留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外/一氯胺高级氧化工艺降解萘丁美酮的动力学、降解路径、毒性变化和消毒副产物生成

白云松 涂响 杨光 潘杨 刘超

白云松, 涂响, 杨光, 潘杨, 刘超. 紫外/一氯胺高级氧化工艺降解萘丁美酮的动力学、降解路径、毒性变化和消毒副产物生成[J]. 环境科学研究, 2023, 36(10): 1957-1967. doi: 10.13198/j.issn.1001-6929.2023.07.18
引用本文: 白云松, 涂响, 杨光, 潘杨, 刘超. 紫外/一氯胺高级氧化工艺降解萘丁美酮的动力学、降解路径、毒性变化和消毒副产物生成[J]. 环境科学研究, 2023, 36(10): 1957-1967. doi: 10.13198/j.issn.1001-6929.2023.07.18
BAI Yunsong, TU Xiang, YANG Guang, PAN Yang, LIU Chao. Kinetics, Degradation Pathways, Toxicity Changes, and Disinfection By-Product Formation in Degradation of Nabumetone by UV/Monochloramine Advanced Oxidation Processes[J]. Research of Environmental Sciences, 2023, 36(10): 1957-1967. doi: 10.13198/j.issn.1001-6929.2023.07.18
Citation: BAI Yunsong, TU Xiang, YANG Guang, PAN Yang, LIU Chao. Kinetics, Degradation Pathways, Toxicity Changes, and Disinfection By-Product Formation in Degradation of Nabumetone by UV/Monochloramine Advanced Oxidation Processes[J]. Research of Environmental Sciences, 2023, 36(10): 1957-1967. doi: 10.13198/j.issn.1001-6929.2023.07.18

紫外/一氯胺高级氧化工艺降解萘丁美酮的动力学、降解路径、毒性变化和消毒副产物生成

doi: 10.13198/j.issn.1001-6929.2023.07.18
基金项目: 中央财政科技计划结余经费专项(No.2021-JY-31)
详细信息
    作者简介:

    白云松(1998-),男,河南濮阳人,baiyunsong1997@163.com

    通讯作者:

    ①杨光(1989-),男,河南开封人,助理研究员,硕士,主要从事饮用水安全保障研究,yangguang@craes.org.cn

    ②潘杨(1972-),男,四川达州人,教授,博士,主要从事废水生物处理及资源化研究,panyang@mail.usts.edu.cn

  • 中图分类号: X506

Kinetics, Degradation Pathways, Toxicity Changes, and Disinfection By-Product Formation in Degradation of Nabumetone by UV/Monochloramine Advanced Oxidation Processes

Funds: Budget Surplus of Central Financial Science and Technology Plan, China (No.2021-JY-31)
  • 摘要: 紫外活化氯胺高级氧化工艺对降解有机微污染物具有潜在应用价值. 为探究紫外/一氯胺(UV/NH2Cl)工艺对水中非甾体抗炎药的去除性能,选用萘丁美酮(nabumetone, NMT)为降解对象,比较UV光解、NH2Cl氧化和UV/NH2Cl这3种手段对NMT的降解性能,考察NH2Cl投加量、pH、Cl、HCO3和天然有机物(natural organic matters, NOM)对UV/NH2Cl降解NMT的影响,结合量子化学计算和UPLC-HRMS检测结果探究NMT的降解路径并预测毒性变化,最后分析消毒副产物的生成情况. 结果表明:①UV/NH2Cl体系内NMT的降解过程符合拟一级反应动力学方程,在温度25 ℃、NMT初始浓度5 μmol/L、NH2Cl投加量50 μmol/L的条件下,反应150 s后NMT的降解效率可达88.81%. ②增加NH2Cl投加量可促进NMT降解,pH在5.5~8.5范围内对NMT降解速率无明显变化,Cl、HCO3和NOM对NMT的降解具有抑制作用. ③基于UPLC-HRMS共鉴定出10种降解产物,NMT降解过程主要涉及羟基化、亚硝基化和去甲基化等反应,TEST软件预测表明,降解产物的急性毒性和发育毒性比NMT母体更高. ④气相色谱检测结果显示,UV/NH2Cl促进了NMT降解过程中消毒副产物的产生. 研究显示,UV/NH2Cl高级氧化工艺对水中NMT具有良好的降解效能,其降解产物可能存在更高的急性毒性和发育毒性,后续需进一步探究.

     

  • 图  1  UV/NH2Cl体系内主要自由基的产生路径

    Figure  1.  Main radical formation pathways in the UV/NH2Cl system

    图  2  不同降解手段对NMT的降解效能

    Figure  2.  Degradation efficiency of NMT by different degradation method

    图  3  NH2Cl投加量对UV/NH2Cl降解NMT的影响

    Figure  3.  Effects of NH2Cl dosage on degradation of NMT by UV/NH2Cl

    图  4  溶液初始pH对UV/NH2Cl降解NMT的影响

    Figure  4.  Effects of solution pH on degradation of NMT by UV/NH2Cl

    图  5  Cl浓度对UV/NH2Cl降解NMT的影响

    Figure  5.  Effects of Cl concentration on degradation of NMT by UV/NH2Cl

    图  6  HCO3浓度对UV/NH2Cl降解NMT的影响

    Figure  6.  Effects of HCO3 concentration on degradation of NMT by UV/NH2Cl

    图  7  NOM浓度对UV/NH2Cl降解NMT的影响

    Figure  7.  Effects of NOM concentration on degradation of NMT by UV/NH2Cl

    图  8  优化后的NMT分子几何构型

    注:1~32表示原子编号,灰色表示C原子,红色的表示O原子.

    Figure  8.  The optimized geometric configuration of NMT molecular

    图  9  NMT降解产物的总离子色谱图

    Figure  9.  Total ion chromatogram of NMT degradation products

    图  10  NMT降解产物信号强度变化

    Figure  10.  Signal intensity of degradation products of NMT

    图  11  UV/NH2Cl处理NMT的可能降解路径

    Figure  11.  Proposed NMT degradation pathways by UV/NH2Cl treatment

    图  12  UV/NH2Cl降解NMT过程的毒性变化

    Figure  12.  Toxicity changes during the degradation process of NMT by UV/NH2Cl

    图  13  UV/NH2Cl降解NMT消毒副产物的生成浓度

    Figure  13.  Concentration of DBPs during the degradation process of NMT by UV/NH2Cl

    表  1  超高效液相色谱梯度洗脱

    Table  1.   Gradient elution of UPLC

    时间/min流动相组成流速/(mL/min)
    0~1020%~80% A相,80%~20% B相0.25
    14~14.180%~20% A相,20%~80% B相0.25
    14.1~2020% A相,80% B相0.25
    下载: 导出CSV

    表  2  不同降解手段对NMT的降解速率常数

    Table  2.   Degradation rate constant of NMT in different methods

    降解手段kobs/s−1R2
    单独UV光解2.18 × 10−50.983
    单独NH2Cl氧化1.13 × 10−40.997
    UV/NH2Cl1.43 × 10−20.998
    下载: 导出CSV

    表  3  NMT的自然布局分析(NPA)电荷分布和福井函数

    Table  3.   Ntural population analysis (NPA) charge distribution and Fukui index of NMT

    原子电荷(0) e/Å电荷(−1) e/Å电荷(+1) e/Åf+ff0
    C10.068 50.032 50.128 00.059 60.036 00.047 8
    C2−0.037 9−0.103 10.024 40.062 30.065 20.063 8
    C3−0.000 4−0.016 30.016 80.017 20.015 90.016 6
    C4−0.009 1−0.022 90.013 60.022 70.013 80.018 2
    C5−0.061 5−0.120 10.019 10.080 60.058 60.069 6
    C6−0.062 4−0.125 5−0.032 60.029 80.063 00.046 4
    C9−0.042 0−0.105 00.018 20.060 20.063 00.061 6
    C10−0.046 1−0.099 00.013 50.059 60.052 90.056 3
    C13−0.000 5−0.029 30.061 40.061 90.028 70.045 3
    C14−0.044 3−0.101 5−0.010 10.034 10.057 20.045 7
    C17−0.046 1−0.053 4−0.035 50.010 60.007 30.008 9
    O20−0.249 7−0.309 4−0.206 60.043 10.059 70.051 4
    C210.169 40.121 20.183 50.014 00.048 20.031 1
    C25−0.050 8−0.061 2−0.039 50.011 30.010 50.010 9
    C280.004 0−0.009 70.025 30.021 40.013 60.017 5
    C32−0.086 7−0.104 1−0.072 40.014 40.017 30.015 9
    O33−0.132 5−0.151 0−0.065 50.067 00.018 60.042 8
    下载: 导出CSV

    表  4  UV/NH2Cl处理NMT主要降解产物质谱信息

    Table  4.   Mass spectra information of main degradation products for NM in UV/NH2Cl treatment

    产物保留时间/min[M-H]分子质量分子式
    NMT7.03227.107 4228.110 6C15H16O2
    P17.30259.096 8260.100 1C15H16O4
    P25.18258.111 3259.114 7C15H17NO3
    P37.62247.052 1248.055 4C14H13ClO2
    P47.03261.075 9262.079 3C14H14O5
    P52.10247.060 1248.063 5C13H12O5
    P63.23246.075 9247.079 3C13H13NO4
    P75.76265.026 8266.030 0C13H11ClO4
    P86.92290.066 3291.069 6C14H13NO6
    P97.85232.060 0233.063 6C12H11NO4
    下载: 导出CSV
  • [1] 王丹丹,张婧,杨桂朋,等.药物及个人护理品的污染现状、分析技术及生态毒性研究进展[J].环境科学研究,2018,31(12):2013-2020. doi: 10.13198/j.issn.1001-6929.2018.10.04

    WANG D D,ZHANG J,YANG G P,et al.Pollution status,analytical techniques and ecotoxicity of pharmaceuticals and personal care products[J].Research of Environmental Sciences,2018,31(12):2013-2020. doi: 10.13198/j.issn.1001-6929.2018.10.04
    [2] 胡双庆,张玉,沈根祥.抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究[J].环境科学研究,2022,35(2):470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18

    HU S Q,ZHANG Y,SHEN G X.Leaching behavior of antibiotics sulfadiazine and sulfamethoxazole in soil[J].Research of Environmental Sciences,2022,35(2):470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18
    [3] 武宇圣,黄天寅,张家根,等.淮河下游湖泊表层水和沉积物中PPCPs分布特征及风险评估[J].环境科学,2023,44(6):3217-3227.

    WU Y S,HUANG T Y,ZHANG J G,et al.Distribution characteristics and risk assessment of PPCPs in surface water and sediments of lakes in the lower reaches of the Huaihe River[J].Environmental Science,2023,44(6):3217-3227.
    [4] 樊月婷,昌盛,张坤锋,等.疫情背景下长江中游地区典型饮用水源中PPCPs分布特征与风险评估[J].环境科学,2022,43(12):5522-5533. doi: 10.13227/j.hjkx.202201029

    FAN Y T,CHANG S,ZHANG K F,et al.Distribution characteristics and risk assessment of PPCPs in typical drinking water sources in the middle reaches of Yangtze River under the background of epidemic situation[J].Environmental Science,2022,43(12):5522-5533. doi: 10.13227/j.hjkx.202201029
    [5] 陈宇,王涌涛,黄天寅,等.骆马湖水体中药品及个人护理品的污染特征及风险评估[J].环境科学研究,2021,34(4):902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13

    CHEN Y,WANG Y T,HUANG T Y,et al.Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J].Research of Environmental Sciences,2021,34(4):902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13
    [6] 王会霞,史浙明,姜永海,等.地下水污染识别与溯源指示因子研究进展[J].环境科学研究,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10

    WANG H X,SHI Z M,JIANG Y H,et al.Research progress on indicator of groundwater pollution identification and traceability[J].Research of Environmental Sciences,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10
    [7] 徐建业,吕贞,茆永晶,等.在线固相萃取-液相色谱串联质谱法测定污水厂尾水中6种酸性药物[J].中国环境监测,2021,37(2):128-134.

    XU J Y,LYU Z,MAO Y J,et al.Determination of six acidic drugs in tailwater of wastewater treatment plant by large volume online-SPE coupled with liquid chromatography-tandem mass spectrometry[J].Environmental Monitoring in China,2021,37(2):128-134.
    [8] MULKIEWICZ E,WOLECKI D,ŚWIACKA K,et al.Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms[J].Science of the Total Environment,2021,791:148251. doi: 10.1016/j.scitotenv.2021.148251
    [9] MADIKIZELA L M,NCUBE S.Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment:what is known and the missing information?[J].Chemosphere,2021,280:130688. doi: 10.1016/j.chemosphere.2021.130688
    [10] PENG Q C,SONG J M,LI X G,et al.Biogeochemical characteristics and ecological risk assessment of pharmaceutically active compounds (PhACs) in the surface seawaters of Jiaozhou Bay,North China[J].Environmental Pollution,2019,255:113247. doi: 10.1016/j.envpol.2019.113247
    [11] NAVEED K,JAVEED A,ASHRAF M,et al.Effect of nabumetone on humoral immune responses in mice[J].Arquivo Brasileiro de Medicina Veterinária e Zootecnia,2020,72(3):915-920.
    [12] QUANTIN C,YAMDJIEU NGADEU C,COTTENET J,et al.Early exposure of pregnant women to non-steroidal anti-inflammatory drugs delivered outside hospitals and preterm birth risk:nationwide cohort study[J].BJOG:An International Journal of Obstetrics & Gynaecology,2021,128(10):1575-1584.
    [13] MA Y K,YU P J,LIN S H,et al.The association between nonsteroidal anti-inflammatory drugs and skin cancer:different responses in American and European populations[J].Pharmacological Research,2020,152:104499. doi: 10.1016/j.phrs.2019.104499
    [14] YANG Y,OK Y S,KIM K H,et al.Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants:a review[J].Science of the Total Environment,2017,596/597:303-320. doi: 10.1016/j.scitotenv.2017.04.102
    [15] 杨庆云,李青松,陈泽铭,等.UV/(过硫酸盐、过碳酸盐)工艺降解尼泊金甲酯[J/OL].化工学报:1-19[2023-04-28]. http://kns.cnki.net/kcms/detail/11.1946.tq.20230131.1251.006.html.

    YANG Q Y, LI Q S, CHEN Z M, et al. Degradation of methylparaben by UV/PMS,UV/PDS and UV/SPC process[J/OL].CIESC Journal:1-19[2023-04-28]. http://kns.cnki.net/kcms/detail/11.1946.tq.20230131.1251.006.html.
    [16] 李梦宇,刘志,张天阳,等.氯胺消毒工艺中一氯胺生成效率的影响规律[J].中国给水排水,2021,37(3):38-44.

    LI M Y,LIU Z,ZHANG T Y,et al.Impact factors of monochloramine formation efficiency during chloramination disinfection[J].China Water & Wastewater,2021,37(3):38-44.
    [17] CLARKE K,EDGE R,JOHNSON V,et al.Direct observation of NH2· reactions with oxygen,amino acids,and melanins[J].The Journal of Physical Chemistry A,2008,112(6):1234-1237. doi: 10.1021/jp076395r
    [18] PATTON S,LI W,COUCH K D,et al.Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal:new insights into potable water reuse[J].Environmental Science & Technology Letters,2017,4(1):26-30.
    [19] VIKESLAND P J,OZEKIN K,VALENTINE R L.Monochloramine decay in model and distribution system waters[J].Water Research,2001,35(7):1766-1776. doi: 10.1016/S0043-1354(00)00406-1
    [20] CAO Y,QIU W,LI J A,et al.Mechanism,kinetics and DBP formation of UV/NH2Cl process on contaminant removal in aqueous solution:a review[J].Chemical Engineering Journal,2021,420:130405. doi: 10.1016/j.cej.2021.130405
    [21] CAO Z F,YU X M,ZHENG Y Z,et al.Micropollutant abatement by the UV/chloramine process in potable water reuse:a review[J].Journal of Hazardous Materials,2022,424:127341. doi: 10.1016/j.jhazmat.2021.127341
    [22] WANG P,BU L J,WU Y T,et al.Mechanistic insight into the degradation of ibuprofen in UV/H2O2 process via a combined experimental and DFT study[J].Chemosphere,2021,267:128883. doi: 10.1016/j.chemosphere.2020.128883
    [23] CHOW C H,LAW J C F,LEUNG K S Y.Degradation of acesulfame in UV/monochloramine process:kinetics,transformation pathways and toxicity assessment[J].Journal of Hazardous Materials,2021,403:123935. doi: 10.1016/j.jhazmat.2020.123935
    [24] ZHU T X,DENG J,XU M Y,et al.DEET degradation in UV/monochloramine process:kinetics,degradation pathway,toxicity and energy consumption analysis[J].Chemosphere,2020,255:126962. doi: 10.1016/j.chemosphere.2020.126962
    [25] JIANG B Q,TIAN Y J,ZHANG Z C,et al.Degradation behaviors of Isopropylphenazone and Aminopyrine and their genetic toxicity variations during UV/chloramine treatment[J].Water Research,2020,170:115339. doi: 10.1016/j.watres.2019.115339
    [26] 孙玉洁,李梦凯,林佳星,等.基于细管流紫外反应系统探讨紫外和真空紫外/紫外辐照下水中微量磺胺甲噻二唑的光降解效果[J].环境科学学报,2018,38(5):1851-1857.

    SUN Y J,LI M K,LIN J X,et al.Photodegradation of trace sulfamethizole in water under UV and VUV/UV irradiation based on a mini-fluidic photoreaction system[J].Acta Scientiae Circumstantiae,2018,38(5):1851-1857.
    [27] 沈一君,彭明国,徐彬焜,等.紫外活化过硫酸盐降解二苯甲酮-4的动力学影响及降解机理与风险评价[J].环境科学研究,2019,32(1):174-182.

    SHEN Y J,PENG M G,XU B K,et al.Degradation of BP4 by UV-activated persulfate process:kinetic,mechanism and risk[J].Research of Environmental Sciences,2019,32(1):174-182.
    [28] 毛禹桥,丁欣欣,李敏睿,等.紫外/氯降解普里米酮的效能和机理[J].环境工程学报,2021,15(11):3524-3535. doi: 10.12030/j.cjee.202107104

    MAO Y Q,DING X X,LI M R,et al.Degradation efficiency and mechanism of primidone by UV/chorine process[J].Chinese Journal of Environmental Engineering,2021,15(11):3524-3535. doi: 10.12030/j.cjee.202107104
    [29] LU Z D,LING Y C,WANG X L,et al.Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process[J].Science of the Total Environment,2022,832:154850. doi: 10.1016/j.scitotenv.2022.154850
    [30] BU L J,ZHOU S Q,ZHU S M,et al.Insight into carbamazepine degradation by UV/monochloramine:reaction mechanism,oxidation products,and DBPs formation[J].Water Research,2018,146:288-297. doi: 10.1016/j.watres.2018.09.036
    [31] WU Y T,ZHU S M,ZHANG W Q,et al.Comparison of diatrizoate degradation by UV/chlorine and UV/chloramine processes:kinetic mechanisms and iodinated disinfection byproducts formation[J].Chemical Engineering Journal,2019,375:121972. doi: 10.1016/j.cej.2019.121972
    [32] LI S M,AO X W,LI C,et al.Insight into PPCP degradation by UV/NH2Cl and comparison with UV/NaClO:kinetics,reaction mechanism,and DBP formation[J].Water Research,2020,182:115967. doi: 10.1016/j.watres.2020.115967
    [33] LUO C W,LI M A,CHENG X X,et al.Degradation of iopamidol by UV365/NaClO:roles of reactive species,degradation mechanism,and toxicology[J].Water Research,2022,222:118840. doi: 10.1016/j.watres.2022.118840
    [34] NETA P,MADHAVAN V,ZEMEL H,et al.Cheminform abstract:rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds[J].Chemischer Informationsdienst,1977,8(14):8.
    [35] SUN P Z,MENG T,WANG Z J,et al.Degradation of organic micropollutants in UV/NH2Cl advanced oxidation process[J].Environmental Science & Technology,2019,53(15):9024-9033.
    [36] FANG J Y,FU Y,SHANG C.The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J].Environmental Science & Technology,2014,48(3):1859-1868.
    [37] BRAME J,LONG M C,LI Q L,et al.Trading oxidation power for efficiency:differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen[J].Water Research,2014,60:259-266. doi: 10.1016/j.watres.2014.05.005
    [38] WU Z H,FANG J Y,XIANG Y Y,et al.Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process:Kinetics and transformation pathways[J].Water Research,2016,104:272-282. doi: 10.1016/j.watres.2016.08.011
    [39] 杨帆,马晓雁,李青松,等.紫外/次氯酸钠和紫外/过碳酸钠工艺降解水杨酸的影响因素及降解机理[J].环境工程学报,2023,17(1):82-94. doi: 10.12030/j.cjee.202208046

    YANG F,MA X Y,LI Q S,et al.Influencing factors and degradation mechanism of salicylic acid by ultraviolet/sodium hypochlorite and ultraviolet/sodium percarbonate processes[J].Chinese Journal of Environmental Engineering,2023,17(1):82-94. doi: 10.12030/j.cjee.202208046
    [40] FU W J,XIA G J,ZHANG Y X,et al.Using general computational chemistry strategy to unravel the reactivity of emerging pollutants:an example of sulfonamide chlorination[J].Water Research,2021,202:117391. doi: 10.1016/j.watres.2021.117391
    [41] SHAH A D,MITCH W A.Halonitroalkanes,halonitriles,haloamides,and N-nitrosamines:a critical review of nitrogenous disinfection byproduct formation pathways[J].Environmental Science & Technology,2012,46(1):119-131.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  17
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-06-30
  • 网络出版日期:  2023-07-14

目录

    /

    返回文章
    返回