留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质炭施用对水稻土有机质分子结构和组成的影响

宋凯悦 刘志伟 刘伟 马睿凌 李世贤 卞荣军 郑聚锋 潘根兴

宋凯悦, 刘志伟, 刘伟, 马睿凌, 李世贤, 卞荣军, 郑聚锋, 潘根兴. 生物质炭施用对水稻土有机质分子结构和组成的影响[J]. 环境科学研究, 2023, 36(10): 1979-1987. doi: 10.13198/j.issn.1001-6929.2023.07.10
引用本文: 宋凯悦, 刘志伟, 刘伟, 马睿凌, 李世贤, 卞荣军, 郑聚锋, 潘根兴. 生物质炭施用对水稻土有机质分子结构和组成的影响[J]. 环境科学研究, 2023, 36(10): 1979-1987. doi: 10.13198/j.issn.1001-6929.2023.07.10
SONG Kaiyue, LIU Zhiwei, LIU Wei, MA Ruiling, LI Shixian, BIAN Rongjun, ZHENG Jufeng, PAN Genxing. Effects of Biochar Application on Molecular Structure and Composition of Organic Matter in Paddy Soil[J]. Research of Environmental Sciences, 2023, 36(10): 1979-1987. doi: 10.13198/j.issn.1001-6929.2023.07.10
Citation: SONG Kaiyue, LIU Zhiwei, LIU Wei, MA Ruiling, LI Shixian, BIAN Rongjun, ZHENG Jufeng, PAN Genxing. Effects of Biochar Application on Molecular Structure and Composition of Organic Matter in Paddy Soil[J]. Research of Environmental Sciences, 2023, 36(10): 1979-1987. doi: 10.13198/j.issn.1001-6929.2023.07.10

生物质炭施用对水稻土有机质分子结构和组成的影响

doi: 10.13198/j.issn.1001-6929.2023.07.10
基金项目: 国家自然科学基金项目(No.42277330, 41877097);江苏省碳达峰碳中和科技创新专项资金项目(No.BE2022423)
详细信息
    作者简介:

    宋凯悦(1996-),女,山东滨州人,2236278939@qq.com

    通讯作者:

    郑聚锋(1977-),男,河北赵县人,教授,博士,主要从事农田固碳与土壤健康研究,zhengjufeng@njau.edu.cn

  • 中图分类号: X53;S153.6

Effects of Biochar Application on Molecular Structure and Composition of Organic Matter in Paddy Soil

Funds: National Natural Science Foundation of China (No.42277330, 41877097); Science and Technology Innovation Special Fund of Jiangsu Province for Carbon Dioxide Emission Peaking and Carbon Neutrality, China (No.BE2022423)
  • 摘要: 农田土壤施用生物质炭(BC)被认为是提高表层土壤固碳潜力的有效措施,但其对深层土壤有机质分子结构和组成特征的影响还认识不足. 本文以BC施用4年后的水稻土为研究对象,基于傅里叶变换红外光谱(FTIR)和热裂解气质联用(Py-GC/MS)技术,探究BC施用对耕作层(A层,0~15 cm)、犁底层(Ap层,15~28 cm)和潴育层(W,28~50 cm)土壤有机碳(SOC)含量和有机质分子结构与组成的影响. 结果表明:①与不施炭的对照(CK)处理相比,BC处理下A层SOC和可溶性有机碳(DOC)含量分别显著增加了13.0%和22.3%,Ap层DOC含量增加了20.8%,而W层SOC和DOC含量均无显著性变化. ②从有机质化学结构来看,BC施用增加了各土层芳香族碳组分的相对峰强度,而降低了A层和Ap层多糖等碳水化合物的相对峰强度,有机质结构趋于芳香化. ③BC施用明显增加了不同深度水稻土有机质分子的相对丰度并改变了分子组成. 与CK处理相比,BC处理降低了各土层中氨基酸、氨基化合物、二元羧酸、羟基酸和糖类的相对丰度,特别是Ap层和W层;而BC处理则增加了各土层中烷烃类、胺类、杂环氮化合物、苯酚酯和多酚类的相对丰度. 研究显示,施用BC增加了表层土壤中疏水性分子和芳香性化合物向深层土壤的迁移,增强了深层土壤碳库的稳定性.

     

  • 图  1  不同处理下各土壤深度SOC和DOC含量

    注:图中大写字母表示同一土层不同处理间差异显著,小写字母表示同一处理不同土层间差异显著(P<0.05). CK处理表示未施用生物质炭处理,BC处理表示使用生物质炭处理(15 t/hm2),下同.

    Figure  1.  SOC and DOC contents at different soil depths under different treatments

    图  2  不同处理下各深度土壤的红外光谱特征

    Figure  2.  Infrared spectral characteristics of soil at different depths under different treatments

    图  3  热解GC/MS鉴定的有机质分子组成Van Krevelen图

    注:AA—氨基酸;AC—醇类;AD—氨基化合物;AL—烷烃类;AM—胺类、有机胺;DA—二元羧酸;ES—脂肪族酯;ET—醚;FA—脂肪酸;HA—羟基酸;HC—其他基团化合物;HN—杂环氮化合物;HO—杂环氧化合物;KE—酮类;OP—有机磷化合物;PE—苯酚酯;PH—多酚类;RA—树脂酸;SES—糖脂;ST—固醇类;SU—糖类. 下同.

    Figure  3.  Van Krevelen plot of molecular composition of organic matter identified by pyrolysis GC/MS

    图  4  热解GC/MS鉴定的化合物类别归一化相对丰度

    Figure  4.  Normalized relative abundance of compound classes identified by pyrolysis GC/MS

    表  1  红外吸收峰的主要归属

    Table  1.   Main attributions of infrared absorption peaks

    波数/cm−1主要归属
    本研究结果文献报道
    3 620 3 698~3 622 高岭土中O—H的伸缩振动[22]
    3 421 3 600~3 400 水、醇类及酚类中O—H的伸缩振动[22]
    2 920 3 020~2 800 脂肪族烷基(CH、CH2、CH3)内C—H键的不对称和对称拉伸振动[22]
    1 635 1 660~1 580 芳香族的C=C、酰胺C=O和COO的伸缩振动[23]
    1 432 1 610~1 370 芳香族的C=C或C=N的伸缩振动[24]
    1 034 1 100~1 050 纤维素等多糖中C—O—C键和土壤矿物中无机Si—O—Si键的拉伸振动[25]
    下载: 导出CSV
  • [1] GEORGIOU K,JACKSON R B,VINDUŠKOVÁ O,et al.Global stocks and capacity of mineral-associated soil organic carbon[J].Nature Communications,2022,13:3797. doi: 10.1038/s41467-022-31540-9
    [2] FENG Q,AN C J,CHEN Z,et al.Can deep tillage enhance carbon sequestration in soils?a meta-analysis towards GHG mitigation and sustainable agricultural management[J].Renewable and Sustainable Energy Reviews,2020,133:110293. doi: 10.1016/j.rser.2020.110293
    [3] ZOMER R J,BOSSIO D A,SOMMER R,et al.Global sequestration potential of increased organic carbon in cropland soils[J].Scientific Reports,2017,7:15554. doi: 10.1038/s41598-017-15794-8
    [4] LAL R.Digging deeper:a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J].Global Change Biology,2018,24(8):3285-3301. doi: 10.1111/gcb.14054
    [5] WEI L,GE T D,ZHU Z K,et al.Comparing carbon and nitrogen stocks in paddy and upland soils:accumulation,stabilization mechanisms,and environmental drivers[J].Geoderma,2021,398:115121. doi: 10.1016/j.geoderma.2021.115121
    [6] LIU Z W,WU X L,LI S X,et al.Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice-soil system[J].New Phytologist,2021,232(3):1250-1258. doi: 10.1111/nph.17651
    [7] BALESDENT J,BASILE-DOELSCH I,CHADOEUF J,et al.Atmosphere-soil carbon transfer as a function of soil depth[J].Nature,2018,559(7715):599-602. doi: 10.1038/s41586-018-0328-3
    [8] LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota:a review[J].Soil Biology and Biochemistry,2011,43(9):1812-1836. doi: 10.1016/j.soilbio.2011.04.022
    [9] 李晓娜,张睿含,张倩影,等.生物质炭服务农田生态系统“碳中和”的机制和潜力研究进展[J].环境科学研究,2023,36(2):381-392. doi: 10.13198/j.issn.1001-6929.2022.10.17

    LI X N,ZHANG R H,ZHANG Q Y,et al.Mechanisms and potential of biochar to serve ‘carbon neutrality’ in agroecosystem:a review[J].Research of Environmental Sciences,2023,36(2):381-392. doi: 10.13198/j.issn.1001-6929.2022.10.17
    [10] ZHANG A F,BIAN R J,PAN G X,et al.Effects of biochar amendment on soil quality,crop yield and greenhouse gas emission in a Chinese rice paddy:a field study of 2 consecutive rice growing cycles[J].Field Crops Research,2012,127:153-160. doi: 10.1016/j.fcr.2011.11.020
    [11] CAI W,DU Z L,ZHANG A P,et al.Long-term biochar addition alters the characteristics but not the chlorine reactivity of soil-derived dissolved organic matter[J].Water Research,2020,185:116260. doi: 10.1016/j.watres.2020.116260
    [12] 王月玲,周凤,张帆,等.施用生物炭对土壤呼吸以及土壤有机碳组分的影响[J].环境科学研究,2017,30(6):920-928. doi: 10.13198/j.issn.1001-6929.2017.01.89

    WANG Y L,ZHOU F,ZHANG F,et al.Influence of biochar on soil respiration and soil organic carbon fractions[J].Research of Environmental Sciences,2017,30(6):920-928. doi: 10.13198/j.issn.1001-6929.2017.01.89
    [13] 龙杰琦,苗淑杰,李娜,等.施用生物炭对黑土各组分有机质结构的影响[J].植物营养与肥料学报,2022,28(5):775-785. doi: 10.11674/zwyf.2021290

    LONG J Q,MIAO S J,LI N,et al.Effects of biochar application on the structural properties of organic matter fractions in Mollisols[J].Journal of Plant Nutrition and Fertilizers,2022,28(5):775-785. doi: 10.11674/zwyf.2021290
    [14] CHEN X,JIN M C,ZHANG Y J,et al.Nitrogen application increases abundance of recalcitrant compounds of soil organic matter[J].Soil Science,2018,183(5):169-178. doi: 10.1097/SS.0000000000000243
    [15] LORENZ K,LAL R.Biochar application to soil for climate change mitigation by soil organic carbon sequestration[J].Journal of Plant Nutrition and Soil Science,2014,177(5):651-670. doi: 10.1002/jpln.201400058
    [16] YUAN R Y,SALAM M,MIAO X J,et al.Potential disintegration and transport of biochar in the soil-water environment:a case study towards purple soil[J].Environmental Research,2023,222:115383. doi: 10.1016/j.envres.2023.115383
    [17] SINGH B P,FANG Y Y,BOERSMA M,et al.In situ persistence and migration of biochar carbon and its impact on native carbon emission in contrasting soils under managed temperate pastures[J].PLoS One,2015,10(10):e0141560. doi: 10.1371/journal.pone.0141560
    [18] 潘根兴,李恋卿,郑聚锋,等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008,45(5):901-914. doi: 10.3321/j.issn:0564-3929.2008.05.017

    PAN G X,LI L Q,ZHENG J F,et al.Perspectives on cycling and sequestration of organic carbon in paddy soils of China[J].Acta Pedologica Sinica,2008,45(5):901-914. doi: 10.3321/j.issn:0564-3929.2008.05.017
    [19] OBIA A,BØRRESEN T,MARTINSEN V,et al.Vertical and lateral transport of biochar in light-textured tropical soils[J].Soil and Tillage Research,2017,165:34-40. doi: 10.1016/j.still.2016.07.016
    [20] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [21] 白子金,彭杰,罗德芳,等.南疆农田土壤全氮含量的中红外光谱反演模型[J].光谱学与光谱分析,2022,42(9):2768-2773. doi: 10.3964/j.issn.1000-0593(2022)09-2768-06

    BAI Z J,PENG J,LUO D F,et al.A mid-infrared spectral inversion model for total nitrogen content of farmland soil in Southern Xinjiang[J].Spectroscopy and Spectral Analysis,2022,42(9):2768-2773. doi: 10.3964/j.issn.1000-0593(2022)09-2768-06
    [22] PAROLO M E,SAVINI M C,LOEWY R M.Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption[J].Journal of Environmental Management,2017,196:316-322.
    [23] DEMYAN M S,RASCHE F,SCHULZ E,et al.Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem[J].European Journal of Soil Science,2012,63(2):189-199. doi: 10.1111/j.1365-2389.2011.01420.x
    [24] 常汉达,王晶,张凤华.基于傅里叶红外光谱弃耕地开垦前后土壤有机质结构变化分析[J].土壤通报,2019,50(2):333-340. doi: 10.19336/j.cnki.trtb.2019.02.12

    CHANG H D,WANG J,ZHANG F H.Change in soil organic matter structure before and after reclamation for the abandoned farmland based on Fourier transform infrared spectrometer[J].Chinese Journal of Soil Science,2019,50(2):333-340. doi: 10.19336/j.cnki.trtb.2019.02.12
    [25] HELLER C,ELLERBROCK R H,ROßKOPF N,et al.Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy:effects of mire type and drainage intensity[J].European Journal of Soil Science,2015,66(5):847-858. doi: 10.1111/ejss.12279
    [26] SPACCINI R,PICCOLO A.Molecular characteristics of humic acids extracted from compost at increasing maturity stages[J].Soil Biology and Biochemistry,2009,41(6):1164-1172. doi: 10.1016/j.soilbio.2009.02.026
    [27] 何逸婷.秸秆原料和炭化温度对生物质炭分子结构特征的影响研究[D].南京:南京农业大学,2022:23-42.
    [28] 周咏春,郭思伯,李丹阳,等.新鲜和老化生物炭对土壤氮淋失及油菜氮吸收的影响[J].环境科学研究,2023,36(3):581-589. doi: 10.13198/j.issn.1001-6929.2022.12.07

    ZHOU Y C,GUO S B,LI D Y,et al.Effects of fresh and aged biochar on soil nitrogen leaching and nitrogen uptake of rapeseed[J].Research of Environmental Sciences,2023,36(3):581-589. doi: 10.13198/j.issn.1001-6929.2022.12.07
    [29] ZIMMERMAN A R,GAO B,AHN M Y.Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J].Soil Biology and Biochemistry,2011,43(6):1169-1179. doi: 10.1016/j.soilbio.2011.02.005
    [30] LU W W,DING W X,ZHANG J H,et al.Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil:a negative priming effect[J].Soil Biology and Biochemistry,2014,76:12-21. doi: 10.1016/j.soilbio.2014.04.029
    [31] WENG Z,van ZWIETEN L,SINGH B P,et al.Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system[J].Soil Biology and Biochemistry,2015,90:111-121. doi: 10.1016/j.soilbio.2015.08.005
    [32] HUANG R,TIAN D,LIU J,et al.Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system[J].Agriculture,Ecosystems & Environment,2018,265:576-586.
    [33] 王佳盟,刘伟,刘志伟,等.生物质炭施用对不同深度稻田土壤有机碳矿化的影响[J].农业环境科学学报,2020,39(9):2081-2088. doi: 10.11654/jaes.2020-0335

    WANG J M,LIU W,LIU Z W,et al.Effects of biochar application on soil organic carbon mineralization at different depths in paddy soil[J].Journal of Agro-Environment Science,2020,39(9):2081-2088. doi: 10.11654/jaes.2020-0335
    [34] 黄敏,段军波,周开来,等.典型设施环境条件对土壤活性有机碳及腐殖物质碳的影响[J].环境科学研究,2017,30(11):1706-1714. doi: 10.13198/j.issn.1001-6929.2017.03.01

    HUANG M,DUAN J B,ZHOU K L,et al.Effects of typical greenhouse factors on labile organic carbon and humus substance carbon in soil[J].Research of Environmental Sciences,2017,30(11):1706-1714. doi: 10.13198/j.issn.1001-6929.2017.03.01
    [35] TIAN J,WANG J Y,DIPPOLD M,et al.Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J].Science of the Total Environment,2016,556:89-97. doi: 10.1016/j.scitotenv.2016.03.010
    [36] HE Y H,CHENG W X,ZHOU L Y,et al.Soil DOC release and aggregate disruption mediate rhizosphere priming effect on soil C decomposition[J].Soil Biology and Biochemistry,2020,144:107787. doi: 10.1016/j.soilbio.2020.107787
    [37] JONES D L,MAGTHAB E A,GLEESON D B,et al.Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil[J].Soil Biology and Biochemistry,2018,117:72-82. doi: 10.1016/j.soilbio.2017.10.024
    [38] HERNANDEZ-SORIANO M C,KERRÉ B,KOPITTKE P M,et al.Biochar affects carbon composition and stability in soil:a combined spectroscopy-microscopy study[J].Scientific Reports,2016,6:25127. doi: 10.1038/srep25127
    [39] CHASSÉ A W,OHNO T.Higher molecular mass organic matter molecules compete with orthophosphate for adsorption to iron (oxy)hydroxide[J].Environmental Science & Technology,2016,50(14):7461-7469.
    [40] JIMÉNEZ-GONZÁLEZ M A,ALMENDROS G,WAGGONER D C,et al.Assessment of the molecular composition of humic acid as an indicator of soil carbon levels by ultra-high-resolution mass spectrometric analysis[J].Organic Geochemistry,2020,143:104012. doi: 10.1016/j.orggeochem.2020.104012
    [41] CLAUDIA S,MARIOS D,RICCARDO S,et al.Molecular characterization of soil organic matter and its extractable humic fraction from long-term field experiments under different cropping systems[J].Geoderma,2021,383:114700. doi: 10.1016/j.geoderma.2020.114700
    [42] USSIRI D A N,JOHNSON C E.Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods[J].Geoderma,2003,111(1/2):123-149.
    [43] SONG J Z,PENG P A.Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry[J].Journal of Analytical and Applied Pyrolysis,2010,87(1):129-137. doi: 10.1016/j.jaap.2009.11.003
    [44] 窦森,周桂玉,杨翔宇,等.生物质炭及其与土壤腐殖质碳的关系[J].土壤学报,2012,49(4):796-802. doi: 10.11766/trxb201111210460

    DOU S,ZHOU G Y,YANG X Y,et al.Biochar and its relation to humus carbon in soil:a short review[J].Acta Pedologica Sinica,2012,49(4):796-802. doi: 10.11766/trxb201111210460
    [45] LORENZ K,LAL R,PRESTON C M,et al.Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules[J].Geoderma,2007,142(1/2):1-10.
    [46] YUAN H Z,ZHU Z K,WEI X M,et al.Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J].Journal of Integrative Agriculture,2019,18(7):1474-1485. doi: 10.1016/S2095-3119(18)62102-1
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  7
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-21
  • 网络出版日期:  2023-07-04

目录

    /

    返回文章
    返回