留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球粮食系统温室气体排放特征研究

汤宏波 吕新华 李富山 赵素婷

汤宏波, 吕新华, 李富山, 赵素婷. 全球粮食系统温室气体排放特征研究[J]. 环境科学研究, 2023, 36(11): 2031-2039. doi: 10.13198/j.issn.1001-6929.2023.07.16
引用本文: 汤宏波, 吕新华, 李富山, 赵素婷. 全球粮食系统温室气体排放特征研究[J]. 环境科学研究, 2023, 36(11): 2031-2039. doi: 10.13198/j.issn.1001-6929.2023.07.16
TANG Hongbo, LÜ Xinhua, LI Fushan, ZHAO Suting. Characteristics of Greenhouse Gas Emissions in Global Food System[J]. Research of Environmental Sciences, 2023, 36(11): 2031-2039. doi: 10.13198/j.issn.1001-6929.2023.07.16
Citation: TANG Hongbo, LÜ Xinhua, LI Fushan, ZHAO Suting. Characteristics of Greenhouse Gas Emissions in Global Food System[J]. Research of Environmental Sciences, 2023, 36(11): 2031-2039. doi: 10.13198/j.issn.1001-6929.2023.07.16

全球粮食系统温室气体排放特征研究

doi: 10.13198/j.issn.1001-6929.2023.07.16
基金项目: 中国科学院战略研究与决策支持系统建设专项课题(No.GHJ-ZLZX-2023-06);中国科学院国际合作局出国专题研究项目阶段性成果(科际批字0034号)
详细信息
    作者简介:

    汤宏波(1980-),男,贵州锦屏人,副研究员,硕士,主要从事绿色发展、碳排放研究,tanghb@mail.whlib.ac.cn

  • 中图分类号: X17

Characteristics of Greenhouse Gas Emissions in Global Food System

Funds: Special Project on the Construction of Strategic Research and Decision Support System in the Chinese Academy of Sciences (No.GHJ-ZLZX-2023-06); Interim Results of the Special Study Project for Overseas Visits by the International Cooperation Bureau of the Chinese Academy of Sciences (Interdisciplinary Approval No.0034)
  • 摘要: 农业是人类活动第二大温室气体排放来源,其低碳发展对全球粮食安全具有举足轻重的作用. 本文利用联合国粮食及农业组织数据库,分析了全球245个国家或地区粮食系统土地利用变化、农产品生产活动和农产品生产前后3个阶段的主要温室气体(CO2、CH4和N2O)排放的具体活动来源、经济体来源和日常食物温室气体排放量及温室气体排放强度特征. 结果表明:①1990—2020年,粮食系统温室气体(GHGs)排放量增长了13.82%,人均GHGs排放量下降了22.92%,预计2050年全球粮食系统GHGs排放量为15.39×109~17.35×109 t (以CO2计). ②粮食系统三部分活动−土地利用变化、农产品生产活动和农产品生产前后的GHGs排放量占比分别为45.82%、19.51%和34.67%,农产品生产前后阶段是30年间GHGs排放量增长的主要动力,其GHGs排放量翻倍,原因是粮食系统运输和消费过程中损失和浪费现象比较严重. ③粮食系统中CO2、CH4和N2O分别占全球GHGs的15.29%、10.43%和4.45%,其最大来源分别是森林净转换、肠道发酵以及留在牧场上的粪便. 森林净转换排放的CO2占粮食系统CO2来源的37.03%,肠道发酵排放的CH4占粮食系统CH4来源的52.52%,留在牧场上的粪便排放的N2O占粮食系统N2O来源的33.35%. ④粮食系统GHGs排放量前10位国家的排放总量超过全球245个国家或地区粮食系统GHGs排放量的1/2. ⑤牛肉、大米和生牛乳是日常食物中GHGs排放量较大的3种食物,占整个粮食系统GHGs排放量的25.70%;反刍动物肉类的GHGs排放强度是其他食物的几十甚至上百倍. 通过粮食系统GHGs来源特征的研究,提出以下几点建议:①提升农产品生产前后阶段管理水平,特别是改善粮食运输、加工环节管理,加强节约粮食宣传教育和废物管理水平,提倡垃圾分类,发展生物质能利用技术;②优化农业生产模式,控制畜牧业规模,增加种植业强度的同时,增强抑制反刍动物、水稻的CH4排放和提高氮肥利用等技术的研发,减少化肥、农药和饲料的使用,通过有机农业、旋耕、轮作等方式,减少GHGs的排放;③推广低碳生活方式,多食用本地生产的食品、除大米外的谷物,少食用反刍动物肉类,以GHGs排放强度较低的鸡肉和猪肉为主要蛋白质补充源. 要从技术研发、农业生产模式、农业生产效率、能源结构、废弃物管理和日常生活方式等方面全方位地降“碳”.

     

  • 图  1  粮食系统GHGs来源结构

    Figure  1.  Structure diagram of greenhouse gas sources in the food system

    图  2  1990—2020年全球粮食系统GHGs排放特征

    Figure  2.  Characteristics of global greenhouse gas emissions in the food system from 1990 to 2020

    图  3  粮食系统三部分活动的GHGs排放特征

    Figure  3.  The greenhouse gasemission characteristics of three activities in the agricultural system

    图  4  粮食系统具体活动GHGs排放结构

    注:其他16项包括水稻种植、农田能源利用、稀树草原烧荒、粪肥管理、有机土壤烧荒、作物残体、粮食运输、牧场粪便、合成肥料、农田用电、肥料制造、食品加工、食品包装、作物残体焚烧、热带湿润垦林烧荒和施肥.

    Figure  4.  The structure of greenhouse gas emission in specific activities in agricultural system

    图  5  粮食系统GHGs排放量前10位的国家

    注:中国数据中不包括港澳台地区数据.

    Figure  5.  The top ten countries with the largestgreenhouse gas emissions in agricultural system

    图  6  不同类型食物的GHGs排放结构和GHGs排放强度

    Figure  6.  The structure and greenhouse gas intensity of greenhouse gas emission from different types of foods

  • [1] Intergovernmental Panel on Climate Change.Climate change 2021:the physical science basis[M].Cambridge,UK:Cambridge University Press,2023.
    [2] 马占云,任佳雪,陈海涛,等.IPCC第一工作组评估报告分析及建议[J].环境科学研究,2022,35(11):2550-2558.

    MA Z Y,REN J X,CHEN H T,et al.Analysis and recommendations of IPCC working group Ⅰ assessment report[J].Research of Environmental Sciences,2022,35(11):2550-2558.
    [3] 黄群芳,国超旋,李娜,等.富春江库区高温热浪变化特征及对藻类水华潜在影响研究[J].环境科学研究,2022,35(2):530-539.

    HUANG Q F,GUO C X,LI N,et al.Characteristics of summer heat waves and potential effect on algal blooms in Fuchunjiang Reservoir[J].Research of Environmental Sciences,2022,35(2):530-539.
    [4] 赵其国,钱海燕.低碳经济与农业发展思考[J].生态环境学报,2009,18(5):1609-1614.

    ZHAO Q G,QIAN H Y.Low carbon economy and thinking of agricultural development[J].Ecology and Environmental Sciences,2009,18(5):1609-1614.
    [5] 张恒恒.北方旱地免耕下土壤氮储量及肥料氮去向研究[D].北京:中国农业科学院,2016.
    [6] CRIPPA M,SOLAZZO E,GUIZZARDI D,et al.Food systems are responsible for a third of global anthropogenic GHG emissions[J].Nature Food,2021,2(3):198-209. doi: 10.1038/s43016-021-00225-9
    [7] Intergovernmental Panel on Climate Change.Climate change 2014:mitigation of climate change[M].Cambridge,UK:Cambridge University Press,2014.
    [8] 郭建平.气候变化对中国农业生产的影响研究进展[J].应用气象学报,2015,26(1):1-11.

    GUO J P.Advances in impacts of climate change on agricultural production in China[J].Journal of Applied Meteorological Science,2015,26(1):1-11.
    [9] 方利江,宋文婷,杨一群,等.2008—2020年京津冀及周边地区人为源氨排放清单研究[J].环境科学研究,2023,36(3):500-509.

    FANG L J,SONG W T,YANG Y Q,et al.Inventory of anthropogenic ammonia emissions in Beijing-Tianjin-Hebei and its surrounding areas from 2008 to 2020[J].Research of Environmental Sciences,2023,36(3):500-509.
    [10] 张津建,李广英,张元勋,等.青海东部城市群大气氨排放清单研究[J].环境科学研究,2021,34(9):2113-2121.

    ZHANG J J,LI G Y,ZHANG Y X,et al.Ammonia emission inventory in eastern urban agglomeration of Qinghai Province[J].Research of Environmental Sciences,2021,34(9):2113-2121.
    [11] CLARK M A,DOMINGO N G G,COLGAN K,et al.Global food system emissions could preclude achieving the 1.5 ℃ and 2 ℃ climate change targets[J].Science,2020,370(6517):705-708. doi: 10.1126/science.aba7357
    [12] 唐博文.从国际经验看中国农业温室气体减排路径[J].世界农业,2022(3):18-24.

    TANG B W.China´s agricultural greenhouse gas emission reduction path from international experience[J].World Agriculture,2022(3):18-24.
    [13] 农业农村部,国家发展和改革委员会.农业农村减排固碳实施方案[EB/OL].北京:农业农村部网站,(2022-07-01)[2023-04-09]. http://www.gov.cn/xinwen/2022-07/01/content_5698717.htm.
    [14] Food and Agricultural Organization of the United Nations.Global report on food crises 2022[R/OL].Roma:Food and Agricultural Organization of the United Nations,(2022-05-04)[2023-04-09]. https://reliefweb.int/sites/reliefweb.int/files/resources/GRFC%202022%20Final%20Report.pdf.
    [15] Food and Agricultural Organization of the United Nations.How to feed the world in 2050[R/OL].Roma:Food and Agricultural Organization of the United Nations,(2009-10-12)[2023-03-16]. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf.
    [16] IVANOVICH C C,SUN T Y,GORDON D R,et al.Future warming from global food consumption[J].Nature Climate Change,2023,13(3):297-302. doi: 10.1038/s41558-023-01605-8
    [17] COSTA C,WOLLENBERG E,BENITEZ M,et al.Roadmap for achieving net-zero emissions in global food systems by 2050[J].Scientific Reports,2022,12:15064. doi: 10.1038/s41598-022-18601-1
    [18] HONG C P,BURNEY J A,PONGRATZ J,et al.Global and regional drivers of land-use emissions in 1961-2017[J].Nature,2021,589(7843):554-561. doi: 10.1038/s41586-020-03138-y
    [19] TUBIELLO F N,KARL K,FLAMMINI A,et al.Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems[J].Earth System Science Data,2022,14(4):1795-1809. doi: 10.5194/essd-14-1795-2022
    [20] CONCHEDDA G,TUBIELLO F N.Drainage of organic soils and GHG emissions:validation with country data[J].Earth System Science Data,2020,12(4):3113-3137. doi: 10.5194/essd-12-3113-2020
    [21] MENEGAT S,LEDO A,TIRADO R.Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture[J].Scientific Reports,2022,12:14490. doi: 10.1038/s41598-022-18773-w
    [22] SAUNOIS M,STAVERT A R,POULTER B,et al.The global methane budget 2000-2017[J].Earth System Science Data,2020,12(3):1561-1623. doi: 10.5194/essd-12-1561-2020
    [23] Food and Agricultural Organization of the United Nations.FAO STAT[EB/OL].Roma:Food and Agricultural Organization of the United Nations,(2022-11-04)[2023-02-05].https://www.fao.org/faostat/en/#data.
    [24] SANS P,COMBRIS P.World meat consumption patterns:an overview of the last fifty years (1961-2011)[J].Meat Science,2015,109:106-111. doi: 10.1016/j.meatsci.2015.05.012
    [25] United Nations.World population prospects 2022[R/OL].New York:United Nations,(2022-07-26)[2023-03-26]. https://www.un.org/development/desa/pd/conten.
    [26] 刁其玉.反刍动物甲烷生成与营养调控减排措施[J].畜牧产业,2023(1):39-43.

    DIAO Q Y.Methane production in ruminants and nutrition control and emission reduction measures[J].Animal Agriculture,2023(1):39-43.
    [27] 安济山,万发春,沈维军,等.多维度调控反刍动物甲烷减排的研究进展[J].动物营养学报,2022,34(11):6842-6850.

    AN J S,WAN F C,SHEN W J,et al.Research progress on multi-dimensional regulation measures of reducing methane emission in ruminants[J].Chinese Journal of Animal Nutrition,2022,34(11):6842-6850.
    [28] 高尕,石红梅,刘汉丽,等.益生菌对反刍动物生产及降低甲烷排放的研究进展[J].中国牛业科学,2022,48(2):67-72.

    GAO G,SHI H M,LIU H L,et al.Research progress of probiotics on ruminant production and methane emission reduction[J].China Cattle Science,2022,48(2):67-72.
    [29] ZHANG X,DAVIDSON E A,MAUZERALL D L,et al.Managing nitrogen for sustainable development[J].Nature,2015,528(7580):51-59. doi: 10.1038/nature15743
    [30] GAO Y H,CABRERA SERRENHO A.Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions[J].Nature Food,2023,4(2):170-178. doi: 10.1038/s43016-023-00698-w
    [31] GU B J,ZHANG X M,LAM S K,et al.Cost-effective mitigation of nitrogen pollution from global croplands[J].Nature,2023,613(7942):77-84. doi: 10.1038/s41586-022-05481-8
    [32] 宋晓晖,吕晨,王丽娟,等.建设项目温室气体环境影响评价方法研究[J].环境科学研究,2022,35(2):405-413.

    SONG X H,LÜ C,WANG L J,et al.Method of greenhouse gas environmental impact assessment for construction projects[J].Research of Environmental Sciences,2022,35(2):405-413.
    [33] ZHU J Y,LUO Z Y,SUN T T,et al.Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems[J].Nature Food,2023,4(3):247-256. doi: 10.1038/s43016-023-00710-3
    [34] XU X M,SHARMA P,SHU S J,et al.Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods[J].Nature Food,2021,2(9):724-732. doi: 10.1038/s43016-021-00358-x
    [35] FRANKOWSKA A,RIVERA X S,BRIDLE S,et al.Impacts of home cooking methods and appliances on the GHG emissions of food[J].Nature Food,2020,1(12):787-791. doi: 10.1038/s43016-020-00200-w
    [36] Intergovernmental Panel on Climate Change.Climate change 2013:the physical science basis:working group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2014.
    [37] CHRISTENSEN T R,ARORA V K,GAUSS M,et al.Tracing the climate signal:mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase[J].Scientific Reports,2019,9:1146. doi: 10.1038/s41598-018-37719-9
    [38] STANIASZEK Z,GRIFFITHS P T,FOLBERTH G A,et al.The role of future anthropogenic methane emissions in air quality and climate[J].NPJ Climate and Atmospheric Science,2022,5:21. doi: 10.1038/s41612-022-00247-5
  • 加载中
图(6)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  11
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-05-26
  • 网络出版日期:  2023-07-14

目录

    /

    返回文章
    返回