenv.2019.01.324
    [26] SUN Y,FRANKENBERG C,WOOD J D,et al.OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J].Science,2017,358(6360):eaam5747. doi: 10.1126/science.aam5747
    [27] 袁艳斌,张城芳,黄鹏,等.基于日光诱导叶绿素荧光的陆地总初级生产力估算[J].农业机械学报,2022,53(4):183-191.

    YUAN Y B,ZHANG C F,HUANG P,et al.Estimation of global terrestrial gross primary productivity based on solar-induced chlorophyll fluorescence[J].Transactions of the Chinese Society of Agricultural Machinery,2022,53(4):183-191.
    [28] 薛蕾,徐承红.长江流域湿地现状及其保护[J].生态经济,2015,31(12):12-15.

    XUE L,XU C H.The status and protection of wetland in Yangtze River Basin[J].Ecological Economy,2015,31(12):12-15.
    [29] JOINER J,GUANTER L,LINDSTROT R,et al.Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2[J].Atmospheric Measurement Techniques,2013,6(10):2803-2823. doi: 10.5194/amt-6-2803-2013
    [30] JOINER J,YOSHIDA Y,VASILKOV A P,et al.Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects:simulations and space-based observations from SCIAMACHY and GOSAT[J].Atmospheric Measurement Techniques,2012,5(4):809-829. doi: 10.5194/amt-5-809-2012
    [31] FRANKENBERG C,FISHER J,WORDEN J,et al.New global observations of the terrestrial carbon cycle from GOSAT:patterns of plant fluorescence with gross primary productivity[J].Geophysical Research Letters,2011,38(17).
    [32] FRANKENBERG C,O'DELL C,BERRY J,et al.Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2[J].Remote Sensing of Environment,2014,147:1-12. doi: 10.1016/j.rse.2014.02.007
    [33] 孙忠秋,高显连,杜珊珊,等.全球日光诱导叶绿素荧光卫星遥感产品研究进展与展望[J].遥感技术与应用,2021,36(5):1044-1056.

    SUN Z Q,GAO X L,DU S S,et al.Research progress and prospective of global satellite-based solar-induced chlorophyll fluorescence products[J].Remote Sensing Technology and Application,2021,36(5):1044-1056.
    [34] CHEN X G,HUANG Y F,NIE C,et al.A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms[J].Scientific Data,2022,9:427. doi: 10.1038/s41597-022-01520-1
    [35] RODELL M,HOUSER P R,JAMBOR U,et al.The global land data assimilation system[J].Bulletin of the American Meteorological Society,2004,85(3):381-394. doi: 10.1175/BAMS-85-3-381
    [36] QIN T L,FENG J M,ZHANG X,et al.Continued decline of global soil moisture content,with obvious soil stratification and regional difference[J].Science of the Total Environment,2023,864:160982. doi: 10.1016/j.scitotenv.2022.160982
    [37] HE J,YANG K,TANG W J,et al.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data,2020,7:25. doi: 10.1038/s41597-020-0369-y
    [38] YANG K,CHEN Y Y,HE J,et al.Development of a daily soil moisture product for the period of 2002-2011 in Chinese mainland[J].Science China Earth Sciences,2020,63(8):1113-1125. doi: 10.1007/s11430-019-9588-5
    [39] ZHOU J H,YANG K,CROW W T,et al.Potential of remote sensing surface temperature- and evapotranspiration-based land-atmosphere coupling metrics for land surface model calibration[J].Remote Sensing of Environment,2023,291:113557. doi: 10.1016/j.rse.2023.113557
    [40] WOLD S,RUHE A,WOLD H,et al.The collinearity problem in linear regression.the partial least squares (PLS) approach to generalized inverses[J].SIAM Journal on Scientific and Statistical Computing,1984,5(3):735-743. doi: 10.1137/0905052
    [41] LI Y E,SHI H,ZHOU L,et al.Disentangling climate and LAI effects on seasonal variability in water use efficiency across terrestrial ecosystems in China[J].Journal of Geophysical Research:Biogeosciences,2018,123(8):2429-2443. doi: 10.1029/2018JG004482
    [42] ZHOU S,WILLIAMS A P,LINTNER B R,et al.Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands[J].Nature Climate Change,2021,11(1):38-44. doi: 10.1038/s41558-020-00945-z
    [43] 张凤英,张增信,田佳西,等.长江流域森林 NPP 模拟及其对气候变化的响应[J].南京林业大学学报(自然科学版),2021,45(1):175-181.

    ZHANG F Y,ZHANG Z X,TIAN J X,et al.Forest NPP simulation in the Yangtze River Basin and its response to climate change[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2021,45(1):175-181.
    [44] LI D P,TIAN L,LI M Y,et al.Spatiotemporal variation of net primary productivity and its response to climate change and human activities in the Yangtze River Delta,China[J].Applied Sciences,2022,12(20):10546. doi: 10.3390/app122010546
    [45] 徐勇,黄雯婷,郭振东,等.2000—2020年我国西南地区植被NEP时空变化及其驱动因素的相对贡献[J].环境科学研究,2023,36(3):557-570.

    XU Y,HUANG W T,GUO Z D,et al.Spatio-temporal variation of vegetation net ecosystem productivity and relative contribution of driving forces in southwest China from 2000 to 2020[J].Research of Environmental Sciences,2023,36(3):557-570.
    [46] 姜鹏,秦美欧,李荣平,等.中国典型生态系统GPP的季节变异及其影响要素[J].生态环境学报,2022,31(4):643-651.

    JIANG P,QIN M O,LI R P,et al.Seasonal variability of GPP and its influencing factors in the typical ecosystems in China[J].Ecology and Environmental Sciences,31(4):643-651.
    [47] LUO Y.Terrestrial carbon-cycle feedback to climate warming[J].Annual Review Ecology Evolution,and Systematics,2007,38:683-712. doi: 10.1146/annurev.ecolsys.38.091206.095808
    [48] SHEN M,WAND S,JIANG N,et al.Plant phenology changes and drivers on the Qinghai-Tibetan Plateau[J].Nature Reviews Earth & Environment,2022,3(10):633-651.
    [49] ZHU J,ZHANG Y,JIANG L.Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow[J].Agricultural and Forest Meteorology,2017,233:242-249. doi: 10.1016/j.agrformet.2016.12.005
  • 加载中
图(7)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  7
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-08-22
  • 网络出版日期:  2023-09-01

目录

    /

    返回文章
    返回