Kinetics, Degradation Pathways, Toxicity Changes, and Disinfection By-Product Formation in Degradation of Nabumetone by UV/Monochloramine Advanced Oxidation Processes
-
摘要: 紫外活化氯胺高级氧化工艺对降解有机微污染物具有潜在应用价值. 为探究紫外/一氯胺(UV/NH2Cl)工艺对水中非甾体抗炎药的去除性能,选用萘丁美酮(nabumetone, NMT)为降解对象,比较UV光解、NH2Cl氧化和UV/NH2Cl这3种手段对NMT的降解性能,考察NH2Cl投加量、pH、Cl−、HCO3−和天然有机物(natural organic matters, NOM)对UV/NH2Cl降解NMT的影响,结合量子化学计算和UPLC-HRMS检测结果探究NMT的降解路径并预测毒性变化,最后分析消毒副产物的生成情况. 结果表明:①UV/NH2Cl体系内NMT的降解过程符合拟一级反应动力学方程,在温度25 ℃、NMT初始浓度5 μmol/L、NH2Cl投加量50 μmol/L的条件下,反应150 s后NMT的降解效率可达88.81%. ②增加NH2Cl投加量可促进NMT降解,pH在5.5~8.5范围内对NMT降解速率无明显变化,Cl−、HCO3−和NOM对NMT的降解具有抑制作用. ③基于UPLC-HRMS共鉴定出10种降解产物,NMT降解过程主要涉及羟基化、亚硝基化和去甲基化等反应,TEST软件预测表明,降解产物的急性毒性和发育毒性比NMT母体更高. ④气相色谱检测结果显示,UV/NH2Cl促进了NMT降解过程中消毒副产物的产生. 研究显示,UV/NH2Cl高级氧化工艺对水中NMT具有良好的降解效能,其降解产物可能存在更高的急性毒性和发育毒性,后续需进一步探究.
-
关键词:
- 紫外/一氯胺(UV/NH2Cl) /
- 萘丁美酮(NMT) /
- 动力学 /
- 降解路径 /
- 消毒副产物
Abstract: UV-activated chloramine advanced oxidation process has potential application value in the degradation organic micropollutants. In order to investigate the removal performance of non-steroidal anti-inflammatory drugs in water by ultraviolet/monochloramine (UV/NH2Cl) system, the degradation of nabumetone (NMT) by UV photolysis, NH2Cl oxidation and UV/NH2Cl was compared. The influence of various factors on the degradation of NMT by UV/NH2Cl was investigated. The degradation pathways of NMT was investigated and the toxicity changes were predicted by combining the quantum chemical calculation and the detection results of UPLC-HRMS. Finally, the generation of disinfection by-products was analyzed. The results show that: (1) The degradation of NMT in UV/NH2Cl system conforms to the pseudo-first-order reaction kinetics equation. Under the conditions of 25 ℃, the initial concentration of NMT is 5 μmol/L, and the dosage of NH2Cl is 50 μmol/L, the degradation efficiency of NMT could reach 88.81% after 150 s of reaction. (2) Increasing the dose of NH2Cl can promote the degradation of NMT, and there is no significant change in the degradation rate of NMT in the range of pH 5.5-8.5. Cl−, HCO3−and natural organic matter inhibit the degradation of NMT. (3) A total of 10 degradation products were identified based on UPLC-HRMS, and the degradation process of NMT mainly involved hydroxylation, nitrosation and demethylation. The TEST software predicted that, The acute and developmental toxicity of the degradation products were higher than that of the NMT. (4) Gas chromatography analysis results showed that UV/NH2Cl promoted the generation of disinfection byproducts during the degradation of NMT. The results of this study show that UV/NH2Cl advanced oxidation process has good degradation efficiency for NMT in water, and its degradation products may have higher acute and developmental toxicity, which needs further investigation. -
表 1 超高效液相色谱梯度洗脱
Table 1. Gradient elution of UPLC
时间/min 流动相组成 流速/(mL/min) 0~10 20%~80% A相,80%~20% B相 0.25 14~14.1 80%~20% A相,20%~80% B相 0.25 14.1~20 20% A相,80% B相 0.25 表 2 不同降解手段对NMT的降解速率常数
Table 2. Degradation rate constant of NMT in different methods
降解手段 kobs/s−1 R2 单独UV光解 2.18 × 10−5 0.983 单独NH2Cl氧化 1.13 × 10−4 0.997 UV/NH2Cl 1.43 × 10−2 0.998 表 3 NMT的自然布局分析(NPA)电荷分布和福井函数
Table 3. Ntural population analysis (NPA) charge distribution and Fukui index of NMT
原子 电荷(0) e/Å 电荷(−1) e/Å 电荷(+1) e/Å f+ f− f0 C1 0.068 5 0.032 5 0.128 0 0.059 6 0.036 0 0.047 8 C2 −0.037 9 −0.103 1 0.024 4 0.062 3 0.065 2 0.063 8 C3 −0.000 4 −0.016 3 0.016 8 0.017 2 0.015 9 0.016 6 C4 −0.009 1 −0.022 9 0.013 6 0.022 7 0.013 8 0.018 2 C5 −0.061 5 −0.120 1 0.019 1 0.080 6 0.058 6 0.069 6 C6 −0.062 4 −0.125 5 −0.032 6 0.029 8 0.063 0 0.046 4 C9 −0.042 0 −0.105 0 0.018 2 0.060 2 0.063 0 0.061 6 C10 −0.046 1 −0.099 0 0.013 5 0.059 6 0.052 9 0.056 3 C13 −0.000 5 −0.029 3 0.061 4 0.061 9 0.028 7 0.045 3 C14 −0.044 3 −0.101 5 −0.010 1 0.034 1 0.057 2 0.045 7 C17 −0.046 1 −0.053 4 −0.035 5 0.010 6 0.007 3 0.008 9 O20 −0.249 7 −0.309 4 −0.206 6 0.043 1 0.059 7 0.051 4 C21 0.169 4 0.121 2 0.183 5 0.014 0 0.048 2 0.031 1 C25 −0.050 8 −0.061 2 −0.039 5 0.011 3 0.010 5 0.010 9 C28 0.004 0 −0.009 7 0.025 3 0.021 4 0.013 6 0.017 5 C32 −0.086 7 −0.104 1 −0.072 4 0.014 4 0.017 3 0.015 9 O33 −0.132 5 −0.151 0 −0.065 5 0.067 0 0.018 6 0.042 8 表 4 UV/NH2Cl处理NMT主要降解产物质谱信息
Table 4. Mass spectra information of main degradation products for NM in UV/NH2Cl treatment
产物 保留时间/min [M-H]− 分子质量 分子式 NMT 7.03 227.107 4 228.110 6 C15H16O2 P1 7.30 259.096 8 260.100 1 C15H16O4 P2 5.18 258.111 3 259.114 7 C15H17NO3 P3 7.62 247.052 1 248.055 4 C14H13ClO2 P4 7.03 261.075 9 262.079 3 C14H14O5 P5 2.10 247.060 1 248.063 5 C13H12O5 P6 3.23 246.075 9 247.079 3 C13H13NO4 P7 5.76 265.026 8 266.030 0 C13H11ClO4 P8 6.92 290.066 3 291.069 6 C14H13NO6 P9 7.85 232.060 0 233.063 6 C12H11NO4 -
[1] 王丹丹,张婧,杨桂朋,等.药物及个人护理品的污染现状、分析技术及生态毒性研究进展[J].环境科学研究,2018,31(12):2013-2020. doi: 10.13198/j.issn.1001-6929.2018.10.04WANG D D,ZHANG J,YANG G P,et al.Pollution status,analytical techniques and ecotoxicity of pharmaceuticals and personal care products[J].Research of Environmental Sciences,2018,31(12):2013-2020. doi: 10.13198/j.issn.1001-6929.2018.10.04 [2] 胡双庆,张玉,沈根祥.抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究[J].环境科学研究,2022,35(2):470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18HU S Q,ZHANG Y,SHEN G X.Leaching behavior of antibiotics sulfadiazine and sulfamethoxazole in soil[J].Research of Environmental Sciences,2022,35(2):470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18 [3] 武宇圣,黄天寅,张家根,等.淮河下游湖泊表层水和沉积物中PPCPs分布特征及风险评估[J].环境科学,2023,44(6):3217-3227.WU Y S,HUANG T Y,ZHANG J G,et al.Distribution characteristics and risk assessment of PPCPs in surface water and sediments of lakes in the lower reaches of the Huaihe River[J].Environmental Science,2023,44(6):3217-3227. [4] 樊月婷,昌盛,张坤锋,等.疫情背景下长江中游地区典型饮用水源中PPCPs分布特征与风险评估[J].环境科学,2022,43(12):5522-5533. doi: 10.13227/j.hjkx.202201029FAN Y T,CHANG S,ZHANG K F,et al.Distribution characteristics and risk assessment of PPCPs in typical drinking water sources in the middle reaches of Yangtze River under the background of epidemic situation[J].Environmental Science,2022,43(12):5522-5533. doi: 10.13227/j.hjkx.202201029 [5] 陈宇,王涌涛,黄天寅,等.骆马湖水体中药品及个人护理品的污染特征及风险评估[J].环境科学研究,2021,34(4):902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13CHEN Y,WANG Y T,HUANG T Y,et al.Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J].Research of Environmental Sciences,2021,34(4):902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13 [6] 王会霞,史浙明,姜永海,等.地下水污染识别与溯源指示因子研究进展[J].环境科学研究,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10WANG H X,SHI Z M,JIANG Y H,et al.Research progress on indicator of groundwater pollution identification and traceability[J].Research of Environmental Sciences,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10 [7] 徐建业,吕贞,茆永晶,等.在线固相萃取-液相色谱串联质谱法测定污水厂尾水中6种酸性药物[J].中国环境监测,2021,37(2):128-134.XU J Y,LYU Z,MAO Y J,et al.Determination of six acidic drugs in tailwater of wastewater treatment plant by large volume online-SPE coupled with liquid chromatography-tandem mass spectrometry[J].Environmental Monitoring in China,2021,37(2):128-134. [8] MULKIEWICZ E,WOLECKI D,ŚWIACKA K,et al.Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms[J].Science of the Total Environment,2021,791:148251. doi: 10.1016/j.scitotenv.2021.148251 [9] MADIKIZELA L M,NCUBE S.Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment:what is known and the missing information?[J].Chemosphere,2021,280:130688. doi: 10.1016/j.chemosphere.2021.130688 [10] PENG Q C,SONG J M,LI X G,et al.Biogeochemical characteristics and ecological risk assessment of pharmaceutically active compounds (PhACs) in the surface seawaters of Jiaozhou Bay,North China[J].Environmental Pollution,2019,255:113247. doi: 10.1016/j.envpol.2019.113247 [11] NAVEED K,JAVEED A,ASHRAF M,et al.Effect of nabumetone on humoral immune responses in mice[J].Arquivo Brasileiro de Medicina Veterinária e Zootecnia,2020,72(3):915-920. [12] QUANTIN C,YAMDJIEU NGADEU C,COTTENET J,et al.Early exposure of pregnant women to non-steroidal anti-inflammatory drugs delivered outside hospitals and preterm birth risk:nationwide cohort study[J].BJOG:An International Journal of Obstetrics & Gynaecology,2021,128(10):1575-1584. [13] MA Y K,YU P J,LIN S H,et al.The association between nonsteroidal anti-inflammatory drugs and skin cancer:different responses in American and European populations[J].Pharmacological Research,2020,152:104499. doi: 10.1016/j.phrs.2019.104499 [14] YANG Y,OK Y S,KIM K H,et al.Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants:a review[J].Science of the Total Environment,2017,596/597:303-320. doi: 10.1016/j.scitotenv.2017.04.102 [15] 杨庆云,李青松,陈泽铭,等.UV/(过硫酸盐、过碳酸盐)工艺降解尼泊金甲酯[J/OL].化工学报:1-19[2023-04-28]. http://kns.cnki.net/kcms/detail/11.1946.tq.20230131.1251.006.html.YANG Q Y, LI Q S, CHEN Z M, et al. Degradation of methylparaben by UV/PMS,UV/PDS and UV/SPC process[J/OL].CIESC Journal:1-19[2023-04-28]. http://kns.cnki.net/kcms/detail/11.1946.tq.20230131.1251.006.html. [16] 李梦宇,刘志,张天阳,等.氯胺消毒工艺中一氯胺生成效率的影响规律[J].中国给水排水,2021,37(3):38-44.LI M Y,LIU Z,ZHANG T Y,et al.Impact factors of monochloramine formation efficiency during chloramination disinfection[J].China Water & Wastewater,2021,37(3):38-44. [17] CLARKE K,EDGE R,JOHNSON V,et al.Direct observation of NH2· reactions with oxygen,amino acids,and melanins[J].The Journal of Physical Chemistry A,2008,112(6):1234-1237. doi: 10.1021/jp076395r [18] PATTON S,LI W,COUCH K D,et al.Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal:new insights into potable water reuse[J].Environmental Science & Technology Letters,2017,4(1):26-30. [19] VIKESLAND P J,OZEKIN K,VALENTINE R L.Monochloramine decay in model and distribution system waters[J].Water Research,2001,35(7):1766-1776. doi: 10.1016/S0043-1354(00)00406-1 [20] CAO Y,QIU W,LI J A,et al.Mechanism,kinetics and DBP formation of UV/NH2Cl process on contaminant removal in aqueous solution:a review[J].Chemical Engineering Journal,2021,420:130405. doi: 10.1016/j.cej.2021.130405 [21] CAO Z F,YU X M,ZHENG Y Z,et al.Micropollutant abatement by the UV/chloramine process in potable water reuse:a review[J].Journal of Hazardous Materials,2022,424:127341. doi: 10.1016/j.jhazmat.2021.127341 [22] WANG P,BU L J,WU Y T,et al.Mechanistic insight into the degradation of ibuprofen in UV/H2O2 process via a combined experimental and DFT study[J].Chemosphere,2021,267:128883. doi: 10.1016/j.chemosphere.2020.128883 [23] CHOW C H,LAW J C F,LEUNG K S Y.Degradation of acesulfame in UV/monochloramine process:kinetics,transformation pathways and toxicity assessment[J].Journal of Hazardous Materials,2021,403:123935. doi: 10.1016/j.jhazmat.2020.123935 [24] ZHU T X,DENG J,XU M Y,et al.DEET degradation in UV/monochloramine process:kinetics,degradation pathway,toxicity and energy consumption analysis[J].Chemosphere,2020,255:126962. doi: 10.1016/j.chemosphere.2020.126962 [25] JIANG B Q,TIAN Y J,ZHANG Z C,et al.Degradation behaviors of Isopropylphenazone and Aminopyrine and their genetic toxicity variations during UV/chloramine treatment[J].Water Research,2020,170:115339. doi: 10.1016/j.watres.2019.115339 [26] 孙玉洁,李梦凯,林佳星,等.基于细管流紫外反应系统探讨紫外和真空紫外/紫外辐照下水中微量磺胺甲噻二唑的光降解效果[J].环境科学学报,2018,38(5):1851-1857.SUN Y J,LI M K,LIN J X,et al.Photodegradation of trace sulfamethizole in water under UV and VUV/UV irradiation based on a mini-fluidic photoreaction system[J].Acta Scientiae Circumstantiae,2018,38(5):1851-1857. [27] 沈一君,彭明国,徐彬焜,等.紫外活化过硫酸盐降解二苯甲酮-4的动力学影响及降解机理与风险评价[J].环境科学研究,2019,32(1):174-182.SHEN Y J,PENG M G,XU B K,et al.Degradation of BP4 by UV-activated persulfate process:kinetic,mechanism and risk[J].Research of Environmental Sciences,2019,32(1):174-182. [28] 毛禹桥,丁欣欣,李敏睿,等.紫外/氯降解普里米酮的效能和机理[J].环境工程学报,2021,15(11):3524-3535. doi: 10.12030/j.cjee.202107104MAO Y Q,DING X X,LI M R,et al.Degradation efficiency and mechanism of primidone by UV/chorine process[J].Chinese Journal of Environmental Engineering,2021,15(11):3524-3535. doi: 10.12030/j.cjee.202107104 [29] LU Z D,LING Y C,WANG X L,et al.Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process[J].Science of the Total Environment,2022,832:154850. doi: 10.1016/j.scitotenv.2022.154850 [30] BU L J,ZHOU S Q,ZHU S M,et al.Insight into carbamazepine degradation by UV/monochloramine:reaction mechanism,oxidation products,and DBPs formation[J].Water Research,2018,146:288-297. doi: 10.1016/j.watres.2018.09.036 [31] WU Y T,ZHU S M,ZHANG W Q,et al.Comparison of diatrizoate degradation by UV/chlorine and UV/chloramine processes:kinetic mechanisms and iodinated disinfection byproducts formation[J].Chemical Engineering Journal,2019,375:121972. doi: 10.1016/j.cej.2019.121972 [32] LI S M,AO X W,LI C,et al.Insight into PPCP degradation by UV/NH2Cl and comparison with UV/NaClO:kinetics,reaction mechanism,and DBP formation[J].Water Research,2020,182:115967. doi: 10.1016/j.watres.2020.115967 [33] LUO C W,LI M A,CHENG X X,et al.Degradation of iopamidol by UV365/NaClO:roles of reactive species,degradation mechanism,and toxicology[J].Water Research,2022,222:118840. doi: 10.1016/j.watres.2022.118840 [34] NETA P,MADHAVAN V,ZEMEL H,et al.Cheminform abstract:rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds[J].Chemischer Informationsdienst,1977,8(14):8. [35] SUN P Z,MENG T,WANG Z J,et al.Degradation of organic micropollutants in UV/NH2Cl advanced oxidation process[J].Environmental Science & Technology,2019,53(15):9024-9033. [36] FANG J Y,FU Y,SHANG C.The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J].Environmental Science & Technology,2014,48(3):1859-1868. [37] BRAME J,LONG M C,LI Q L,et al.Trading oxidation power for efficiency:differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen[J].Water Research,2014,60:259-266. doi: 10.1016/j.watres.2014.05.005 [38] WU Z H,FANG J Y,XIANG Y Y,et al.Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process:Kinetics and transformation pathways[J].Water Research,2016,104:272-282. doi: 10.1016/j.watres.2016.08.011 [39] 杨帆,马晓雁,李青松,等.紫外/次氯酸钠和紫外/过碳酸钠工艺降解水杨酸的影响因素及降解机理[J].环境工程学报,2023,17(1):82-94. doi: 10.12030/j.cjee.202208046YANG F,MA X Y,LI Q S,et al.Influencing factors and degradation mechanism of salicylic acid by ultraviolet/sodium hypochlorite and ultraviolet/sodium percarbonate processes[J].Chinese Journal of Environmental Engineering,2023,17(1):82-94. doi: 10.12030/j.cjee.202208046 [40] FU W J,XIA G J,ZHANG Y X,et al.Using general computational chemistry strategy to unravel the reactivity of emerging pollutants:an example of sulfonamide chlorination[J].Water Research,2021,202:117391. doi: 10.1016/j.watres.2021.117391 [41] SHAH A D,MITCH W A.Halonitroalkanes,halonitriles,haloamides,and N-nitrosamines:a critical review of nitrogenous disinfection byproduct formation pathways[J].Environmental Science & Technology,2012,46(1):119-131. -