[1] |
朴世龙,岳超,丁金枝,等.试论陆地生态系统碳汇在“碳中和”目标中的作用[J].中国科学:地球科学,2022,52(7):1419-1426. doi: 10.1360/SSTe-2022-0011PIAO S L,YUE C,DING J Z,et al.On the role of carbon sink in terrestrial ecosystem in the goal of ‘carbon neutrality’[J].Scientia Sinica (Terrae),2022,52(7):1419-1426. doi: 10.1360/SSTe-2022-0011
|
[2] |
FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Global carbon budget 2020[J].Earth System Science Data Discussions,2020.doi: 1010.5194/essd-12-3269-2020.
|
[3] |
朴世龙,何悦,王旭辉等.中国陆地生态系统碳汇估算:方法、进展、展望[J].中国科学:地球科学,2022,52(6):1010-1020.MPIAO S L,HE Y,WANG X H,et al.Estimation of China ′s terrestrial ecosystem carbon sink:methods,progress and prospects[J].Science China Earth Sciences,2022,52(6):1010-1020.
|
[4] |
KEENAN T F,HOLLINGER D Y,BOHRER G,et al.Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J].Nature,2013,499(7458):324-327. doi: 10.1038/nature12291
|
[5] |
ZHANG J H,ZHANG Y L,SUN G,et al.Climate variability masked greening effects on water yield in the Yangtze River Basin during 2001-2018[J].Water Resources Research,2022.doi: 10.1029/2021WR030382.
|
[6] |
LIU Y,LIU H H,CHEN Y,et al.Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices[J].Science of the Total Environment,2022,838:156553. doi: 10.1016/j.scitotenv.2022.156553
|
[7] |
LIU S D,KUHN C,AMATULLI G,et al.The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[J].Proceedings of the National Academy of Sciences of the United States of America,2022,119(11):e2106322119.
|
[8] |
ZHANG Y L,SONG C H,HWANG T,et al.Land cover change-induced decline in terrestrial gross primary production over the conterminous United States from 2001 to 2016[J].Agricultural and Forest Meteorology,2021,308/309:108609. doi: 10.1016/j.agrformet.2021.108609
|
[9] |
刘录三,黄国鲜,王璠,等.长江流域水生态环境安全主要问题、形势与对策[J].环境科学研究,2020,33(5):1081-1090.LIU L S,HUANG G X,WANG F,et al.Main problems,situation and countermeasures of water eco-environment security in the Yangtze River Basin[J].Research of Environmental Sciences,2020,33(5):1081-1090.
|
[10] |
陈善荣,何立环,林兰钰,等.近40年来长江干流水质变化研究[J].环境科学研究,2020,33(5):1119-1128.CHEN S R,HE L H,LIN L Y,et al.Change trends of surface water quality in the mainstream of the Yangtze River during the past four decades[J].Research of Environmental Sciences,2020,33(5):1119-1128.
|
[11] |
王金南,孙宏亮,续衍雪,等.关于“十四五”长江流域水生态环境保护的思考[J].环境科学研究,2020,33(5):1075-1080.WANG J N,SUN H L,XU Y X,et al.Water eco-environment protection framework in the Yangtze River Basin during the ‘14th Five-Year Plan’ period[J].Research of Environmental Sciences,2020,33(5):1075-1080.
|
[12] |
丁肇慰,肖能文,高晓奇,等.长江流域2000—2015年生态系统质量及服务变化特征[J].环境科学研究,2020,33(5):1308-1314.DING Z W,XIAO N W,GAO X Q,et al.Changes of ecosystem quality and services between 2000 and 2015 in Yangtze River Basin[J].Research of Environmental Sciences,2020,33(5):1308-1314.
|
[13] |
贾松伟.长江流域森林植被碳储量分布特征及动态变化[J].生态与农村环境学报,2018,34(11):997-1002. doi: 10.11934/j.issn.1673-4831.2018.11.006JIA S W.Carbon storage distribution and its dynamic changes of forest vegetation in Yangtze River Basin based on continuous forest resources inventory[J].Journal of Ecology and Rural Environment,2018,34(11):997-1002. doi: 10.11934/j.issn.1673-4831.2018.11.006
|
[14] |
QU S,WANG L C,LIN A W,et al.What drives the vegetation restoration in Yangtze River Basin,China:climate change or anthropogenic factors?[J].Ecological Indicators,2018,90:438-450. doi: 10.1016/j.ecolind.2018.03.029
|
[15] |
叶许春,杨晓霞,刘福红,等.长江流域陆地植被总初级生产力时空变化特征及其气候驱动因子[J].生态学报,2021,41(17):6949-6959.YE X C,YANG X X,LIU F H,et al.Spatio-temporal variations of land vegetation gross primary production in the Yangtze River Basin and correlation with meteorological factors[J].Acta Ecologica Sinica,2021,41(17):6949-6959.
|
[16] |
赵泉博,朱秀芳,谢天,等.中国生态系统GPP变化热点区域检测与归因分析[J].北京师范大学学报(自然科学版),2023,59(2):177-186.ZHAO Q B,ZHU X F,XIE T,et al.Detection and attribution analysis of hot spots of GPP change in China ecosystem[J].Journal of Beijing Normal University (Natural Science),2023,59(2):177-186.
|
[17] |
陈世苹,游翠海,胡中民,等.涡度相关技术及其在陆地生态系统通量研究中的应用[J].植物生态学报,2020,44(4):291-304. doi: 10.17521/cjpe.2019.0351CHEN S P,YOU C H,HU Z M,et al.Eddy covariance technique and its applications in flux observations of terrestrial ecosystems[J].Chinese Journal of Plant Ecology,2020,44(4):291-304. doi: 10.17521/cjpe.2019.0351
|
[18] |
PASTORELLO G,TROTTA C,CANFORA E,et al.The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J].Scientific Data,2020,7:225. doi: 10.1038/s41597-020-0534-3
|
[19] |
NIE C,HUANG Y F,ZHANG S,et al.Effects of soil water content on forest ecosystem water use efficiency through changes in transpiration/evapotranspiration ratio[J].Agricultural and Forest Meteorology,2021,308/309:108605. doi: 10.1016/j.agrformet.2021.108605
|
[20] |
马伟波,赵立君,田佳榕,等.基于地形位置指数的赤水河流域植被时空变化研究[J].环境科学研究,2020,33(12):2705-2712.MA W B,ZHAO L J,TIAN J R,et al.Spatiotemporal changes of vegetation in Chishui River Basin based on topographic position index[J].Research of Environmental Sciences,2020,33(12):2705-2712.
|
[21] |
BETTS R A,BOUCHER O,COLLINS M,et al.Projected increase in continental runoff due to plant responses to increasing carbon dioxide[J].Nature,2007,448(7157):1037-1041. doi: 10.1038/nature06045
|
[22] |
JONARD F,de CANNIÈRE S,BRÜGGEMANN N,et al.Value of Sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes:current status and challenges[J].Agricultural and Forest Meteorology,2020,291:108088. doi: 10.1016/j.agrformet.2020.108088
|
[23] |
RYU Y,BERRY J A,BALDOCCHI D D.What is global photosynthesis?History,uncertainties and opportunities[J].Remote Sensing of Environment,2019,223:95-114. doi: 10.1016/j.rse.2019.01.016
|
[24] |
JOINER J,YOSHIDA Y,VASILKOV A P,et al.The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange[J].Remote Sensing of Environment,2014,152:375-391. doi: 10.1016/j.rse.2014.06.022
|
[25] |
CHEN S L,HUANG Y F,GAO S,et al.Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence[J].Science of the Total Environment,2019,663:45-59. doi: 10.1016/j.scitotenv.2019.01.324
|
[26] |
SUN Y,FRANKENBERG C,WOOD J D,et al.OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J].Science,2017,358(6360):eaam5747. doi: 10.1126/science.aam5747
|
[27] |
袁艳斌,张城芳,黄鹏,等.基于日光诱导叶绿素荧光的陆地总初级生产力估算[J].农业机械学报,2022,53(4):183-191.YUAN Y B,ZHANG C F,HUANG P,et al.Estimation of global terrestrial gross primary productivity based on solar-induced chlorophyll fluorescence[J].Transactions of the Chinese Society of Agricultural Machinery,2022,53(4):183-191.
|
[28] |
薛蕾,徐承红.长江流域湿地现状及其保护[J].生态经济,2015,31(12):12-15.XUE L,XU C H.The status and protection of wetland in Yangtze River Basin[J].Ecological Economy,2015,31(12):12-15.
|
[29] |
JOINER J,GUANTER L,LINDSTROT R,et al.Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2[J].Atmospheric Measurement Techniques,2013,6(10):2803-2823. doi: 10.5194/amt-6-2803-2013
|
[30] |
JOINER J,YOSHIDA Y,VASILKOV A P,et al.Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects:simulations and space-based observations from SCIAMACHY and GOSAT[J].Atmospheric Measurement Techniques,2012,5(4):809-829. doi: 10.5194/amt-5-809-2012
|
[31] |
FRANKENBERG C,FISHER J,WORDEN J,et al.New global observations of the terrestrial carbon cycle from GOSAT:patterns of plant fluorescence with gross primary productivity[J].Geophysical Research Letters,2011,38(17).
|
[32] |
FRANKENBERG C,O'DELL C,BERRY J,et al.Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2[J].Remote Sensing of Environment,2014,147:1-12. doi: 10.1016/j.rse.2014.02.007
|
[33] |
孙忠秋,高显连,杜珊珊,等.全球日光诱导叶绿素荧光卫星遥感产品研究进展与展望[J].遥感技术与应用,2021,36(5):1044-1056.SUN Z Q,GAO X L,DU S S,et al.Research progress and prospective of global satellite-based solar-induced chlorophyll fluorescence products[J].Remote Sensing Technology and Application,2021,36(5):1044-1056.
|
[34] |
CHEN X G,HUANG Y F,NIE C,et al.A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms[J].Scientific Data,2022,9:427. doi: 10.1038/s41597-022-01520-1
|
[35] |
RODELL M,HOUSER P R,JAMBOR U,et al.The global land data assimilation system[J].Bulletin of the American Meteorological Society,2004,85(3):381-394. doi: 10.1175/BAMS-85-3-381
|
[36] |
QIN T L,FENG J M,ZHANG X,et al.Continued decline of global soil moisture content,with obvious soil stratification and regional difference[J].Science of the Total Environment,2023,864:160982. doi: 10.1016/j.scitotenv.2022.160982
|
[37] |
HE J,YANG K,TANG W J,et al.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data,2020,7:25. doi: 10.1038/s41597-020-0369-y
|
[38] |
YANG K,CHEN Y Y,HE J,et al.Development of a daily soil moisture product for the period of 2002-2011 in Chinese mainland[J].Science China Earth Sciences,2020,63(8):1113-1125. doi: 10.1007/s11430-019-9588-5
|
[39] |
ZHOU J H,YANG K,CROW W T,et al.Potential of remote sensing surface temperature- and evapotranspiration-based land-atmosphere coupling metrics for land surface model calibration[J].Remote Sensing of Environment,2023,291:113557. doi: 10.1016/j.rse.2023.113557
|
[40] |
WOLD S,RUHE A,WOLD H,et al.The collinearity problem in linear regression.the partial least squares (PLS) approach to generalized inverses[J].SIAM Journal on Scientific and Statistical Computing,1984,5(3):735-743. doi: 10.1137/0905052
|
[41] |
LI Y E,SHI H,ZHOU L,et al.Disentangling climate and LAI effects on seasonal variability in water use efficiency across terrestrial ecosystems in China[J].Journal of Geophysical Research:Biogeosciences,2018,123(8):2429-2443. doi: 10.1029/2018JG004482
|
[42] |
ZHOU S,WILLIAMS A P,LINTNER B R,et al.Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands[J].Nature Climate Change,2021,11(1):38-44. doi: 10.1038/s41558-020-00945-z
|
[43] |
张凤英,张增信,田佳西,等.长江流域森林 NPP 模拟及其对气候变化的响应[J].南京林业大学学报(自然科学版),2021,45(1):175-181.ZHANG F Y,ZHANG Z X,TIAN J X,et al.Forest NPP simulation in the Yangtze River Basin and its response to climate change[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2021,45(1):175-181.
|
[44] |
LI D P,TIAN L,LI M Y,et al.Spatiotemporal variation of net primary productivity and its response to climate change and human activities in the Yangtze River Delta,China[J].Applied Sciences,2022,12(20):10546. doi: 10.3390/app122010546
|
[45] |
徐勇,黄雯婷,郭振东,等.2000—2020年我国西南地区植被NEP时空变化及其驱动因素的相对贡献[J].环境科学研究,2023,36(3):557-570.XU Y,HUANG W T,GUO Z D,et al.Spatio-temporal variation of vegetation net ecosystem productivity and relative contribution of driving forces in southwest China from 2000 to 2020[J].Research of Environmental Sciences,2023,36(3):557-570.
|
[46] |
姜鹏,秦美欧,李荣平,等.中国典型生态系统GPP的季节变异及其影响要素[J].生态环境学报,2022,31(4):643-651.JIANG P,QIN M O,LI R P,et al.Seasonal variability of GPP and its influencing factors in the typical ecosystems in China[J].Ecology and Environmental Sciences,31(4):643-651.
|
[47] |
LUO Y.Terrestrial carbon-cycle feedback to climate warming[J].Annual Review Ecology Evolution,and Systematics,2007,38:683-712. doi: 10.1146/annurev.ecolsys.38.091206.095808
|
[48] |
SHEN M,WAND S,JIANG N,et al.Plant phenology changes and drivers on the Qinghai-Tibetan Plateau[J].Nature Reviews Earth & Environment,2022,3(10):633-651.
|
[49] |
ZHU J,ZHANG Y,JIANG L.Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow[J].Agricultural and Forest Meteorology,2017,233:242-249. doi: 10.1016/j.agrformet.2016.12.005
|