Relationship between Pollution and Carbon Reduction and Economic Growth in Typical Regions under the ‘Dual Carbon’ Goals: A Case Study of Urban Agglomeration in the Yellow River Basin
-
摘要: 在经济高质量发展和减污降碳的双重压力下,以减污降碳协同增效为总抓手推动经济绿色转型,是碳达峰碳中和愿景下实现黄河流域生态保护和高质量发展的迫切需要. 为了分析黄河流域减污、降碳与经济增长之间的动态关系,探析其影响机制,并因地制宜提出经济社会全面绿色低碳转型政策建议,本研究基于2006—2020年黄河流域57个城市的主要环境污染物排放、碳排放和人均GDP面板数据,采用面板向量自回归模型(PAVR模型)对减污、降碳与经济增长三者的动态关系及影响机制开展实证研究. 结果表明:①黄河流域经济发展自身惯性效应显著,未来10期经济发展所占贡献比均在95%以上,经济发展与环境污染物排放增加之间存在持续性、滞后性的双向作用机制,但工业废水排放、工业SO2排放对经济增长的反作用机制较弱,对经济增长的贡献率仅分别为0.4%、1.8%,工业烟尘排放制约着黄河流域各城市的经济增长. ②碳排放与经济增长存在双向因果关系,工业CO2排放抑制经济增长,经济增长对工业CO2排放的解释力度达到7.3%,互动方式呈现先促进、后阻碍、再促进的变化趋势. ③从脉冲响应与方差分析结果来看,黄河流域减污、降碳与经济发展的协调程度有待加强,相对于经济增长对减污、降碳的作用效果而言,减污、降碳对经济增长的推动力尚显不足. 因此,建议黄河流域不断促进环境保护与经济发展相协调、推动传统产业转型升级、构建绿色低碳发展新格局、充分发挥科技引领带动作用、完善协同管理体制机制.
-
关键词:
- 经济增长 /
- 减污 /
- 降碳 /
- 面板向量自回归模型(PAVR模型) /
- 黄河流域
Abstract: In order to promote high-quality economic development as well as carbon and pollution reduction, it is urgent to promote green transformation of the economy. With a major focus on pollution and carbon reduction, the ecological protection and high-quality development of the Yellow River Basin can be achieved through carbon neutrality. To analyse the dynamic relationship between pollution and carbon reduction and economic growth in the Yellow River Basin, this study explored its potential impact mechanisms to propose policy recommendations for a comprehensive green and low-carbon transformation of the economy and society based on the local conditions. The study is based on the panel data of major environmental pollutant emissions, carbon emissions, and per capita GDP in 57 cities in the Yellow River Basin from 2006 to 2020. The panel vector autoregressive model (PAVR model) was used to conduct an empirical study on the dynamic relationship and impact mechanism between pollution and carbon reduction and economic growth. The results show that the inertia effect of economic development in the Yellow River Basin is significant, and the contribution of economic development is estimated to be more than 95% in the next 10 periods. There is a persistent and lagging two-way mechanism between economic development and the increase in pollutant emissions. However, the negative impact of industrial wastewater discharge and SO2 discharge on economic growth is weak, and their impact on economic growth is only 0.4% and 1.8%, respectively. Industrial soot emissions restrict the economic growth of cities in the Yellow River Basin. Additionally, a two-way causal relationship exists between carbon emissions and economic growth. Industrial CO2 emissions inhibit economic growth, and economic growth explains 7.3% of industrial CO2 emissions. The interaction mode shows a trend of promotion and hindrance, followed again by promotion. The results of impulse response and variance analysis show that the coordination between pollution and carbon reduction and economic development in the Yellow River Basin needs to be strengthened. Compared with the effect of economic growth on pollution and carbon reduction, the driving force of pollution and carbon reduction on economic growth is still insufficient. Therefore, in the Yellow River Basin, policies should constantly focus on maintaining a balance between environmental protection and economic development, promoting the transformation and upgradation of traditional industries, building a new pattern of green and low-carbon development, realising the leading role of science and technology to its full potential, and improving the mechanism of collaborative management systems. -
表 1 黄河流域各城市变量描述性统计
Table 1. Descriptive statistics of various cities in the Yellow River Basin
变量 含义 平均值 标准差 最小值 最大值 观测值个数 ln[WD] 工业废水排放 8.016 1.181 3.850 10.022 798 ln[ISD] 工业SO2排放 10.668 1.195 6.821 12.728 798 ln[SE] 工业烟尘排放 10.014 1.190 6.653 15.458 798 ln[CO2] CO2排放 6.098 1.162 2.,117 8.305 798 ln[Y] 人均GDP 7.053 1.099 4.151 11.350 798 表 2 面板单位根检验结果
Table 2. Panel unit root inspection results
变量 LLC检验 IPS检验 ADF检验 PP检验 检验结果 ln[WD] −8.528***(0.001) −1.636*(0.051) 140.530**(0.047) 156.947***(0.005) 不平稳 △ln[WD] −19.926***(0.000) −17.381***(0.000) 277.612***(0.000) 564.574***(0.000) 平稳 ln[ISD] −7.223***(0.000) −0.873(0.809) 131.443(0.126) 192.614***(0.000) 不平稳 △ln[ISD] −20.873***(0.000) −18.879***(0.000) 324.429***(0.000) 713.948***(0.000) 平稳 ln[SE] −8.964***(0.000) −0.631(0.264) 130.268(0.142) 130.819(0.134) 不平稳 △ln[SE] −22.958***(0.000) −19.991***(0.000) 356.396***(0.000) 743.834***(0.000) 平稳 ln[CO2] −10.680***(0.000) 2.896***(0.002) 311.434***(0.000) 251.328***(0.000) 平稳 △ln[CO2] −20.210***(0.000) −19.056***(0.000) 378.589***(0.000) 744.170***(0.000) 平稳 ln[Y] −6.571***(0.000) 3.216(0.999) 114.082(0.480) 70.198(0.999) 不平稳 △ln[Y] −15.027***(0.000) −9.480***(0.000) 205.028***(0.000) 430.095***(0.000) 平稳 注:***、**、*分别表示在1%、5%、10%的置信水平上显著,括号内数据为对应的P值. 下同. 表 3 面板协整检验结果
Table 3. Panel co-integration inspection results
检验方法 经济发展与工业废水排放 经济发展与工业SO2排放 经济发展与工业烟尘排放 经济发展与CO2排放 Kao检验 3.054***(0.002) 2.573***(0.005) 3.311***(0.001) 2.841***(0.006) Pedroni检验 6.083***(0.000) 5.768***(0.000) 5.506***(0.000) 5.735***(0.000) Westerlund检验 8.558***(0.000) 7.894***(0.000) 10.805***(0.000) 4.436***(0.000) 表 4 PVAR模型最优滞后期
Table 4. Optimal hysteresis period of PVAR model
变量 lag AIC BIC HQIC 变量 lag AIC BIC HQIC ln[Y]-ln[WD] 1 −1.2431) 0.4621) −0.9411) ln[Y]-ln[SE] 1 −0.2031) 0.5781) 0.0991) 2 −0.125 0.739 0.211 2 −0.125 0.739 0.211 3 −0.853 0.875 −0.289 3 −0.085 0.875 0.289 4 −0.073 1.002 0.348 4 −0.072 1.002 0.348 5 −0.075 1.136 0.402 5 −0.075 1.136 0.402 ln[Y]-ln[ISD] 1 −0.5841) 0.1971) −0.2811) ln[Y]-ln[CO2] 1 −1.979 −1.198 −1.677 2 −0.504 0.359 −0.168 2 −1.987 −1.123 −1.652 3 −0.460 0.500 −0.086 3 −2.088 −1.127 −1.713 4 −0.564 0.511 −0.143 4 −2.310 −1.2351) −1.8881) 5 −0.529 0.682 −0.051 5 −2.3171) −1.106 −1.840 注:lag为滞后期数;AIC为赤池信息准则;BIC为贝叶斯信息准则;HQIC为汉南-奎因信息准则,其值越小,模型拟合度越好,用于模型选择. 1)表示对应准则选择的最优滞后阶数. 表 5 GMM估计结果
Table 5. GMM estimation results
被解释变量 解释变量 GMM估计系数 被解释变量 解释变量 GMM估计系数 h_ln[WD] h_ln[WD] 0.121*(0.083) h_ln[Y] h_ln[WD] −0.135***(0.001) L1. h_[lnY] −0.620***(0.000) L1. h_ln[Y] 0.639***(0.000) h_ln[ISD] h_ln[ISD] −0.166(0.123) h_ln[Y] h_ln[ISD] −0.004(0.594) L1. h_ln[Y] 1.444**(0.000) L1. h_ln[Y] 0.640***(0.000) h_ln[SE] h_ln[SE] −0.173**(0.045) h_ln[Y] h_ln[SE] −0.004(0.223) L1. h_ln[Y] 0.583**(0.014) L1. h_ln[Y] 0.648***(0.000) h_ln[CO2] h_ln[CO2] −0.121(0.414) h_ln[CO2] h_ln[CO2] −0.024(0.258) L1. h_ln[Y] 0.435***(0.002) L1. h_ln[Y] 0.550***(0.000) h_ln[CO2] h_ln[CO2] −0.108(0.103) h_ln[CO2] h_ln[CO2] −0.007(0.607) L2. h_ln[Y] 0.381***(0.006) L2. h_ln[Y] −0.085**(0.050) h_ln[CO2] h_ln[CO2] −0.065(0.181) h_ln[CO2] h_ln[CO2] −0.255**(0.013) L3. h_ln[Y] 0.130(0.363) L3. h_ln[Y] 0.133***(0.001) h_ln[CO2] h_ln[CO2] −0.268(0.560) h_ln[CO2] h_ln[CO2] 0.007(0.443) L4. h_ln[Y] −0.345**(0.021) L4. h_ln[Y] 0.044(0.299) 注:“h_”表示为消除固定效应,经Helmert转变的形式;“L1.”表示滞后1阶,其他以此类推;***、**、*分别表示在1%、5%、10%的置信水平上显著,括号内的数据为对应的P值. 表 6 方差分解分析
Table 6. Variance decomposition
滞后期数 经济增长与工业废水排放 经济增长与工业SO2排放 ln[Y]的方差分解 ln[WD]的方差分解 ln[Y]的方差分解 ln[ISD]的方差分解 ln[Y] ln[WD] ln[Y] ln[WD] ln[Y] ln[ISD] Ln[Y] ln[ISD] 1 1.000 0.000 0.000 1.000 0.986 0.014 0.000 1.000 2 0.997 0.003 0.015 0.985 0.983 0.017 0.041 0.959 3 0.997 0.003 0.019 0.981 0.982 0.018 0.050 0.950 4 0.996 0.004 0.021 0.979 0.982 0.018 0.054 0.946 5 0.996 0.004 0.022 0.978 0.982 0.018 0.056 0.944 6 0.996 0.004 0.022 0.978 0.982 0.018 0.057 0.943 7 0.996 0.004 0.022 0.978 0.982 0.018 0.057 0.943 8 0.996 0.004 0.022 0.978 0.982 0.018 0.057 0.943 9 0.996 0.004 0.022 0.978 0.982 0.018 0.057 0.943 10 0.996 0.004 0.022 0.978 0.982 0.018 0.057 0.943 滞后期数 经济增长与工业烟尘排放 经济增长与CO2排放 ln[Y]的方差分解 ln[SE]的方差分解 ln[Y]的方差分解 ln[CO2]的方差分解 ln[Y] ln[SE] ln[Y] ln[SE] ln[Y] ln[CO2] ln[Y] ln[CO2] 1 1.000 0.000 0.000 1.000 1.000 0.000 0.027 0.973 2 0.999 0.001 0.005 0.095 0.995 0.005 0.039 0.961 3 0.999 0.001 0.006 0.994 0.993 0.007 0.061 0.939 4 0.999 0.001 0.007 0.993 0.987 0.013 0.068 0.932 5 0.999 0.001 0.007 0.993 0.987 0.013 0.073 0.927 6 0.999 0.001 0.007 0.993 0.987 0.013 0.073 0.927 7 0.999 0.001 0.007 0.993 0.987 0.013 0.073 0.927 8 0.999 0.001 0.007 0.993 0.987 0.013 0.073 0.927 9 0.999 0.001 0.007 0.993 0.987 0.013 0.073 0.927 10 0.999 0.001 0.007 0.993 0.987 0.013 0.073 0.927 -
[1] CHEN X L,DI Q B,JIA W H,et al.Spatial correlation network of pollution and carbon emission reductions coupled with high-quality economic development in three Chinese urban agglomerations[J].Sustainable Cities and Society,2023,94:104552. doi: 10.1016/j.scs.2023.104552 [2] 刘晟东,史君楠,程勇等.中国典型城市群PM2.5污染特征研究进展[J].环境科学研究,2020,33(2):243-251.LIU S D,SHI J N,CHENG Y,et al.Review of pollution characteristics of PM2.5 in Chinese representative megacities[J].Research of Environmental Sciences,2020,33(2):243-251. [3] 王涵,马军,陈民,等.减污降碳协同多元共治体系需求及构建探析[J].环境科学研究,2022,35(4):936-944.WANG H,MA J,CHEN M,et al.Analysis of needs and construction of coordinated multi-governance system for pollution reduction and carbon reduction[J].Research of Environmental Sciences,2022,35(4):936-944. [4] 狄乾斌,陈小龙,侯智文.“双碳” 目标下中国三大城市群减污降碳协同治理区域差异及关键路径识别[J].资源科学,2022,44(6):1155-1167.DI Q B,CHEN X L,HOU Z W.Regional differences and key pathway identification of the coordinated governance of pollution control and carbon emission reduction in the three major urban agglomerations of China under the ‘Double-Carbon’ targets[J].Resources Science,2022,44(6):1155-1167. [5] 马丽,田华征,康蕾.黄河流域矿产资源开发的生态环境影响与空间管控路径[J].资源科学,2020,42(1):137-149.MA L,TIAN H Z,KANG L.Eco-environmental impact and spatial control of mineral resources exploitation in the Yellow River Basin[J].Resources Science,2020,42(1):137-149. [6] 金凤君.黄河流域生态保护与高质量发展的协调推进策略[J].改革,2019(11):33-39.JIN F J.Coordinated promotion strategy of ecological protection and high-quality development in the Yellow River Basin[J].Reform,2019(11):33-39. [7] 罗能生,王玉泽.财政分权、环境规制与区域生态效率:基于动态空间杜宾模型的实证研究[J].中国人口·资源与环境,2017,27(4):110-118.LUO N S,WANG Y Z.Fiscal decentralization,environmental regulation and regional eco-efficiency:based on the dynamic spatial Durbin model[J].China Population Resources and Environment,2017,27(4):110-118. [8] 者彩虹,韩燕.黄河流域绿色发展效率时空分异与空间驱动[J].统计与决策,2022,38(21):87-92.ZHE C H,HAN Y.Spatial and temporal differentiation and spatial driving of green development efficiency in the Yellow River Basin[J].Statistics and Decision,2022,38(21):87-92. [9] PORTER M E,van der LINDE C.Toward a new conception of the environment-competitiveness relationship[J].Journal of Economic Perspectives,1995,9(4):97-118. doi: 10.1257/jep.9.4.97 [10] ZHU S J,HE C F,LIU Y.Going green or going away:environmental regulation,economic geography and firms´ strategies in China´s pollution-intensive industries[J].Geoforum,2014,55:53-65. doi: 10.1016/j.geoforum.2014.05.004 [11] 李敏.环境目标约束对黄河流域经济高质量发展的影响研究[D].太原:山西财经大学,2022. [12] 林江彪,王亚娟,马静.黄河流域绿色发展水平时空分异及影响因素研究[J].统计与决策,2023,39(5):109-113.LIN J B,WANG Y J,MA J.Spatial and temporal differentiation of green development level in the Yellow River Basin and its influencing factors[J].Statistics and Decision,2023,39(5):109-113. [13] 赵霄伟.环境规制、环境规制竞争与地区工业经济增长:基于空间Durbin面板模型的实证研究[J].国际贸易问题,2014(7):82-92.ZHAO X W.Environmental regulation,environmental regulation competition and regional industrial economic growth:an empirical study based on spatial panel durbin model[J].Journal of International Trade,2014(7):82-92. [14] 毛媛,童伟伟.黄河流域环境治理绩效及其影响因素研究[J].价格理论与实践,2020(5):165-168.MAO Y,TONG W W.Research on environmental management performance and influencing factors of the Yellow River Basin[J].Price:Theory & Practice,2020(5):165-168. [15] 冯斐,冯学钢,侯经川,等.经济增长、区域环境污染与环境规制有效性:基于京津冀地区的实证分析[J].资源科学,2020,42(12):2341-2353.FENG F,FENG X G,HOU J C,et al.Effectiveness of regional environmental regulation,economic growth and environmental pollution:an emprical study of the Beijing-Tianjin-Hebei Region[J].Resources Science,2020,42(12):2341-2353. [16] BHATTACHARYA M,PARAMATI S R,OZTURK I,et al.The effect of renewable energy consumption on economic growth:evidence from top 38 countries[J].Applied Energy,2016,162:733-741. doi: 10.1016/j.apenergy.2015.10.104 [17] AU C C,HENDERSON J V.Are Chinese cities too small?[J].The Review of Economic Studies,2006,73(3):549-576. doi: 10.1111/j.1467-937X.2006.00387.x [18] 张永凯,田雨.黄河流域城市群碳排放与经济增长脱钩状态及驱动因素[J].人民黄河,2023,45(5):30-35. doi: 10.3969/j.issn.1000-1379.2023.05.007ZHANG Y K,TIAN Y.Decoupling condition between carbon emission and economic growth in Yellow River Basin urban agglomeration and its driving factors[J].Yellow River,2023,45(5):30-35. doi: 10.3969/j.issn.1000-1379.2023.05.007 [19] 徐斌,陈宇芳,沈小波.清洁能源发展、二氧化碳减排与区域经济增长[J].经济研究,2019,54(7):188-202.XU B,CHEN Y F,SHEN X B.Clean energy development,carbon dioxide emission reduction and regional economic growth[J].Economic Research Journal,2019,54(7):188-202. [20] 杨儒浦,王敏,胡敬韬,等.工业园区减污降碳协同增效评价方法及实证研究[J].环境科学研究,2023,36(2):422-430.YANG R P,WANG M,HU J T,et al.Evaluation method and empirical study on synergistic reduction of pollution and carbon emissions in industrial parks[J].Research of Environmental Sciences,2023,36(2):422-430. [21] 唐湘博,张野,曹利珍,等.中国减污降碳协同效应的时空特征及其影响机制分析[J].环境科学研究,2022,35(10):2252-2263.TANG X B,ZHANG Y,CAO L Z,et al.Spatio-temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J].Research of Environmental Sciences,2022,35(10):2252-2263. [22] 王力,冯相昭,马彤,等.典型城市减污降碳协同控制潜力评价研究:以渭南市为例[J].环境科学研究,2022,35(8):2006-2014.WANG L,FENG X Z,MA T,et al.Evaluation of Co-controlling air pollutants and carbon emission potential in typical cities:a case study in Weinan City[J].Research of Environmental Sciences,2022,35(8):2006-2014. [23] DONG B Y,XU Y Z,FAN X M.How to achieve a win-win situation between economic growth and carbon emission reduction:empirical evidence from the perspective of industrial structure upgrading[J].Environmental Science and Pollution Research,2020,27(35):43829-43844. doi: 10.1007/s11356-020-09883-x [24] 叶娟惠,叶阿忠.环境规制、绿色技术创新与经济高质量发展:基于半参数空间面板VAR模型[J].重庆理工大学学报(社会科学),2022,36(12):28-40.YE J H,YE A Z.Environmental regulation,green technological innovation and high-quality economic development:based on the semi-parametric panel space vector autoregression model[J].Journal of Chongqing University of Technology (Social Science),2022,36(12):28-40. [25] WANG S J,ZHOU C S,LI G D,et al.CO2,economic growth,and energy consumption in China´s provinces:investigating the spatiotemporal and econometric characteristics of China´s CO2 emissions[J].Ecological Indicators,2016,69:184-195. doi: 10.1016/j.ecolind.2016.04.022 [26] 钱莎莎,高明,黄清煌.环境规制实现了节能减排与经济增长的双赢?[J].生态经济,2019(1):154-160.QIAN S S,GAO M,HUANG Q H.Whether environmental regulation realizes energy saving and emission reduction and economy growth?[J].Ecological Economy,2019(1):154-160. [27] 原伟鹏,孙慧,闫敏.双重环境规制能否助力经济高质量与碳减排双赢发展?基于中国式分权制度治理视角[J].云南财经大学学报,2021,37(3):67-86.YUAN W P,SUN H,YAN M.Can dual environmental regulation contribute to the win-win development of high-quality economy and carbon emission reduction? based on the perspective of Chinese decentralized system governance[J].Journal of Yunnan University of Finance and Economics,2021,37(3):67-86. [28] 孙久文,崔雅琪,张皓.黄河流域城市群生态保护与经济发展耦合的时空格局与机制分析[J].自然资源学报,2022,37(7):1673-1690. doi: 10.31497/zrzyxb.20220702SUN J W,CUI Y Q,ZHANG H.Spatio-temporal pattern and mechanism analysis of coupling between ecological protection and economic development of urban agglomerations in the Yellow River Basin[J].Journal of Natural Resources,2022,37(7):1673-1690. doi: 10.31497/zrzyxb.20220702 [29] 蒋培培,王远,罗进,等.长江与黄河流域碳排放效率时空演变特征及路径识别探究[J].环境科学研究,2022,35(7):1743-1751.JIANG P P,WANG Y,LUO J,et al.Comparative study of spatial-temporal evolution and growth path of carbon emissions efficiency in Yangtze River Basin and Yellow River Basin[J].Research of Environmental Sciences,2022,35(7):1743-1751. [30] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究,2022,35(6):1351-1361.ZHAO M,SHEN H Q,CHEN T S,et al.Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J].Research of Environmental Sciences,2022,35(6):1351-1361. [31] 徐雯丽,陈强强.黄河流域城市PM2.5时空分异特征及污染物解析[J].环境科学研究,2023,36(4):637-648.XU W L,CHEN Q Q.Spatial-temporal variation characteristics and pollutants analysis of urban PM2.5 in the Yellow River Basin[J].Research of Environmental Sciences,2023,36(4):637-648. [32] 水利部黄河水利委员会.黄河年鉴(2018年)[M].郑州:黄河年鉴社,2018. [33] 岳立,薛丹.黄河流域沿线城市绿色发展效率时空演变及其影响因素[J].资源科学,2020,42(12):2274-2284.YUE L,XUE D.Spatiotemporal change of urban green development efficiency in the Yellow River Basin and influencing factors[J].Resources Science,2020,42(12):2274-2284. [34] 王良栋,吴乐英,陈玉龙,等.经济平稳增长下黄河流域相关省区碳达峰时间及峰值水平[J].资源科学,2021,43(11):2331-2341.WANG L D,WU L Y,CHEN Y L,et al.Carbon peak time and peak level of relevant provinces in the Yellow River Basin under stable economic growth[J].Resources Science,2021,43(11):2331-2341. [35] 宋敏,邹素娟.黄河流域碳排放权省域分配及碳减排潜力评估:基于2030年碳强度目标[J].科技管理研究,2022,42(15):230-239.SONG M,ZOU S J.Provincial allocation of carbon emission rights and assessment of carbon-reduction potential in the Yellow River Basin under the constraint of 2030 carbon intensity target[J].Science and Technology Management Research,2022,42(15):230-239. [36] IPCC.AR4 synthesis report:climate change 2007 [EB/OL].Geneva,Switzerland:World Meteorological Organization,2007[2023-08-04].https:www.Ipcc.chreportar4syr. [37] SHAN Y L,GUAN Y R,HANG Y,et al.City-level emission peak and drivers in China[J].Science Bulletin,2022,67(18):1910-1920. doi: 10.1016/j.scib.2022.08.024 [38] 曾刚,胡森林.技术创新对黄河流域城市绿色发展的影响研究[J].地理科学,2021,41(8):1314-1323.ZENG G,HU S L.The impact of technological innovation on urban green development in the Yellow River Basin[J].Scientia Geographica Sinica,2021,41(8):1314-1323. [39] LOVE I,ZICCHINO L.Financial development and dynamic investment behavior:evidence from panel VAR[J].The Quarterly Review of Economics and Finance,2006,46(2):190-210. doi: 10.1016/j.qref.2005.11.007 [40] 李茜,胡昊,罗海江,等.我国经济增长与环境污染双向作用关系研究:基于PVAR模型的区域差异分析[J].环境科学学报,2015,35(6):1875-1886.LI Q,HU H,LUO H J,et al.Two-way coupling relationship between economic growth and environmental pollution:regional difference analysis based on PVAR model[J].Acta Scientiae Circumstantiae,2015,35(6):1875-1886. [41] 武红,谷树忠,关兴良,等.中国化石能源消费碳排放与经济增长关系研究[J].自然资源学报,2013,28(3):381-390.WU H,GU S Z,GUAN X L,et al.Analysis on relationship between carbon emissions from fossil energy consumption and economic growth in China[J].Journal of Natural Resources,2013,28(3):381-390. [42] 狄乾斌,陈小龙,王敏.中国沿海海洋生态福利绩效时空差异及演化趋势分析[J].海洋通报,2022,41(3):302-314.DI Q B,CHEN X L,WANG M.Spatiotemporal differences and evolutionary trends of coastal marine ecological welfare performance in China[J].Marine Science Bulletin,2022,41(3):302-314. [43] JOHANSEN S,JUSELIUS K.Maximum likelihood estimation and inference on cointegration:with applications to the demand for money[J].Oxford Bulletin of Economics and Statistics,2009,52(2):169-210. doi: 10.1111/j.1468-0084.1990.mp52002003.x [44] 李达,林龙圳,林震,等.黄河流域生态保护和高质量发展的EKC检验[J].生态学报,2021,41(10):3965-3974.LI D,LIN L Z,LIN Z,et al.EKC test of ecological protection and high-quality development in the Yellow River Basin[J].Acta Ecologica Sinica,2021,41(10):3965-3974. [45] 于法稳,林珊,王广梁.黄河流域县域生态治理的重点领域及对策研究[J].中国软科学,2023(2):104-114. doi: 10.3969/j.issn.1002-9753.2023.02.010YU F W,LIN S,WANG G L.Research on key areas and countermeasures of county-level ecological governance of Yellow River Basin[J].China Soft Science,2023(2):104-114. doi: 10.3969/j.issn.1002-9753.2023.02.010 [46] 陈小龙,狄乾斌.资源型城市生态转型绩效评价及发展对策研究:以平顶山市为例[J].资源与产业,2021,23(5):1-10.CHEN X L,DI Q B.A case study on Pingdingshan city:performance evaluation of and developing approaches to ecological transformation in resource-based cities[J].Resources & Industries,2021,23(5):1-10. [47] 张华明,元鹏飞,朱治双.黄河流域碳排放脱钩效应及减排路径[J].资源科学,2022,44(1):59-69.ZHANG H M,YUAN P F,ZHU Z S.Decoupling effects of carbon emissions and reduction path in the Yellow River Basin[J].Resources Science,2022,44(1):59-69. -