Research on CO2 and Air Pollutant Emission Inventory and Potential for Pollution Reduction and Carbon Reduction in Synthetic Ammonia Industry: Taking Henan Province as an Example
-
摘要: 合成氨行业产生了大量的CO2和大气污染物,是我国实现减污降碳的关键行业之一. 河南省合成氨生产量较大,也是全国大气污染最严重的地区之一. 本研究以河南省为例,基于企业调研数据构建了合成氨行业CO2与大气污染物排放清单,并采用LEAP (The Low Emissions Analysis Platform)模型结合节能供给曲线,评估了不同情景下CO2和大气污染物减排潜力. 结果表明:①2017年河南省合成氨行业CO2排放总量为39 095.08×103 t,PM2.5、PM10、SO2和NOx排放量分别为2.66×103、3.74×103、20.48×103和31.05×103 t. 2020年河南省合成氨行业CO2和大气污染物排放量比2017年下降了21%左右. ②从空间分布来看,CO2和大气污染物排放主要集中在开封市和新乡市. ③在同时考虑能源结构优化、采用先进节能降碳技术、提高大气污染污染物末端去除效率的综合减排情景下,2030年河南省合成氨行业CO2、PM2.5、PM10、SO2和NOx的减排潜力分别为26 453.75×103、1.74×103、2.37×103、11.79×103和18.34×103 t,显著高于其他情景. 综合减排情景下,CO2与大气污染物减排协同性优于其他情景. 研究显示,通过加大对GC型低压氨合成工艺等技术的应用,河南省合成氨行业到2030年CO2减排量达到17 023.32×103 t,通过提升末端治理水平,到2030年大气污染物减排比例最高达60.53%.Abstract: The synthetic ammonia industry produces a large amount of CO2 and atmospheric pollutants. Therefore, it has become one of the key industries for China to reduce air pollution and carbon emissions. Henan Province has intensive production in synthetic ammonia and it is also one of the regions with the most serious air pollution throughout the whole country. In this study, a homologous emission list of CO2 and air pollutants in the synthetic ammonia industry of Henan Province was constructed based on data collected from local enterprises, and the LEAP (The Low Emissions Analysis Platform) model was combined with Energy Conservation Supply Curve model to evaluate the multi-scenario emission reduction potential of CO2 and air pollutants. The results show that: (1) In 2017, the total CO2 emissions of the synthetic ammonia industry in Henan Province were 39,095.08×103 t, and the emissions of PM2.5, PM10, SO2 and NOx were 2.66×103, 3.74×103, 20.48×103 and 31.05×103 t, respectively. In 2020, the emissions of CO2 and air pollutant from the synthetic ammonia industry in Henan Province decreased by about 21% compared to 2017. (2) From the perspective of spatial distribution, CO2 and air pollutant emissions were mainly concentrated in Kaifeng City and Xinxiang City. (3) Under the comprehensive emission reduction scenario that takes into account of the optimization of energy structure, adoption of advanced energy-saving and carbon-reduction technologies, and the improvement of the removal efficiency, the emission reduction potential of CO2, PM2.5, PM10, SO2 and NOx in Henan Province by 2030 is found to be 26,453.75×103, 1.74×103, 2.37×103, 11.79×103 and 18.34×103 t, respectively, which are significantly higher than other scenarios. Under the comprehensive emission reduction scenario, the synergistic effect of CO2 and air pollutant reduction is better than other scenarios. Research shows that by promoting the application of GC-type low-pressure ammonia synthesis process and other technologies, CO2 emission from the synthetic ammonia industry in Henan Province can be reduced by 17,023.32×103 t in 2030, and by improving the efficiency of end-of-pipe treatment, air pollutant emissions can be reduced by 55.91%-60.53%.
-
表 1 合成氨行业CO2及大气污染物排放因子
Table 1. Emission factors of CO2 and air pollutants for synthetic ammonia industry
燃料类型 燃烧技术 单位 排放因子 PM2.5 PM10 SO2 NOx CO2 煤炭 层燃炉 kg/t 0.42(Aar)[44] 1.74(Aar)[44] 16(S)[44] 7.5[44] 1 825[40] 煤粉炉 0.45(Aar)[44] 1.725(Aar)[44] 流化床炉 0.45(Aar)[44] 1.725(Aar)[44] 柴油 kg/t 0.67[44] 1.03[44] 2.24[58] 5.84[44] 2 973[40] 天然气 kg/m3 0.17[58] 0.24[58] 0.18[58] 2.09[59] 2 114[40] 合成氨(不分技术) kg/t 1.86[44] 2.12[44] 3[58] 0.9[58] 电力 t/(MW•h) 0.58[60] 注:Aar为平均燃煤收到基灰分,%;S为平均燃煤收到基硫分,%. 表 2 合成氨行业降碳技术相关参数
Table 2. Technical parameters for carbon reduction in the ammonia industry
技术名称 碳减排量/
[kg(以CO2计)/t(以合成氨计)]单位投资额/
[元/t(以合成氨计)]技术推广率/% 数据
来源2017年 2025年 GC型低压氨合成工艺技术 255.56 16.61 50 70 文献[63] 氨合成反应器温度的自动控制与优化技术 50 5 76 86 文献[12] 无动力氨回收技术 52.29 8 70 85 文献[12] N-甲基二乙醇胺溶液脱碳系统 114.07 28 46 78 文献[12] 高压煤气化技术 194.52 60 65 80 文献[12] 两段法变压吸附脱碳技术 166.67 67.50 50 75 文献[63] 三废混燃炉技术 96.31 65 59 75 文献[62] 顶置多喷嘴粉煤加压气化炉技术 260 213.47 56 88 文献[61] 中低温转换技术 57.79 60 54 73 文献[62] 轴径向低阻力大型氨合成反应技术 203.05 225 70 85 文献[62] 表 3 2017年河南省合成氨行业产能、CO2和大气污染物排放情况
Table 3. Production capacities, CO2 and atmospheric pollutant emissions of synthetic ammonia industry of Henan Province in 2017
城市 PM2.5排放量/(103 t) PM10排放量/(103 t) SO2排放量/(103 t) NOx排放量/(103 t) CO2排放量/(103 t) 合成氨产能/(103 t) 固定燃烧源 工艺过程源 固定燃烧源 工艺过程源 固定燃烧源 工艺过程源 固定燃烧源 工艺过程源 燃料燃烧 间接排放 安阳市 0.28 0.02 0.39 0.02 0.15 0.10 1.52 0.09 2 079.34 632.82 240.0 焦作市 0.22 0.04 0.33 0.04 1.29 0.23 2.08 0.20 2 880.34 306.93 400.0 开封市 0.92 0.14 1.31 0.16 10.41 1.74 13.46 1.51 11 026.14 976.13 3 030.0 濮阳市 0.09 0.09 0.14 0.10 0.66 0.17 1.45 0.14 1 251.93 195.23 300.0 三门峡市 0.23 0.03 0.32 0.05 0.15 0.02 1.37 0.01 2 686.84 449.63 120.0 漯河市 0.03 0.02 0.09 0.02 0.08 0.17 0.65 0.15 1 272.93 317.14 300.0 周口市 0.002 0.003 0.003 0.004 0.04 0.05 0.05 0.05 270.24 105.74 180.0 洛阳市 0.04 0.01 0.06 0.01 0.30 0.13 0.29 0.11 698.63 105.24 420.0 新乡市 0.33 0.10 0.44 0.12 3.46 0.84 5.88 0.73 9 033.64 1 219.82 1 535.0 驻马店市 0.04 0.02 0.10 0.02 0.18 0.33 1.03 0.29 2 444.74 1 141.63 990.0 合计 2.19 0.47 3.19 0.54 16.71 3.77 27.77 3.28 33 644.77 5 450.31 7 515.0 -
[1] YAPICIOGLU A,DINCER I.A review on clean ammonia as a potential fuel for power generators[J].Renewable and Sustainable Energy Reviews,2019,103:96-108. doi: 10.1016/j.rser.2018.12.023 [2] ALI NOSHERWANI S,NETO R C.Techno-economic assessment of commercial ammonia synthesis methods in coastal areas of Germany[J].Journal of Energy Storage,2021,34:102201. doi: 10.1016/j.est.2020.102201 [3] 国家统计局,生态环境部.中国环境统计年鉴 2021[M].北京:中国统计出版社,2021. [4] ZHOU W J,ZHU B,LI Q,et al.CO2 emissions and mitigation potential in China´s ammonia industry[J].Energy Policy,2010,38(7):3701-3709. doi: 10.1016/j.enpol.2010.02.048 [5] 中华人民共和国中央人民政府.“十四五”节能减排综合工作方案[EB/OL].北京:中华人民共和国中央人民政府,(2022-01-24)[2023-04-20].http://www.gov.cn/zhengce/content/2022-01/24/content_5670202.htm. [6] 河南省人民政府.河南省“十四五”节能减排综合工作方案[EB/OL].郑州:河南省人民政府,(2022-07-28)[2023-04-20]. https://www.henan.gov.cn/2022/08-08/2556701.html. [7] FANG G C,TIAN L X,FU M,et al.The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China[J].Applied Energy,2017,196:180-189. doi: 10.1016/j.apenergy.2016.11.049 [8] JIANG T Y,HUANG S J,YANG J.Structural carbon emissions from industry and energy systems in China:an input-output analysis[J].Journal of Cleaner Production,2019,240:118116. doi: 10.1016/j.jclepro.2019.118116 [9] YU Y,JIN Z X,LI J Z,et al.Low-carbon development path research on China′s power industry based on synergistic emission reduction between CO2 and air pollutants[J].Journal of Cleaner Production,2020,275:123097. doi: 10.1016/j.jclepro.2020.123097 [10] JIANG P,KHISHGEE S,ALIMUJIANG A,et al.Cost-effective approaches for reducing carbon and air pollution emissions in the power industry in China[J].Journal of Environmental Management,2020,264:110452. doi: 10.1016/j.jenvman.2020.110452 [11] WEI X Y,TONG Q,MGILL I,et al.Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China′s electricity sector[J].Energy Economics,2020,92:104917. doi: 10.1016/j.eneco.2020.104917 [12] MA D,HASANBEIGI A,PRICE L,et al.Assessment of energy-saving and emission reduction potentials in China´s ammonia industry[J].Clean Technologies and Environmental Policy,2015,17(6):1633-1644. doi: 10.1007/s10098-014-0896-3 [13] ZHU B,ZHOU W J,HU S Y,et al.CO2 emissions and reduction potential in China´s chemical industry[J].Energy,2010,35(12):4663-4670. doi: 10.1016/j.energy.2010.09.038 [14] 张英,党鹏刚,卢立栋,等.关中地区煤制合成气行业大气污染源排放清单研究[J].煤化工,2021,49(5):6-10.ZHANG Y,DANG P G,LU L D,et al.Research on emission inventory of air pollution source in coal-to-syngas industry in Guanzhong region[J].Coal Chemical Industry,2021,49(5):6-10. [15] 易兰,赵万里,杨历.大气污染与气候变化协同治理机制创新[J].科研管理,2020,41(10):134-144.YI L,ZHAO W L,YANG L.Innovation of collaborative governance mechanism on air pollution and climate change control[J].Science Research Management,2020,41(10):134-144. [16] ZHANG L,NIU M C,ZHANG Z,et al.A new method of hotspot analysis on the management of CO2 and air pollutants,a case study in Guangzhou City,China[J].Science of the Total Environment,2023,856:159040. doi: 10.1016/j.scitotenv.2022.159040 [17] LIU L J,LIU L C,LIANG Q M.Common footprints of the greenhouse gases and air pollutants in China[J].Journal of Cleaner Production,2021,293:125991. doi: 10.1016/j.jclepro.2021.125991 [18] SAIKAWA E,KIM H,ZHONG M,et al.Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China[J].Atmospheric Chemistry and Physics,2017,17(10):6393-6421. doi: 10.5194/acp-17-6393-2017 [19] LI J F,WANG X,ZHANG Y X,et al.The economic impact of carbon pricing with regulated electricity prices in China:an application of a computable general equilibrium approach[J].Energy Policy,2014,75:46-56. doi: 10.1016/j.enpol.2014.07.021 [20] ALLAN G,LECCA P,McGREGOR P,et al.The economic and environmental impact of a carbon tax for Scotland:a computable general equilibrium analysis[J].Ecological Economics,2014,100:40-50. doi: 10.1016/j.ecolecon.2014.01.012 [21] YANG L,YAO Y F,ZHANG J T,et al.A CGE analysis of carbon market impact on CO2 emission reduction in China:a technology-led approach[J].Natural Hazards,2016,81(2):1107-1128. doi: 10.1007/s11069-015-2122-y [22] TAN X C,DONG L L,CHEN D X,et al.China´s regional CO2 emissions reduction potential:a study of Chongqing City[J].Applied Energy,2016,162:1345-1354. doi: 10.1016/j.apenergy.2015.06.071 [23] CHEN L A,YANG Z F,CHEN B.Decomposition analysis of energy-related industrial CO2 emissions in China[J].Energies,2013,6(5):2319-2337. doi: 10.3390/en6052319 [24] WANG W W,LIU X,ZHANG M,et al.Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China′s energy consumption[J].Energy,2014,67:617-622. doi: 10.1016/j.energy.2013.12.064 [25] NIEVES J A,ARISTIZÁBAL A J,DYNER I,et al.Energy demand and greenhouse gas emissions analysis in Colombia:a LEAP model application[J].Energy,2019,169:380-397. doi: 10.1016/j.energy.2018.12.051 [26] 王力,冯相昭,马彤,等.典型城市减污降碳协同控制潜力评价研究:以渭南市为例[J].环境科学研究,2022,35(8):2006-2014.WANG L,FENG X Z,MA T,et al.Evaluation of co-controlling air pollutants and carbon emission potential in typical cities:a case study in Weinan City[J].Research of Environmental Sciences,2022,35(8):2006-2014. [27] YANG D W,LIU D D,HUANG A M,et al.Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling[J].Renewable and Sustainable Energy Reviews,2021,135:110116. doi: 10.1016/j.rser.2020.110116 [28] 李晓瑜,王念,刘慧文,等.京津冀地区NO x和VOCs协同减排成本及减排策略研究[J].环境科学研究,2022,35(11):2618-2626.LI X Y,WANG N,LIU H W,et al.Collaborative emission reduction cost and strategies of NO x and VOCs in Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2022,35(11):2618-2626. [29] HUANG Y H,WU J H,LIU T Y.Bottom-up analysis of energy conservation and carbon dioxide mitigation potentials by extended marginal abatement cost curves for pulp and paper industry[J].Energy Strategy Reviews,2022,42:100893. doi: 10.1016/j.esr.2022.100893 [30] ZHENG Q Y,LIN B Q.Achieving energy conservation targets in a more cost-effective way:case study of pulp and paper industry in China[J].Energy,2020,191:116483. doi: 10.1016/j.energy.2019.116483 [31] 庞可,张芊,马彩云,等.基于LEAP模型的兰州市道路交通温室气体与污染物协同减排情景模拟[J].环境科学,2022,43(7):3386-3395.PANG K,ZHANG Q,MA C Y,et al.Forecasting of emission co-reduction of greenhouse gases and pollutants for the road transport sector in Lanzhou based on the LEAP model[J].Environmental Science,2022,43(7):3386-3395. [32] 李新,路路,穆献中,等.基于LEAP模型的京津冀地区钢铁行业中长期减排潜力分析[J].环境科学研究,2019,32(3):365-371.LI X,LU L,MU X Z,et al.Emission reduction potential of pollutants emissions from iron and steel industry over Beijing-Tianjin-Hebei Region based on LEAP[J].Research of Environmental Sciences,2019,32(3):365-371. [33] LI Y,ZHU L.Cost of energy saving and CO2 emissions reduction in China′s iron and steel sector[J].Applied Energy,2014,130:603-616. doi: 10.1016/j.apenergy.2014.04.014 [34] MOSSIE A T,KHATIWADA D,PALM B,et al.Investigating energy saving and climate mitigation potentials in cement production:a case study in Ethiopia[J].Energy Conversion and Management,2023,287:117111. doi: 10.1016/j.enconman.2023.117111 [35] 任明,徐向阳.京津冀地区钢铁行业节能潜力及成本分析[J].生态经济,2018,34(10):91-97.REN M,XU X Y.Cost and energy saving potential of iron and steel industry in Jing-Jin-Ji Region[J].Ecological Economy,2018,34(10):91-97. [36] 河南省统计局.河南统计年鉴[M].北京:中国统计出版社,1999. [37] 国家统计局.中国统计年鉴2019[M].北京:中国统计出版社,2019. [38] 李慧,王淑兰,张文杰,等.京津冀及周边地区“2+26”城市空气质量特征及其影响因素[J].环境科学研究,2021,34(1):172-184.LI H,WANG S L,ZHANG W J,et al.Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas(‘2+26’ cities)[J].Research of Environmental Sciences,2021,34(1):172-184. [39] 河南省生态环境厅.2021年河南省生态环境状况公报[EB/OL].郑州:河南省生态环境厅,(2022-06-06)[2023-04-22].https://oss.henan.gov.cn/typtfile/20220607/1a36e64c3dad4b36ab0fa442c34ce85a.pdf. [40] PAUSTIAN K,RAVINDRANATH N H,AMSTEL A V.2006 IPCC guidelines for national greenhouse gas inventories[R].Washington DC:Intergovernmental Panel on Climate Change,2006:1-18. [41] 中华人民共和国国家发展和改革委员会.中国温室气体清单研究[M].北京:中国环境科学出版社,2007. [42] 中华人民共和国国家发展和改革委员会.中国石油化工企业温室气体排放核算方法与报告指南(试行)[EB/OL].北京:中华人民共和国国家发展和改革委员会,(2015-02-09)[2023-04-22].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201502/t20150209_963759.html. [43] 中华人民共和国生态环境部.大气可吸入颗粒物一次源排放清单编制技术指南(试行)[EB/OL].北京:中华人民共和国生态环境部,(2014-12-31)[2023-04-22].https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm. [44] 贺克斌,王书肖,张强.城市大气污染物排放清单编制技术手册[M].北京:清华大学出版社,2016. [45] 郑君瑜,王水胜,黄志炯,等.区域高分辨率大气排放源清单建立的技术方法与应用[M].北京:科学出版社,2014. [46] 潘月云,李楠,郑君瑜,等.广东省人为源大气污染物排放清单及特征研究[J].环境科学学报,2015,35(9):2655-2669.PAN Y Y,LI N,ZHENG J Y,et al.Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province[J].Acta Scientiae Circumstantiae,2015,35(9):2655-2669. [47] WOOD S,HENAO J,ROSEGRANT M,et al.The role of nitrogen in sustaining food production and estimating future nitrogen fertilizer needs to meet food demand[R].Washington DC:Island Press,2004:245-260. [48] GUO L,DENG X H.Application of improved multiple linear regression method in oilfield output forecasting[C].Xi'an:IEEE,2009:133-136. [49] 周晨,冯宇东,肖匡心,等.基于多元线性回归模型的东北地区需水量分析[J].数学的实践与认识,2014,44(1):118-123.ZHOU C,FENG Y D,XIAO K X,et al.Research on water requirement in northeast area based on multiple linear regression model[J].Mathematics in Practice and Theory,2014,44(1):118-123. [50] DOBERMANN A,CASSMAN K.Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption[J].Science in China Series C:Life Sciences,2005,48:745-758. [51] LIM J,FERNÁNDEZ C A,LEE S W,et al.Ammonia and nitric acid demands for fertilizer use in 2050[J].ACS Energy Letters,2021,6(10):3676-3685. doi: 10.1021/acsenergylett.1c01614 [52] MEIER A L,ROSENFELD A H,WRIGHT J.Supply curves of conserved energy for California´s residential sector[J].Energy,1982,7(4):347-358. doi: 10.1016/0360-5442(82)90094-9 [53] 齐天宇,杨远哲,张希良.国际跨区碳市场及其能源经济影响评估[J].中国人口·资源与环境,2014,24(3):19-24.QI T Y,YANG Y Z,ZHANG X L.The energy and economic impacts of international multi-region carbon market[J].China Population,Resources and Environment,2014,24(3):19-24. [54] 顾阿伦,史宵鸣,汪澜,等.中国水泥行业节能减排的潜力与成本分析[J].中国人口·资源与环境,2012,22(8):16-21.GU A L,SHI X M,WANG L,et al.The potential and cost analysis of energy saving and emission reduction in China dement sector[J].China Population,Resources and Environment,2012,22(8):16-21. [55] 田璐璐,王姗姗,王克,等.河南省水泥行业节能潜力及协同减排效果分析[J].硅酸盐通报,2016,35(12):3915-3924.TIAN L L,WANG S S,WANG K,et al.Analysis of potential energy-saving and co-benefits on emission reduction in Henan´s cement industry[J].Bulletin of the Chinese Ceramic Society,2016,35(12):3915-3924. [56] ZHANG Y,YUAN Z W,MARGNI M,et al.Intensive carbon dioxide emission of coal chemical industry in China[J].Applied Energy,2019,236:540-550. doi: 10.1016/j.apenergy.2018.12.022 [57] REN K,ZHANG T Z,TAN X F,et al.Life cycle assessment of ammonia synthesis based on pulverized coal entrained flow gasification technology in China[J].Journal of Cleaner Production,2021,328:129658. doi: 10.1016/j.jclepro.2021.129658 [58] 赵斌,马建中.天津市大气污染源排放清单的建立[J].环境科学学报,2008,28(2):368-375.ZHAO B,MA J Z.Development of an air pollutant emission inventory for Tianjin[J].Acta Scientiae Circumstantiae,2008,28(2):368-375. [59] 黄成,陈长虹,李莉,等.长江三角洲地区人为源大气污染物排放特征研究[J].环境科学学报,2011,31(9):1858-1871.HUANG C,CHEN C H,LI L,et al.Anthropogenic air pollutant emission characteristics in the Yangtze River Delta Region,China[J].Acta Scientiae Circumstantiae,2011,31(9):1858-1871. [60] 中华人民共和国生态环境部.2019年度减排项请核查名称目中国区域电网基准线排放因子[EB/OL].北京:中华人民共和国生态环境部,(2020-12-29)[2023-04-25].https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/W020201229610353340851.pdf. [61] 中华人民共和国国家发展和改革委员会.国家重点节能低碳技术推广目录[EB/OL].北京:中华人民共和国国家发展和改革委员会,(2022-07-25)[2023-04-25].https://www.ndrc.gov.cn/xxgk/zcfb/gg/201802/t20180212_961202.html. [62] 中华人民共和国工业和信息化部.氮肥行业清洁生产技术推行方案[EB/OL].北京:中华人民共和国工业和信息化部,(2010-03-22)[2023-04-25].https://www.miit.gov.cn/zwgk/zcwj/wjfb/yclgy/art/2020/art_f25bd4471e6945139e655ad659a4092d.html. [63] 王文堂,邓复平,吴智伟.工业企业低碳节能技术[M].北京:化学工业出版社,2017. [64] 国家统计局.中国统计年鉴 2021[M].北京:中国统计出版社,2021. [65] 河南省统计局.河南经济统计年鉴 1991[M].北京:中国统计出版社,1991. [66] 河南省人民政府.河南省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要[EB/OL].郑州:河南省人民政府,(2021-04-13)[2023-04-25].https://www.henan.gov.cn/2021/04-13/2124914.html. [67] SOCIAL U.World population prospects:2015 revision world relief web[EB/OL].New York:United Nations Department of Economic and Social Affairs/Population Division,(2015-07-29)[2023-04-25].https://reliefweb.int/report/world/world-population-prospects-2015-revision. [68] 中华人民共和国农业农村部.到2020年化肥使用量零增长行动方案[EB/OL].北京:中华人民共和国农业农村部,(2017-11-29)[2023-04-25].http://www.moa.gov.cn/xw/bmdt/201503/t20150318_4444765.htm. [69] 中华人民共和国农业农村部.我国三大粮食作物化肥农药利用率双双超40%[EB/OL].北京:中华人民共和国农业农村部,(2021-01-17)[2023-04-25].http://www.kjs.moa.gov.cn/gzdt/202101/t20210119_6360102.htm. [70] 中华人民共和国生态环境部.大气细颗粒物一次源排放清单编制技术指南(试行)[EB/OL].北京:中华人民共和国生态环境部,(2014-08-19)[2023-04-25].http://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm. [71] SUN C C,YUAN J Q,XU H,et al.Simultaneous removal of nitric oxide and sulfur dioxide in a biofilter under micro-oxygen thermophilic conditions:removal performance,competitive relationship and bacterial community structure[J].Bioresource Technology,2019,290:121768. doi: 10.1016/j.biortech.2019.121768 [72] PARK H S,KANG D,KANG J H,et al.Selective sulfur dioxide absorption from simulated flue gas using various aqueous alkali solutions in a polypropylene hollow fiber membrane contactor:removal efficiency and use of sulfur dioxide[J].International Journal of Environmental Research and Public Health,2021,18(2):597. doi: 10.3390/ijerph18020597 [73] KAROL I L,KISELEV A A,GENIKHOVICH E L,et al.Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation[J].Izvestiya,Atmospheric and Oceanic Physics,2013,49(5):461-478. doi: 10.1134/S0001433813050058 [74] HUANG K,FU J S,GAO Y,et al.Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta,China[J].Environmental Pollution,2014,184:426-434. doi: 10.1016/j.envpol.2013.09.029 [75] ALIMUJIANG A,JIANG P.Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles;a case of Shanghai[J].Energy for Sustainable Development,2020,55:181-189. doi: 10.1016/j.esd.2020.02.005 [76] LU Z Y,HUANG L,LIU J,et al.Carbon dioxide mitigation co-benefit analysis of energy-related measures in the Air Pollution Prevention and Control Action Plan in the Jing-Jin-Ji Region of China[J].Resources,Conservation & Recycling:X,2019,1:100006. -