Study on Leaching Behavior of Manganese in Electrolytic Manganese Residue and Red Mud Paving Bricks and Long-Term Release Prediction
-
摘要: 电解锰渣和赤泥是电解锰和氧化铝生产过程中的副产物,由于缺乏有效的管理手段,导致其存量持续积累,造成了严重的环境影响和资源浪费,因此有必要对其进行资源化利用,以减小环境影响并促进冶炼锰、铝行业的绿色可持续发展. 该研究使用无害化渣和水洗无害化渣,结合水泥、石料和河砂等原料,按一定配比制备得到透水混凝土路面砖(permeable concrete paving bricks,PCB)和水洗透水混凝土路面砖(washed permeable concrete paving bricks,WPCB),为评估两种路面砖在柳州市长期使用过程中存在的潜在环境风险,采用欧盟标准化组织制定的NEN 7375方法研究特征污染物Mn2+的浸出行为,通过多种动力学方程拟合并预测Mn2+的浸出行为,并借助IWEM模型对路面砖的拟利用路面区域进行评估. 结果表明:①在相同的配比条件下,WPCB中Mn2+的累积释放量较PCB更低;在不同的配比条件下,Mn2+的累积释放量随渣掺量的增加呈现先降低后升高的趋势. ②除水洗无害化渣和水泥掺量分别为8%和25%的WPCB-2在全浸出阶段中Mn2+的浸出行为受扩散控制影响外,其余样品均受表面冲刷影响. ③对于选取的4种动力学方程,Elovich方程更适合描述Mn2+的浸出行为,且PCB和WPCB于10年和20年内Mn2+的预计释放量分别在1.51~13.78和1.71~16.54 μg/kg之间. ④IWEM模型的模拟结果显示,路面砖符合环境安全性要求. 研究显示,两种无害化渣所制得的路面砖在实际应用场景中均无潜在的环境风险,可进一步扩展其资源化利用场景.Abstract: Electrolytic manganese residue and red mud are byproducts during production of electrolytic manganese and aluminum oxide. Due to insufficient management, these substances accumulate, causing environmental problems and resource waste. Thus, resource utilization becomes necessary to mitigate the impacts and promote the sustainable development of related industries. This study utilized harmless slag and washed harmless slag, and combined with materials such as cement, stone, and river sand in specific proportions to fabricate permeable concrete paving bricks (PCB) and water-washed permeable concrete paving bricks (WPCB). In order to evaluate the environmental risks during the long-term use of PCB and WPCB in Liuzhou City, the study adopted the NEN 7375 method established by the European Union Standardization Organization. This method used a variety of kinetic equations to study the leaching behavior of the characteristic contaminant manganese. Furthermore, the manganese leaching behavior was delineated through the fitting and prediction of numerous kinetic equations, while the IWEM model was employed to assess the prospective utilization of these paving bricks in road areas. The research results show that: (1) Under identical proportioning conditions, the cumulative release of Mn2+ in WPCB is notably lower than that in PCB. Moreover, under different proportioning conditions, the cumulative release of Mn2+ shows a trend of initially diminishing and subsequently escalating with the increase in slag content. (2) In addition to washed harmless slag and WPCB-2 with cement content of 8% and 25% respectively, which is influenced by diffusion-controlled leaching throughout the complete leaching phase, the other samples were largely impacted by surface flushing. (3) Among the four selected kinetic equations, the Elovich equation is more suitable for describing Mn2+ leaching behavior. The releases were estimated from 1.51 μg/kg to 13.78 μg/kg over 10 years and from 1.71 μg/kg to 16.54 μg/kg over 20 years. (4) The simulation results of the IWEM model reveal that the pavement bricks meet the requisites of environmental safety. Both types of slag-derived bricks showed no latent environmental risks, thus paving the way for an expanded horizon in their resourceful utilization.
-
Key words:
- electrolytic manganese residue /
- red mud /
- paving bricks /
- leaching behavior /
- kinetic equations
-
表 1 供试材料基本性质及化学成分
Table 1. Fundamental characteristics and chemical composition of raw materials
供试材料 pH 含水率/% 化学成分占比/% SiO2 CaO Fe2O3 MnO Al2O3 TiO2 MgO Na2O K2O SO3 电解锰渣 6.59 31.67 32.85 18.49 14.07 7.93 2.43 — 2.10 — — 8.99 赤泥 11.90 33.84 5.68 10.00 47.28 — 12.24 4.61 — 3.76 — — 粉煤灰 8.95 0.85 53.63 4.75 4.83 — 30.02 — — 2.08 — 表 2 不同路面砖中原材料配比
Table 2. Composition of raw materials in various paving bricks
样品编号 质量比/% 无害化渣/水洗无害化渣 水泥 石料 河砂 PCB-1/WPCB-1 6 27 50 17 PCB-2/WPCB-2 8 25 50 17 PCB-3/WPCB-3 10 23 50 17 PCB-4/WPCB-4 12 21 50 17 PCB-5/WPCB-5 14 19 50 17 PCB-6/WPCB-6 16 17 50 17 PCB-7/WPCB-7 18 15 50 17 PCB-8/WPCB-8 20 13 50 17 表 3 不同浸出阶段的释放机制
Table 3. Mechanisms of release in different leaching stages
浸出区间 rc≤0.35 0.35<rc≤0.65 rc>0.65 rc2-7 表面冲刷 扩散控制 溶解作用 rc5-8 耗竭作用 扩散控制 溶解作用 rc4-7 耗竭作用 扩散控制 溶解作用 rc3-6 耗竭作用 扩散控制 溶解作用 rc2-5 耗竭作用 扩散控制 溶解作用 rc1-4 表面冲刷 扩散控制 延滞作用 表 4 不同配比路面砖的浸出试验液固比
Table 4. Liquid-to-solid ratios in leaching experiments of different paving bricks
砖体编号 液固比/(L/kg) 砖体编号 液固比/(L/kg) PCB-1 2.01 WPCB-1 2.04 PCB-2 2.05 WPCB-2 2.15 PCB-3 2.29 WPCB-3 2.04 PCB-4 1.97 WPCB-4 1.94 PCB-5 1.94 WPCB-5 1.83 PCB-6 2.07 WPCB-6 2.00 PCB-7 2.20 WPCB-7 2.15 PCB-8 2.32 WPCB-8 2.23 表 5 Mn2+在不同浸出阶段下的释放机制
Table 5. Mechanisms of Mn2+ release at different stages
浸出阶段 PCB-1 PCB-2 PCB-3 PCB-4 PCB-5 PCB-6 PCB-7 PCB-8 阶段2-7 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 阶段5-8 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段4-7 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段3-6 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段2-5 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段1-4 表面冲刷 表面冲刷 表面冲刷 表面冲刷 扩散控制 表面冲刷 扩散控制 扩散控制 浸出阶段 WPCB-1 WPCB-2 WPCB-3 WPCB-4 WPCB-5 WPCB-6 WPCB-7 WPCB-8 阶段2-7 表面冲刷 扩散控制 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 表面冲刷 阶段5-8 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段4-7 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段3-6 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段2-5 耗竭作用 扩散控制 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 耗竭作用 阶段1-4 表面冲刷 扩散控制 表面冲刷 扩散控制 表面冲刷 表面冲刷 扩散控制 扩散控制 表 6 Mn2+的预测模型及预测释放量
Table 6. Predictive model for Mn2+ and predicted release quantity
砖体编号 符合模型 模型表达式 R2 残差平方和 Mn2+的10年预测释放量/(μg/kg) Mn2+的20年预测释放量/(μg/kg) PCB-1 双常数方程 Q=exp(0.184 7ln t+1.256 4) 0.930 0 0.104 8 5.37 6.11 PCB-2 Elovich方程 Q=1.164 2ln t+4.389 1 0.939 4 0.201 9 8.33 9.03 PCB-3 Elovich方程 Q=0.529 7ln t+1.223 9 0.986 5 0.008 9 4.16 4.85 PCB-4 Elovich方程 Q=0.620 9ln t+1.289 6 0.991 9 0.006 7 2.72 3.15 PCB-5 二级动力学方程 Q=t/(0.213 0t+0.701 2) 0.975 8 0.045 9 3.53 4.03 PCB-6 Elovich方程 Q=1.178 4ln t+2.653 7 0.965 7 0.114 0 5.37 6.18 PCB-7 Elovich方程 Q=2.703 8ln t+4.771 8 0.983 7 0.253 2 11.00 12.87 PCB-8 Elovich方程 Q=3.981 2ln t+4.615 1 0.996 1 0.137 9 13.78 16.54 WPCB-1 Elovich方程 Q=1.081 7ln t+2.572 3 0.969 7 0.084 4 5.47 6.28 WPCB-2 双常数方程 Q=e(0.460 2ln t+0.213 3) 0.995 3 0.025 7 3.57 4.91 WPCB-3 Elovich方程 Q=0.677 9ln t+1.684 4 0.995 5 0.004 5 3.25 3.72 WPCB-4 Elovich方程 Q=0.899 6ln t+0.684 2 0.995 8 0.007 5 2.76 3.38 WPCB-5 Elovich方程 Q=0.284 2ln t+0.776 6 0.985 1 0.002 8 1.51 1.71 WPCB-6 Elovich方程 Q=0.615 7ln t+1.206 5 0.995 3 0.003 9 2.62 3.05 WPCB-7 Elovich方程 Q=2.381 2ln t+3.600 6 0.985 0 0.181 1 9.08 10.73 WPCB-8 Elovich方程 Q=2.851 9ln t+4.026 0 0.989 9 0.177 3 10.59 12.57 -
[1] LAN J R,SUN Y,GUO L,et al.Highly efficient removal of As(Ⅴ) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent[J].Journal of Alloys and Compounds,2019,811:151973. doi: 10.1016/j.jallcom.2019.151973 [2] WANG M F,LIU X M.Applications of red mud as an environmental remediation material:a review[J].Journal of Hazardous Materials,2021,408:124420. doi: 10.1016/j.jhazmat.2020.124420 [3] WANG Y G,GAO S,LIU X M,et al.Preparation of non-sintered permeable bricks using electrolytic manganese residue:environmental and NH3-N recovery benefits[J].Journal of Hazardous Materials,2019,378:120768. doi: 10.1016/j.jhazmat.2019.120768 [4] SHU J C,LIU R L,LIU Z H,et al.Simultaneous removal of ammonia and manganese from electrolytic metal manganese residue leachate using phosphate salt[J].Journal of Cleaner Production,2016,135:468-475. doi: 10.1016/j.jclepro.2016.06.141 [5] WANG D Q,WANG Q,XUE J F.Reuse of hazardous electrolytic manganese residue:detailed leaching characterization and novel application as a cementitious material[J].Resources,Conservation and Recycling,2020,154:104645. doi: 10.1016/j.resconrec.2019.104645 [6] 潘荣祥,杨敏,袁宏.减水剂对赤泥-粉煤灰基地质聚合物性能的影响[J].硅酸盐通报,2013.doi: 10.16552/j.cnki.issn1001-1625.20230630.003.PAN R X,YANG M,YUAN H.Effects of water reducing agents on performance of red mud-fly ash based geopolymer[J].Bulletin of the Chinese Ceramic Society,2013.doi: 10.16552/j.cnki.issn1001-1625.20230630.003. [7] 宾灯辉.FCC废催化剂制备免烧砖重金属浸出规律及风险评估研究[D].重庆:重庆交通大学,2019:6-11. [8] 康得军,张芳,吕茳芏,等.浸泡淋滤作用下煤矸石重金属元素的释放规律及特征研究[J].环境科学研究,2023,36(1):54-62.KANG D J,ZHANG F,LÜ J D,et al.Research on release law and characteristics of heavy metals in coal gangue under soaking and leaching[J].Research of Environmental Sciences,2023,36(1):54-62. [9] 黄楠楠,吴昊,田书磊,等.膜浓缩液淋滤飞灰重金属迁移特性及化学形态变化特征[J].环境科学研究,2022,35(6):1490-1498.HUANG N N,WU H,TIAN S L,et al.Migration and morphological characteristics of heavy metals in fly ash from membrane concentrate leaching[J].Research of Environmental Sciences,2022,35(6):1490-1498. [10] 王庆旭,李松,吴昊,等.纳滤膜浓缩液淋滤焚烧飞灰过程中氯盐溶出及重金属的迁移特性[J].环境科学研究,2022,35(8):1958-1965.WANG Q X,LI S,WU H,et al.Characteristics of chloride salt dissolution and heavy metal migration during leaching of municipal solid waste incineration fly ash with membrane concentrate[J].Research of Environmental Sciences,2022,35(8):1958-1965. [11] ANDRÉS A,ORTÍZ I,VIGURI J R,et al.Long-term behaviour of toxic metals in stabilized steel foundry dusts[J].Journal of Hazardous Materials,1995,40(1):31-42. doi: 10.1016/0304-3894(94)00078-U [12] 皇志威,苏向东,张建刚,等.赤泥-磷石膏复合材料中重金属浸出研究[J].无机盐工业,2022,54(10):133-140.HUANG Z W,SU X D,ZHANG J G,et al.Study on leaching of heavy metals from red mud-phosphogypsum composite materials[J].Inorganic Chemicals Industry,2022,54(10):133-140. [13] 崔长颢,李丽,刘美佳,等.利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究[J].环境科学研究,2023,36(4):805-813.CUI C H,LI L,LIU M J,et al.Mechanical properties and heavy metal leaching characteristics of cement pavement base prepared from oil-based drill cuttings[J].Research of Environmental Sciences,2023,36(4):805-813. [14] ZHANG Y L,LIU X M,XU Y T,et al.Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure:mechanical properties and Mn2+ stabilization/solidification characterization[J].Journal of Hazardous Materials,2020,390:122188. doi: 10.1016/j.jhazmat.2020.122188 [15] JAMALI M K,KAZI T G,AFRIDI H I,et al.Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J].Journal of Environmental Science and Health,Part A,2007,42(5):649-659. doi: 10.1080/10934520701244433 [16] van der SLOOT H A.Characterization of the leaching behaviour of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment[J].Waste Management,2002,22(2):181-186. doi: 10.1016/S0956-053X(01)00067-8 [17] 赵九辉.广西柳州白云岩强岩溶发育区天然地基稳定性研究[D].柳州:广西科技大学,2015:1-6. [18] BAI Y Y,GUO W C,ZHANG Y Y,et al.Low carbon binder preparation from slag-red mud activated by MSWI fly ash-carbide slag:hydration characteristics and heavy metals' solidification behavior[J].Journal of Cleaner Production,2022,374:134007. doi: 10.1016/j.jclepro.2022.134007 [19] SHAFIQUZZAMAN M,ALQARAWI S M A,HAIDER H,et al.Sawdust recycling in the development of permeable clay paving bricks:optimizing mixing ratio and particle size[J].Sustainability,2022,14(18):11115. doi: 10.3390/su141811115 [20] 张晶,杨玉飞,杨金忠,等.造粒飞灰沥青混凝土路面利用的地下水环境风险评估[J].环境污染与防治,2019,41(1):89-94.ZHANG J,YANG Y F,YANG J Z,et al.Environmental risk assessment of groundwater of granulated fly ash utilization on asphalt pavement[J].Environmental Pollution and Control,2019,41(1):89-94. [21] 黄红铭,黄增,韦江慧,等.2011—2018年广西酸雨污染变化特征及影响因素分析[J].化学工程师,2019,33(10):41-44.HUANG H M,HUANG Z,WEI J H,et al.Characteristics of acid rain and its influencing factors from 2011 to 2018 in Guangxi[J].Chemical Engineer,2019,33(10):41-44. [22] 段华波.危险废物浸出毒性鉴别理论和方法研究[D].北京:中国环境科学研究院,2006:52-56. [23] ZHOU S J,DU Y J,SUN H Y,et al.Evaluation of the effectiveness of ex-situ stabilization for arsenic and antimony contaminated soil:short-term and long-term leaching characteristics[J].Science of the Total Environment,2022,848:157646. doi: 10.1016/j.scitotenv.2022.157646 [24] 贺图升,赵旭光,赵三银,等.混凝土透水砖性能影响因素的灰色关联分析[J].硅酸盐通报,2014,33(8):1935-1939.HE T S,ZHAO X G,ZHAO S Y,et al.Grey correlation analysis between influence factors and performances of permeable brick[J].Bulletin of the Chinese Ceramic Society,2014,33(8):1935-1939. [25] 孙滢斐,张攀,胡敬平,等.地聚物在重金属铅固化中的研究进展[J].材料导报,2023,37(7):248-254.SUN Y F,ZHANG P,HU J P,et al.Research progress of using geopolymers to solidify lead element from lead-containing pollutants[J].Materials Reports,2023,37(7):248-254. [26] MA Y,HU J,YE G.The effect of activating solution on the mechanical strength,reaction rate,mineralogy,and microstructure of alkali-activated fly ash[J].Journal of Materials Science,2012,47(11):4568-4578. doi: 10.1007/s10853-012-6316-3 [27] 张晶.焚烧飞灰用于沥青路面重金属溶出特性及风险评估[D].青岛:青岛理工大学,2018:25-32. [28] FAN C C,WANG B M,AI H M,et al.A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J].Journal of Cleaner Production,2021,319:128790. doi: 10.1016/j.jclepro.2021.128790 [29] BIE R S,CHEN P,SONG X F,et al.Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J].Journal of the Energy Institute,2016,89(4):704-712. doi: 10.1016/j.joei.2015.04.006 [30] HAQUE A M.Assessment of nickel leaching phenomena from landfill waste mixed paving block for eco-friendly field application[J].Journal of Cleaner Production,2016,139:99-112. doi: 10.1016/j.jclepro.2016.08.028 [31] EL-KAMASH A M,EL-NAGGAR M R,EL-DESSOUKY M I.Immobilization of cesium and strontium radionuclides in zeolite-cement blends[J].Journal of Hazardous Materials,2006,136(2):310-316. doi: 10.1016/j.jhazmat.2005.12.020 [32] 田梦莹.烧结砖中重金属释放机理研究[D].杨凌:西北农林科技大学,2014:20-36. [33] van der SLOOT H A.Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling[J].Cement and Concrete Research,2000,30(7):1079-1096. doi: 10.1016/S0008-8846(00)00287-8 [34] ENGELSEN C J,van der SLOOT H A,PETKOVIC G.Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction[J].Science of the Total Environment,2017,587/588:94-101. doi: 10.1016/j.scitotenv.2017.02.052 [35] IACOBESCU R I,CAPPUYNS V,GEENS T,et al.The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag[J].Frontiers of Chemical Science and Engineering,2017,11(3):317-327. doi: 10.1007/s11705-017-1622-6 [36] YANG Z Z,TIAN S C,LIU L L,et al.Recycling ground MSWI bottom ash in cement composites:long-term environmental impacts[J].Waste Management,2018,78:841-848. doi: 10.1016/j.wasman.2018.07.002 [37] ABDEL RAHMAN R O,ZAKI A A,EL-KAMASH A M.Modeling the long-term leaching behavior of 137Cs,60Co,and 152,154Eu radionuclides from cement-clay matrices[J].Journal of Hazardous Materials,2007,145(3):372-380. doi: 10.1016/j.jhazmat.2006.11.030 -