Systematic Verification and Evaluation of Reliability of Acute Toxicity Estimation Methods for Hazardous Waste Identification
-
摘要: 急性毒性是危险废物鉴别(危废鉴别)重点关注的危险特性之一,危废鉴别实践常根据已知组分数据估算鉴别对象的急性毒性,但估算标准不统一、方法选择随意性强,不同估算方法之间缺乏横向比较研究,估算方法可靠性有待验证评估. 本文基于含钡污泥、白色粉末固体废物、生化污泥、污染土壤、洗沙泥和废铝灰等6类固体废物毒性物质含量的定量和成分分析结果,分别以GB 30000.18—2013《化学品分类和标签规范 第18部分:急性毒性》衍生出的4种混合物急性毒性分析方法(方法一至方法四)估算其对应的急性毒性,并通过GB 5085.2—2007《危险废物鉴别标准 毒性物质含量鉴别》规定的方法进行急性毒性分析测试,验证评估危险废物鉴别急性毒性估算方法的可靠性. 结果表明:6类固体废物对昆明小鼠的口服毒性半数致死量(LD50)均大于2 000 mg/kg,均不具备危险废物急性经口毒性特征,但4种不同方法得到的急性毒性估算数值差异明显,急性毒性评估准确性与固体废物类型以及成分信息的多少直接相关. 方法一和方法四可用来评估低毒固体废物急性毒性,估算后往往无需继续开展急性毒性测试;对于可能存在高毒组分的固体废物,方法二和方法三的估算结果更接近真实情况. 实际鉴别工作中,可通过成分分析,明确混合物主要组成成分,基于成分分析和危废鉴别检测结果等综合评估鉴别对象的急性毒性.Abstract: Acute toxicity is one of the key hazard characteristics that requires close attention in the identification of hazardous waste. Currently, hazardous waste identification practices typically estimate the acute toxicity of identified objects based on known component data. However, these estimation standards lack uniformity, the selection of methods is often arbitrary, and cross-sectional comparative studies between different estimation methods are limited. It is thus necessary to verify and evaluate the reliability of these estimation methods. In order to evaluate the quantitative and compositional analysis results of toxic substance content in six types of solid waste, including barium-containing sludge, white powder waste, biochemical sludge, contaminated soil, sand washing sludge, and waste aluminum ash, four analytical methods for acute toxicity were derived from Classification and Labeling of Chemicals - Part 18: Acute Toxicity (GB 30000.18-2013) (method 1 to method 4) to estimate their corresponding acute toxicity. The acute toxicity analysis tests were conducted using the method specified in Identification Standards for Hazardous Wastes: Acute Toxicity Screening (GB 5085.2-2007) to systematically verify and evaluate the reliability of hazardous waste identification acute toxicity estimation methods. The results showed that the acute oral LD50 of the six types of solid wastes exceeded 2000 mg/kg body weight in Kunming mice, indicating that they lacked the hazardous characteristics of acute oral toxicity. However, the acute toxicity values estimated by the four different methods varied significantly, and the accuracy of the evaluation was directly related to the type and composition of the solid waste. Method 1 and Method 4 are suitable for evaluating the acute toxicity of low-toxic solid waste and may obviate the need for further acute toxicity test after the estimation. In the case of solid wastes with potentially highly toxic components, the estimation results of Method 2 and Method 3 are more accurate. In the actual identification work, the primary composition of the mixtures can be identified through component analysis. Subsequently, the acute toxicity of the identification objects can be comprehensively evaluated by combining the component analysis results with the hazardous waste identification test results, thereby obtaining evaluation results that are closer to the actual acute toxicity level. This study provides a reference for selecting suitable methods to estimate acute toxicity in hazardous waste identification.
-
表 1 固体废物的理化性质
Table 1. Physicochemical properties of solid wastes
固体废物类别 含水率/% pH 堆积密度/(kg/m3) 粒径/cm 性状 含钡污泥(S1) 31.9 8.54 1.48 >1 灰白色泥状,无明显气味 白色粉末固体废物(S2) 0.1 7.05 0.35 >0.5 白色粉末,无明显气味 生化污泥(S3) 86.9 5.95 1.36 >0.50~1.0 黑色泥状,有刺激性气味 污染土壤(S4) 16.8 8.10 1.32 >1 褐色,块状或颗粒状,无明显气味 洗沙泥(S5) 33.8 6.65 0.62 >0.50~1.0 黄色,松散固态,无明显气味 废铝灰(S6) 0.5 9.47 0.54 <0.5 灰白色,颗粒状,有刺激性气味 表 2 毒性物质含量定量分析指标
Table 2. Quantitative analysis indicators for toxic substance content
固体废物类别 样品编号 定量分析指标 S1 S1-1~S1-6 钡、砷、镍、铅、钛 S2 S2-1~S2-5 钛、铅、锰、钒、钡、砷、硒、邻苯二甲酸二正丁酯 S3 S3-1~S3-13 丙酮、二氯甲烷、邻苯二甲酸二正丁酯、邻苯二甲酸二(2-二乙基己基)酯;锰、钡、氟化物 S4 S4-1~S4-5 砷、钡、镉、六价铬、铅、氟、石油烃总量 S5 S5-1~S5-5 钛、锰、砷、硒、铅、六价铬 S6 S6-1~S6-6 钒、锰、镍、锌、砷、钡、铅、氟离子 表 3 毒性物质含量检测结果
Table 3. Detection results of toxic substance content
分析指标 含量/(mg/kg) S1 S2 S3 S4 S5 S6 钡 1.93×103~1.37×104 38.5~203 25.2~71.8 88.2~279 6.73×103~9.30×103 砷 4.8~9.2 14.4~18.6 5.5~10.9 259~291 7.5~9.7 镍 0.5~4.8 209~418 铅 ND ND~6.6 65.5~121 11.9~98.4 钛 116~233 1.80×103~2.03×103 220~464 锰 169~272 40.6~86.7 180~299 211~1.19×103 钒 21.4~40.4 108~258 镉 ND~2.2 硒 6.9~8.1 47.1~92 六价铬 ND ND 氟离子 ND~50 0.24~0.95 192~356 石油溶剂 ND~77 丙酮 ND 邻苯二甲酸二正丁酯 0.1~1.7 0.1~0.4 二氯甲烷 ND 邻苯二甲酸二(2-二乙基己基)酯 1.8~6.7 注:ND 表示低于方法检出限. 表 4 各类固体废物成分分析结果
Table 4. Analysis results of waste composition
组分 占比/% S1 S2 S3 S4 S5 S6 水 31.9 0.1 86.9 16.8 43.8 0.5 氮化铝 12.2 二氧化硅 42.0 18.4 0.5 碳酸钙 8 4.0 16.1 1.5 氧化铝 8.0 21.8 铝镁尖晶石 32.4 氯化钠 0.5 5.2 双酚A型环氧树脂 61.5 环氧稀释剂 15.4 改性聚醚胺固化剂 16.2 硫酸钡 60.0 有机质 5.2 18.3 其他 0.1 6.8 7.4 18.9 13.7 25.9 表 5 各类固体废物急性毒性估算
Table 5. Acute toxicity estimation of various wastes
毒性物质 急性毒性估计值/(mg/kg) 最大浓度/% S1 S2 S3 S4 S5 S6 氯化钡 118 2.08 3.08×10−2 1.09×10−2 0 4.23×10−2 1.41 三碘化砷 300 5.60×10−3 1.13×10−2 0 6.63×10−3 1.77×10−1 5.90×10−3 羰基镍 50 1.40×10−3 0 0 0 0 1.22×10−1 四乙基铅 12.3 0 1.03×10−3 0 1.89×10−2 1.54×10−2 0 钛 2 000 1.11×10−1 2.03×10−1 0 4.64×10−2 0 0 锰 9 000 0 2.72×10−2 8.67×10−3 2.99×10−2 0 1.19×10−1 钒 300 0 4.04×10−3 0 0 0 2.58×10−2 铬酸镉 0.5 0 0 0 0 4.47×10−4 0 硒化镉 300 0 1.96×10−3 0 2.23×10−2 0 0 铬酸锶 2 000 0 0 0 0 0 0 石油溶剂 5 150 0 0 1.36×10−2 0 2.59×10−4 9.69×10−2 氟化锌 300 0 0 0 0 7.70×10−3 0 丙酮 5 800 0 0 0 0 0 0 邻苯二甲酸二正丁酯 7499 0 1.70×10−4 4.00×10−5 0 0 0 二氯甲烷 1 600 0 0 0 0 0 0 邻苯二甲酸二(2-二乙基己基)酯 30 000 0 0 6.70×10−4 0 0 0 水 — 31.9 0.1 86.9 16.8 43.8 0.5 氮化铝 3 470 0 0 0 0 0 12.2 二氧化硅 22 500 0 0 0 42 18.4 0.5 碳酸钙 6 450 5 0 0 4 16.1 1.5 氧化铝 2 500 0 0 0 0 8 21.8 铝镁尖晶石 2 500 0 0 0 0 0 32.4 氯化钠 2 500 0 0 0.5 0 0 5.2 双酚A型环氧树脂 13 600 0 61.54 0 0 0 0 环氧稀释剂 1 134 0 15.38 0 0 0 0 改性聚醚胺固化剂 242 0 16.15 0 0 0 0 硫酸钡 307 000 60 0 0 0 0 0 有机质 >2 000 0 0 5.24 18.3 0 0 其他 >2 000 0.91 6.55 7.33 18.78 13.46 24.12 注:急性毒性估计值参考《危险化学品安全技术全书》(第三版)、Chemicalbook、摩贝化学和《危险化学品名录(2015年版)》等材料中相应类别经口急性毒性估计值;其他组分无实际毒性,按实际检测无毒标准LD50>2 000 mg/kg计. 表 6 受试动物临床症状及死亡情况汇总
Table 6. Summary data of clinical symptoms and mortality in test animals
固体废物类别 染毒途径 暴露剂量/(mg/kg) 性别 动物数/只 死亡数/只 动物体质量/g 临床症状观察 染毒0 d 染毒7 d 染毒14 d S1 经口 2 000 ♀ 3 0 201.30±8.240 234.85±6.060 253.44±11.69 未见异常 2 000 ♀ 3 0 208.48±10.56 243.09±14.53 256.23±21.41 未见异常 S2 经口 2 000 ♀ 3 0 209.26±14.28 245.90±24.30 266.92±24.41 未见异常 2 000 ♀ 3 0 216.68±22.22 257.22±19.70 282.38±17.43 未见异常 S3 经口 2 000 ♀ 3 0 209.99±11.99 238.84±11.93 253.27±11.79 未见异常 2 000 ♀ 3 0 210.07±7.260 247.76±11.59 274.72±17.54 未见异常 S4 经口 2 000 ♀ 3 0 210.20±20.39 233.00±35.42 248.55±36.48 未见异常 2 000 ♀ 3 0 210.14±6.000 234.72±5.750 255.40±6.640 未见异常 S5 经口 2 000 ♀ 3 0 216.71±17.45 248.16±15.70 260.47±22.29 未见异常 2 000 ♀ 3 0 217.98±8.510 245.49±10.16 260.13±3.980 未见异常 S6 经口 2 000 ♀ 3 0 204.45±9.840 237.70±16.31 258.64±20.80 未见异常 2 000 ♀ 3 0 209.98±17.73 244.23±20.27 264.05±23.97 未见异常 表 7 急性毒性不同估算方法和测试结果
Table 7. Different acute toxicity estimation methods and test results
固体废
物类别方法一 方法二 方法三 方法四 急性毒性初筛
(实测)结果/(mg/kg)急性经口
实测结论急性毒性
估算值/(mg/kg)评估
结论急性毒性
估算值/(mg/kg)评估
结论急性毒性
估算值/(mg/kg)评估
结论急性毒性
估算值/(mg/kg)评估
结论S1 5 648.73 NO 1 925.93 NO 5 355.12 NO 1 501.37 PO >2 000 NO S2 197 306.21 NO 748.76 PO 1 171.92 PO 1 985.42 NO >2 000 NO S3 721 574.93 NO 627 293.01 NO 33 799.93 NO 1 995.15 NO >2 000 NO S4 60 293.87 NO 10 204.20 NO 6 109.20 NO 1 938.12 NO >2 000 NO S5 32 324.44 NO 11 004.22 NO 9 007.83 NO 1 887.79 NO >2 000 NO S6 6 746.80 NO 153.76 PO 1 791.61 PO 1 564.15 PO >2 000 NO 注:NO 表示不具有经口急性毒性;PO 表示可能具有急性毒性. 表 8 不同急性毒性估算方法对比及适用范围
Table 8. Comparison of estimation methods and applicable range
估算方法 优点 缺点 适用范围 方法一 仅考虑检出毒性物质 估算值一般偏大,估算后往往无需继续开展急性毒性测试,降低鉴别成本和工作量 可能存在缩小急性毒性的风险 低毒
固体废物方法二 考虑未知组分的总浓度是否大于10% 可能放大急性毒性,风险低 估算偏保守,部分情形可能需要开展急性毒性测试,成本和工作量可能会增大 高毒
固体废物方法三 考虑检出毒性物质、成分分析结果,以及未知组分 估算值可能更接近真实情况 — 高毒
固体废物方法四 考虑检出毒性物质和未知组分 估算值往往十分接近未知组分的LD50,估算后往往无需继续开展急性毒性测试,降低鉴别成本和工作量 可能存在缩小急性毒性的风险 低毒
固体废物表 9 确定具有急性毒性样品(S7)的估算结果
Table 9. Estimation results for samples with acute toxicity (S7)
组分 含量/% LD50/(mg/kg) Ci/LD50 急性毒性估
算值/(mg/kg)三氧化二砷 10 14.3 0.699 3 142.51(方法一) 碳酸钡 1 418 0.002 4 58.43(方法二) 水 30 136.76(方法三) 黏土等其他惰性组分 59 2 000 0.0295 134.01(方法四) -
[1] 黄启飞,王菲,黄泽春,等.危险废物环境风险防控关键问题与对策[J].环境科学研究,2018,31(5):789-795.HUANG Q F,WANG F,HUANG Z C,et al.Key issues and countermeasures on environmental risk prevention and control of hazardous wastes[J].Research of Environmental Sciences,2018,31(5):789-795. [2] 黄启飞,杨玉飞,岳波,等.典型危险废物污染控制关键环节识别研究[J].环境工程技术学报,2013,3(1):6-9. doi: 10.4103/0976-8580.107095HUANG Q F,YANG Y F,YUE B,et al.Identification of the key pollution control links of the typical hazardous wastes[J].Journal of Environmental Engineering Technology,2013,3(1):6-9. doi: 10.4103/0976-8580.107095 [3] 王琪,黄启飞,闫大海,等.我国危险废物管理的现状与建议[J].环境工程技术学报,2013,3(1):1-5. doi: 10.4103/0976-8580.107094WANG Q,HUANG Q F,YAN D H,et al.Current status and suggestions on hazardous waste management in China[J].Journal of Environmental Engineering Technology,2013,3(1):1-5. doi: 10.4103/0976-8580.107094 [4] 刘锋,孙思修,王鲁昕,等.对用于危险废物鉴别的几种浸出方法比对研究[J].环境科学研究,2005,18(增刊1):23-26.LIU F,SUN S X,WANG L X,et al.A comparison study on the leaching test methods used in hazardous waste identification[J].Research of Environmental Sciences,2005,18(Suppl 1):23-26. [5] 段华波.危险废物浸出毒性鉴别理论和方法研究[D].北京:中国环境科学研究院,2006. [6] BAKARE A A,ALIMBA C G,ALABI O A.Genotoxicity and mutagenicity of solid waste leachates:a review[J].African Journal of Biotechnology,2013,12(27):4206-4220. doi: 10.5897/AJB2013.12014 [7] 徐思琪,王雪娇,陈平,等.我国铝冶炼企业固体废物的指纹特征及毒性[J].环境科学研究,2021,34(9):2248-2255.XU S Q,WANG X J,CHEN P,et al.Fingerprint characteristics and toxicity analysis of solid waste in China's aluminum smelting industry[J].Research of Environmental Sciences,2021,34(9):2248-2255. [8] ADEOYE G O,ALIMBA C G,OYELEKE O B.The genotoxicity and systemic toxicity of a pharmaceutical effluent in Wistar rats may involve oxidative stress induction[J].Toxicology Reports,2015,2:1265-1272. doi: 10.1016/j.toxrep.2015.09.004 [9] ZHAO Q,YANG Z S,CAO S J,et al.Acute oral toxicity test and assessment of combined toxicity of cadmium and aflatoxin B1 in Kunming mice[J].Food and Chemical Toxicology,2019,131:110577. doi: 10.1016/j.fct.2019.110577 [10] MUNDY-HEISZ K A,PROSSER R S,RAINE N E.Acute oral toxicity and risks of four classes of systemic insecticide to the Common Eastern Bumblebee (Bombus impatiens)[J].Chemosphere,2022,295:133771. doi: 10.1016/j.chemosphere.2022.133771 [11] 高珊,童英,郑珊,等.4种急性经口毒性试验对3种化妆品原料的对比研究[J].毒理学杂志,2012,26(1):65-67.GAO S,TONG Y,ZHENG S,et al.Comparative study on three cosmetic raw materials by four acute oral toxicity tests[J].Journal of Toxicology,2012,26(1):65-67. [12] 刘兰,马清林,吴国泰,等.铝灰渣提取物对大鼠亚急性毒性作用的研究[J].中国兽医科学,2019,49(2):254-260.LIU L,MA Q L,WU G T,et al.Study on subacute toxicity of aluminum ash extracts in rats[J].Chinese Veterinary Science,2019,49(2):254-260. [13] 国家质量监督检验检疫总局,中国国家标准化管理委员会.化学品分类和标签规范 第18部分:急性毒性:GB 30000.18—2013[S].北京:中国标准出版社,2014. [14] 胡启之.OECD新发布急性经口毒性试验方法简介[J].毒理学杂志,2005,19(4):323-325. doi: 10.3969/j.issn.1002-3127.2005.04.028HU Q Z.Brief introduction of the new acute oral toxicity test method issued by OECD[J].Journal of Health Toxicology,2005,19(4):323-325. doi: 10.3969/j.issn.1002-3127.2005.04.028 [15] 危险废物鉴别报告信息公开[EB/OL].全国危险废物鉴别信息公开服务平台,(2021-09-03)[2023-03-01].https://gfmh.meescc.cn/solidPortal/#/. [16] HAMM J,ALLEN D,CEGER P,et al.Performance of the GHS mixtures equation for predicting acute oral toxicity[J].Regulatory Toxicology and Pharmacology,2021,125:105007. doi: 10.1016/j.yrtph.2021.105007 [17] CORVARO M,GEHEN S,ANDREWS K,et al.GHS additivity formula:a true replacement method for acute systemic toxicity testing of agrochemical formulations[J].Regulatory Toxicology and Pharmacology,2016,82:99-110. doi: 10.1016/j.yrtph.2016.10.007 [18] van COTT A,HASTINGS C E,LANDSIEDEL R,et al.GHS additivity formula:can it predict the acute systemic toxicity of agrochemical formulations that contain acutely toxic ingredients?[J].Regulatory Toxicology and Pharmacology,2018,92:407-419. doi: 10.1016/j.yrtph.2017.12.024 [19] 生态环境部.危险废物鉴别技术规范:HJ 298—2019[S].北京:中国环境科学出版社,2019. [20] 国家环境保护总局.工业固体废物采样制样技术规范:HJ/T 20—1998[S].北京:中国环境科学出版社,1998. [21] 国家环境保护总局.危险废物鉴别标准 毒性物质含量鉴别:GB 5085.6—2007[S].北京:中国标准出版社,2007. [22] 国家环境保护总局.化学品测试导则:HJ/T 153—2004[S].北京:中国环境科学出版社,2004. [23] 环境保护部化学品登记中心.环保公益性行业科研专项经费项目系列丛书·化学品测试方法:健康效应卷[M].2版.北京:中国环境出版社,2013. [24] 国家环境保护总局.危险废物鉴别标准 急性毒性初筛:GB 5085.2—2007[S].北京:中国标准出版社,2007. [25] 陈小亮,吕晶.固体废物危险特性鉴别有关问题的思考研究[J].环境科学与管理,2014,39(4):48-51.CHEN X L,LV J.Research on identification of hazardous characteristics of solid wastes[J].Environmental Science and Management,2014,39(4):48-51. [26] 王琪,段华波,黄启飞.危险废物鉴别体系比较研究[J].环境科学与技术,2005,28(6):16-18.WANG Q,DUAN H B,HUANG Q F.Comparison in identification systems of hazardous waste[J].Environmental Science and Technology,2005,28(6):16-18. [27] 李琴,蔡木林,李敏,等.我国危险废物环境管理的法律法规和标准现状及建议[J].环境工程技术学报,2015,5(4):306-314.LI Q,CAI M L,LI M,et al.Present status and suggestions of laws,regulations and standards of environmental management of hazardous wastes in China[J].Journal of Environmental Engineering Technology,2015,5(4):306-314. [28] 王琪,黄启飞,段华波,等.我国危险废物特性鉴别技术体系研究[J].环境科学研究,2006,19(5):165-179. doi: 10.3321/j.issn:1001-6929.2006.05.031WANG Q,HUANG Q F,DUAN H B,et al.Study on technical system of China for identification of hazardous wastes[J].Research of Environmental Sciences,2006,19(5):165-179. doi: 10.3321/j.issn:1001-6929.2006.05.031 -