留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电解锰渣-赤泥路面砖中锰的浸出行为研究及长期释放预测

刘博 梁宇廷 孟棒棒 岳波 王涛 高红

刘博, 梁宇廷, 孟棒棒, 岳波, 王涛, 高红. 电解锰渣-赤泥路面砖中锰的浸出行为研究及长期释放预测[J]. 环境科学研究, 2023, 36(10): 2000-2010. doi: 10.13198/j.issn.1001-6929.2023.09.01
引用本文: 刘博, 梁宇廷, 孟棒棒, 岳波, 王涛, 高红. 电解锰渣-赤泥路面砖中锰的浸出行为研究及长期释放预测[J]. 环境科学研究, 2023, 36(10): 2000-2010. doi: 10.13198/j.issn.1001-6929.2023.09.01
LIU Bo, LIANG Yuting, MENG Bangbang, YUE Bo, WANG Tao, GAO Hong. Study on Leaching Behavior of Manganese in Electrolytic Manganese Residue and Red Mud Paving Bricks and Long-Term Release Prediction[J]. Research of Environmental Sciences, 2023, 36(10): 2000-2010. doi: 10.13198/j.issn.1001-6929.2023.09.01
Citation: LIU Bo, LIANG Yuting, MENG Bangbang, YUE Bo, WANG Tao, GAO Hong. Study on Leaching Behavior of Manganese in Electrolytic Manganese Residue and Red Mud Paving Bricks and Long-Term Release Prediction[J]. Research of Environmental Sciences, 2023, 36(10): 2000-2010. doi: 10.13198/j.issn.1001-6929.2023.09.01

电解锰渣-赤泥路面砖中锰的浸出行为研究及长期释放预测

doi: 10.13198/j.issn.1001-6929.2023.09.01
基金项目: 贵州省交通运输厅科技项目(No.2021-122-005);贵州省科技计划项目(No.黔科合重大专项[2022]002)
详细信息
    作者简介:

    刘博(1997-),男,河南商丘人,1014501187@qq.com

    通讯作者:

    ①岳波(1980-),男,重庆人,研究员,博士,主要从事固体废物污染防治研究,yuebo@craes.org.cn

    ②高红(1967-),男,云南昆明人,讲师,博士,主要从事固体废物污染防治研究,gaohong208@163.com

  • 中图分类号: X705

Study on Leaching Behavior of Manganese in Electrolytic Manganese Residue and Red Mud Paving Bricks and Long-Term Release Prediction

Funds: Guizhou Provincial Department of Transportation Science and Technology Project, China (No.2021-122-005); Guizhou Provincial Science and Technology Plan Project, China (No.Qiankehe Major Special Project [2022]002)
  • 摘要: 电解锰渣和赤泥是电解锰和氧化铝生产过程中的副产物,由于缺乏有效的管理手段,导致其存量持续积累,造成了严重的环境影响和资源浪费,因此有必要对其进行资源化利用,以减小环境影响并促进冶炼锰、铝行业的绿色可持续发展. 该研究使用无害化渣和水洗无害化渣,结合水泥、石料和河砂等原料,按一定配比制备得到透水混凝土路面砖(permeable concrete paving bricks,PCB)和水洗透水混凝土路面砖(washed permeable concrete paving bricks,WPCB),为评估两种路面砖在柳州市长期使用过程中存在的潜在环境风险,采用欧盟标准化组织制定的NEN 7375方法研究特征污染物Mn2+的浸出行为,通过多种动力学方程拟合并预测Mn2+的浸出行为,并借助IWEM模型对路面砖的拟利用路面区域进行评估. 结果表明:①在相同的配比条件下,WPCB中Mn2+的累积释放量较PCB更低;在不同的配比条件下,Mn2+的累积释放量随渣掺量的增加呈现先降低后升高的趋势. ②除水洗无害化渣和水泥掺量分别为8%和25%的WPCB-2在全浸出阶段中Mn2+的浸出行为受扩散控制影响外,其余样品均受表面冲刷影响. ③对于选取的4种动力学方程,Elovich方程更适合描述Mn2+的浸出行为,且PCB和WPCB于10年和20年内Mn2+的预计释放量分别在1.51~13.78和1.71~16.54 μg/kg之间. ④IWEM模型的模拟结果显示,路面砖符合环境安全性要求. 研究显示,两种无害化渣所制得的路面砖在实际应用场景中均无潜在的环境风险,可进一步扩展其资源化利用场景.

     

  • 图  1  电解锰渣、赤泥和粉煤灰的XRD图

    Figure  1.  XRD patterns of the electrolytic manganese residue, red mud, and coal fly ash

    图  2  试验工艺流程

    Figure  2.  Flowchart of the experimental

    图  3  试验装置示意

    注:1—PCB/WPCB;2—出水阀门;3—试块支架.

    Figure  3.  Illustration of the experimental setup

    图  4  路面砖暴露场景示意

    Figure  4.  Diagram of paving brick in an exposed setting

    图  5  PCB和WPCB浸出液的pH、密度和渗透系数

    Figure  5.  Graph of pH, density, and permeability coefficient of leaching solution for PCB and WPCB

    图  6  PCB和WPCB在各阶段中Mn2+的浸出行为

    Figure  6.  Leaching behavior of Mn2+ during the leaching stages of PCB and WPCB

    图  7  污染物的主要释放机制和影响因素

    Figure  7.  Primary release mechanisms and influencing factors of pollutants

    图  8  双常数方程、Elovich方程、抛物线方程和二级动力学方程拟合曲线

    Figure  8.  Dual-constant equation, Elovich equation, parabolic equation, and second-order kinetic equation fitted curves

    图  9  IWEM模拟地下水流向、监测井方位与拟评估路段关系示意

    Figure  9.  Schematic diagram of the relationship between the simulated groundwater flow direction, monitoring well orientation, and the proposed evaluation section in the IWEM model

    表  1  供试材料基本性质及化学成分

    Table  1.   Fundamental characteristics and chemical composition of raw materials

    供试材料 pH 含水率/% 化学成分占比/%
    SiO2 CaO Fe2O3 MnO Al2O3 TiO2 MgO Na2O K2O SO3
    电解锰渣 6.59 31.67 32.85 18.49 14.07 7.93 2.43 2.10 8.99
    赤泥 11.90 33.84 5.68 10.00 47.28 12.24 4.61 3.76
    粉煤灰 8.95 0.85 53.63 4.75 4.83 30.02 2.08
    下载: 导出CSV

    表  2  不同路面砖中原材料配比

    Table  2.   Composition of raw materials in various paving bricks

    样品编号质量比/%
    无害化渣/水洗无害化渣水泥石料河砂
    PCB-1/WPCB-16275017
    PCB-2/WPCB-28255017
    PCB-3/WPCB-310235017
    PCB-4/WPCB-412215017
    PCB-5/WPCB-514195017
    PCB-6/WPCB-616175017
    PCB-7/WPCB-718155017
    PCB-8/WPCB-820135017
    下载: 导出CSV

    表  3  不同浸出阶段的释放机制

    Table  3.   Mechanisms of release in different leaching stages

    浸出区间rc≤0.350.35<rc≤0.65rc>0.65
    rc2-7表面冲刷扩散控制溶解作用
    rc5-8耗竭作用扩散控制溶解作用
    rc4-7耗竭作用扩散控制溶解作用
    rc3-6耗竭作用扩散控制溶解作用
    rc2-5耗竭作用扩散控制溶解作用
    rc1-4表面冲刷扩散控制延滞作用
    下载: 导出CSV

    表  4  不同配比路面砖的浸出试验液固比

    Table  4.   Liquid-to-solid ratios in leaching experiments of different paving bricks

    砖体编号液固比/(L/kg)砖体编号液固比/(L/kg)
    PCB-12.01WPCB-12.04
    PCB-22.05WPCB-22.15
    PCB-32.29WPCB-32.04
    PCB-41.97WPCB-41.94
    PCB-51.94WPCB-51.83
    PCB-62.07WPCB-62.00
    PCB-72.20WPCB-72.15
    PCB-82.32WPCB-82.23
    下载: 导出CSV

    表  5  Mn2+在不同浸出阶段下的释放机制

    Table  5.   Mechanisms of Mn2+ release at different stages

    浸出阶段 PCB-1 PCB-2 PCB-3 PCB-4 PCB-5 PCB-6 PCB-7 PCB-8
    阶段2-7 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷
    阶段5-8 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段4-7 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段3-6 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段2-5 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段1-4 表面冲刷 表面冲刷 表面冲刷 表面冲刷 扩散控制 表面冲刷 扩散控制 扩散控制
    浸出阶段 WPCB-1 WPCB-2 WPCB-3 WPCB-4 WPCB-5 WPCB-6 WPCB-7 WPCB-8
    阶段2-7 表面冲刷 扩散控制 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷
    阶段5-8 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段4-7 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段3-6 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段2-5 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用
    阶段1-4 表面冲刷 扩散控制 表面冲刷 扩散控制 表面冲刷 表面冲刷 扩散控制 扩散控制
    下载: 导出CSV

    表  6  Mn2+的预测模型及预测释放量

    Table  6.   Predictive model for Mn2+ and predicted release quantity

    砖体编号符合模型模型表达式R2残差平方和Mn2+的10年预测释放量/(μg/kg)Mn2+的20年预测释放量/(μg/kg)
    PCB-1双常数方程Q=exp(0.184 7ln t+1.256 4)0.930 00.104 85.376.11
    PCB-2Elovich方程Q=1.164 2ln t+4.389 10.939 40.201 98.339.03
    PCB-3Elovich方程Q=0.529 7ln t+1.223 90.986 50.008 94.164.85
    PCB-4Elovich方程Q=0.620 9ln t+1.289 60.991 90.006 72.723.15
    PCB-5二级动力学方程Q=t/(0.213 0t+0.701 2)0.975 80.045 93.534.03
    PCB-6Elovich方程Q=1.178 4ln t+2.653 70.965 70.114 05.376.18
    PCB-7Elovich方程Q=2.703 8ln t+4.771 80.983 70.253 211.0012.87
    PCB-8Elovich方程Q=3.981 2ln t+4.615 10.996 10.137 913.7816.54
    WPCB-1Elovich方程Q=1.081 7ln t+2.572 30.969 70.084 45.476.28
    WPCB-2双常数方程Q=e(0.460 2ln t+0.213 3)0.995 30.025 73.574.91
    WPCB-3Elovich方程Q=0.677 9ln t+1.684 40.995 50.004 53.253.72
    WPCB-4Elovich方程Q=0.899 6ln t+0.684 20.995 80.007 52.763.38
    WPCB-5Elovich方程Q=0.284 2ln t+0.776 60.985 10.002 81.511.71
    WPCB-6Elovich方程Q=0.615 7ln t+1.206 50.995 30.003 92.623.05
    WPCB-7Elovich方程Q=2.381 2ln t+3.600 60.985 00.181 19.0810.73
    WPCB-8Elovich方程Q=2.851 9ln t+4.026 00.989 90.177 310.5912.57
    下载: 导出CSV
  • [1] LAN J R,SUN Y,GUO L,et al.Highly efficient removal of As(Ⅴ) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent[J].Journal of Alloys and Compounds,2019,811:151973. doi: 10.1016/j.jallcom.2019.151973
    [2] WANG M F,LIU X M.Applications of red mud as an environmental remediation material:a review[J].Journal of Hazardous Materials,2021,408:124420. doi: 10.1016/j.jhazmat.2020.124420
    [3] WANG Y G,GAO S,LIU X M,et al.Preparation of non-sintered permeable bricks using electrolytic manganese residue:environmental and NH3-N recovery benefits[J].Journal of Hazardous Materials,2019,378:120768. doi: 10.1016/j.jhazmat.2019.120768
    [4] SHU J C,LIU R L,LIU Z H,et al.Simultaneous removal of ammonia and manganese from electrolytic metal manganese residue leachate using phosphate salt[J].Journal of Cleaner Production,2016,135:468-475. doi: 10.1016/j.jclepro.2016.06.141
    [5] WANG D Q,WANG Q,XUE J F.Reuse of hazardous electrolytic manganese residue:detailed leaching characterization and novel application as a cementitious material[J].Resources,Conservation and Recycling,2020,154:104645. doi: 10.1016/j.resconrec.2019.104645
    [6] 潘荣祥,杨敏,袁宏.减水剂对赤泥-粉煤灰基地质聚合物性能的影响[J].硅酸盐通报,2013.doi: 10.16552/j.cnki.issn1001-1625.20230630.003.

    PAN R X,YANG M,YUAN H.Effects of water reducing agents on performance of red mud-fly ash based geopolymer[J].Bulletin of the Chinese Ceramic Society,2013.doi: 10.16552/j.cnki.issn1001-1625.20230630.003.
    [7] 宾灯辉.FCC废催化剂制备免烧砖重金属浸出规律及风险评估研究[D].重庆:重庆交通大学,2019:6-11.
    [8] 康得军,张芳,吕茳芏,等.浸泡淋滤作用下煤矸石重金属元素的释放规律及特征研究[J].环境科学研究,2023,36(1):54-62.

    KANG D J,ZHANG F,LÜ J D,et al.Research on release law and characteristics of heavy metals in coal gangue under soaking and leaching[J].Research of Environmental Sciences,2023,36(1):54-62.
    [9] 黄楠楠,吴昊,田书磊,等.膜浓缩液淋滤飞灰重金属迁移特性及化学形态变化特征[J].环境科学研究,2022,35(6):1490-1498.

    HUANG N N,WU H,TIAN S L,et al.Migration and morphological characteristics of heavy metals in fly ash from membrane concentrate leaching[J].Research of Environmental Sciences,2022,35(6):1490-1498.
    [10] 王庆旭,李松,吴昊,等.纳滤膜浓缩液淋滤焚烧飞灰过程中氯盐溶出及重金属的迁移特性[J].环境科学研究,2022,35(8):1958-1965.

    WANG Q X,LI S,WU H,et al.Characteristics of chloride salt dissolution and heavy metal migration during leaching of municipal solid waste incineration fly ash with membrane concentrate[J].Research of Environmental Sciences,2022,35(8):1958-1965.
    [11] ANDRÉS A,ORTÍZ I,VIGURI J R,et al.Long-term behaviour of toxic metals in stabilized steel foundry dusts[J].Journal of Hazardous Materials,1995,40(1):31-42. doi: 10.1016/0304-3894(94)00078-U
    [12] 皇志威,苏向东,张建刚,等.赤泥-磷石膏复合材料中重金属浸出研究[J].无机盐工业,2022,54(10):133-140.

    HUANG Z W,SU X D,ZHANG J G,et al.Study on leaching of heavy metals from red mud-phosphogypsum composite materials[J].Inorganic Chemicals Industry,2022,54(10):133-140.
    [13] 崔长颢,李丽,刘美佳,等.利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究[J].环境科学研究,2023,36(4):805-813.

    CUI C H,LI L,LIU M J,et al.Mechanical properties and heavy metal leaching characteristics of cement pavement base prepared from oil-based drill cuttings[J].Research of Environmental Sciences,2023,36(4):805-813.
    [14] ZHANG Y L,LIU X M,XU Y T,et al.Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure:mechanical properties and Mn2+ stabilization/solidification characterization[J].Journal of Hazardous Materials,2020,390:122188. doi: 10.1016/j.jhazmat.2020.122188
    [15] JAMALI M K,KAZI T G,AFRIDI H I,et al.Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J].Journal of Environmental Science and Health,Part A,2007,42(5):649-659. doi: 10.1080/10934520701244433
    [16] van der SLOOT H A.Characterization of the leaching behaviour of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment[J].Waste Management,2002,22(2):181-186. doi: 10.1016/S0956-053X(01)00067-8
    [17] 赵九辉.广西柳州白云岩强岩溶发育区天然地基稳定性研究[D].柳州:广西科技大学,2015:1-6.
    [18] BAI Y Y,GUO W C,ZHANG Y Y,et al.Low carbon binder preparation from slag-red mud activated by MSWI fly ash-carbide slag:hydration characteristics and heavy metals' solidification behavior[J].Journal of Cleaner Production,2022,374:134007. doi: 10.1016/j.jclepro.2022.134007
    [19] SHAFIQUZZAMAN M,ALQARAWI S M A,HAIDER H,et al.Sawdust recycling in the development of permeable clay paving bricks:optimizing mixing ratio and particle size[J].Sustainability,2022,14(18):11115. doi: 10.3390/su141811115
    [20] 张晶,杨玉飞,杨金忠,等.造粒飞灰沥青混凝土路面利用的地下水环境风险评估[J].环境污染与防治,2019,41(1):89-94.

    ZHANG J,YANG Y F,YANG J Z,et al.Environmental risk assessment of groundwater of granulated fly ash utilization on asphalt pavement[J].Environmental Pollution and Control,2019,41(1):89-94.
    [21] 黄红铭,黄增,韦江慧,等.2011—2018年广西酸雨污染变化特征及影响因素分析[J].化学工程师,2019,33(10):41-44.

    HUANG H M,HUANG Z,WEI J H,et al.Characteristics of acid rain and its influencing factors from 2011 to 2018 in Guangxi[J].Chemical Engineer,2019,33(10):41-44.
    [22] 段华波.危险废物浸出毒性鉴别理论和方法研究[D].北京:中国环境科学研究院,2006:52-56.
    [23] ZHOU S J,DU Y J,SUN H Y,et al.Evaluation of the effectiveness of ex-situ stabilization for arsenic and antimony contaminated soil:short-term and long-term leaching characteristics[J].Science of the Total Environment,2022,848:157646. doi: 10.1016/j.scitotenv.2022.157646
    [24] 贺图升,赵旭光,赵三银,等.混凝土透水砖性能影响因素的灰色关联分析[J].硅酸盐通报,2014,33(8):1935-1939.

    HE T S,ZHAO X G,ZHAO S Y,et al.Grey correlation analysis between influence factors and performances of permeable brick[J].Bulletin of the Chinese Ceramic Society,2014,33(8):1935-1939.
    [25] 孙滢斐,张攀,胡敬平,等.地聚物在重金属铅固化中的研究进展[J].材料导报,2023,37(7):248-254.

    SUN Y F,ZHANG P,HU J P,et al.Research progress of using geopolymers to solidify lead element from lead-containing pollutants[J].Materials Reports,2023,37(7):248-254.
    [26] MA Y,HU J,YE G.The effect of activating solution on the mechanical strength,reaction rate,mineralogy,and microstructure of alkali-activated fly ash[J].Journal of Materials Science,2012,47(11):4568-4578. doi: 10.1007/s10853-012-6316-3
    [27] 张晶.焚烧飞灰用于沥青路面重金属溶出特性及风险评估[D].青岛:青岛理工大学,2018:25-32.
    [28] FAN C C,WANG B M,AI H M,et al.A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J].Journal of Cleaner Production,2021,319:128790. doi: 10.1016/j.jclepro.2021.128790
    [29] BIE R S,CHEN P,SONG X F,et al.Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J].Journal of the Energy Institute,2016,89(4):704-712. doi: 10.1016/j.joei.2015.04.006
    [30] HAQUE A M.Assessment of nickel leaching phenomena from landfill waste mixed paving block for eco-friendly field application[J].Journal of Cleaner Production,2016,139:99-112. doi: 10.1016/j.jclepro.2016.08.028
    [31] EL-KAMASH A M,EL-NAGGAR M R,EL-DESSOUKY M I.Immobilization of cesium and strontium radionuclides in zeolite-cement blends[J].Journal of Hazardous Materials,2006,136(2):310-316. doi: 10.1016/j.jhazmat.2005.12.020
    [32] 田梦莹.烧结砖中重金属释放机理研究[D].杨凌:西北农林科技大学,2014:20-36.
    [33] van der SLOOT H A.Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling[J].Cement and Concrete Research,2000,30(7):1079-1096. doi: 10.1016/S0008-8846(00)00287-8
    [34] ENGELSEN C J,van der SLOOT H A,PETKOVIC G.Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction[J].Science of the Total Environment,2017,587/588:94-101. doi: 10.1016/j.scitotenv.2017.02.052
    [35] IACOBESCU R I,CAPPUYNS V,GEENS T,et al.The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag[J].Frontiers of Chemical Science and Engineering,2017,11(3):317-327. doi: 10.1007/s11705-017-1622-6
    [36] YANG Z Z,TIAN S C,LIU L L,et al.Recycling ground MSWI bottom ash in cement composites:long-term environmental impacts[J].Waste Management,2018,78:841-848. doi: 10.1016/j.wasman.2018.07.002
    [37] ABDEL RAHMAN R O,ZAKI A A,EL-KAMASH A M.Modeling the long-term leaching behavior of 137Cs,60Co,and 152,154Eu radionuclides from cement-clay matrices[J].Journal of Hazardous Materials,2007,145(3):372-380. doi: 10.1016/j.jhazmat.2006.11.030
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  9
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2023-08-21
  • 网络出版日期:  2023-09-05

目录

    /

    返回文章
    返回