留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生命周期评价的纯电动汽车环境影响和碳足迹分析

宋晓聪 邓陈宁 沈鹏 钱怡 谢明辉

宋晓聪, 邓陈宁, 沈鹏, 钱怡, 谢明辉. 基于生命周期评价的纯电动汽车环境影响和碳足迹分析[J]. 环境科学研究, 2023, 36(11): 2179-2188. doi: 10.13198/j.issn.1001-6929.2023.08.15
引用本文: 宋晓聪, 邓陈宁, 沈鹏, 钱怡, 谢明辉. 基于生命周期评价的纯电动汽车环境影响和碳足迹分析[J]. 环境科学研究, 2023, 36(11): 2179-2188. doi: 10.13198/j.issn.1001-6929.2023.08.15
SONG Xiaocong, DENG Chenning, SHEN Peng, QIAN Yi, XIE Minghui. Environmental Impact and Carbon Footprint Analysis of Pure Electric Vehicles Based on Life Cycle Assessment[J]. Research of Environmental Sciences, 2023, 36(11): 2179-2188. doi: 10.13198/j.issn.1001-6929.2023.08.15
Citation: SONG Xiaocong, DENG Chenning, SHEN Peng, QIAN Yi, XIE Minghui. Environmental Impact and Carbon Footprint Analysis of Pure Electric Vehicles Based on Life Cycle Assessment[J]. Research of Environmental Sciences, 2023, 36(11): 2179-2188. doi: 10.13198/j.issn.1001-6929.2023.08.15

基于生命周期评价的纯电动汽车环境影响和碳足迹分析

doi: 10.13198/j.issn.1001-6929.2023.08.15
基金项目: 中国环境科学研究院国家环境保护生态工业重点实验室开放基金项目(No.2022KFF-06);中央级公益性科研院所基本科研业务费专项(No.2022YSKY-09);中华环境保护基金会汽车环保创新引领计划项目
详细信息
    作者简介:

    宋晓聪(1992-),女,河北石家庄人,工程师,硕士,主要从事生命周期影响评价、碳核算、固体废物资源化研究,2634145277@qq.com

    通讯作者:

    谢明辉(1981-),男,安徽淮北人,研究员,博士,主要从事污染源管理、生命周期评价研究, xiemh@craes.org.cn

  • 中图分类号: X713

Environmental Impact and Carbon Footprint Analysis of Pure Electric Vehicles Based on Life Cycle Assessment

Funds: Open Research Fund of State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences (No.2022KFF-06); Fundamental Research Funds for the Central Public-Interest Scientific Institution, China (No.2022YSKY-09); China Environmental Protection Foundation Automotive Environmental Protection Innovation Leading Program
  • 摘要: 为探究新能源汽车中纯电动汽车环境影响和碳足迹,实现交通运输领域绿色低碳发展,本文以纯电动汽车为例,采用生命周期评价方法,量化评估纯电动汽车环境影响和碳足迹,构建清洁电网、能效提升和电池回收3种低碳减排情景,评估不同减排路径对新能源汽车行业的碳减排效果. 结果表明:①1辆纯电动汽车生命周期内环境影响潜值和碳足迹分别为1 288.81 Pt和25.02 t,行驶150 000 km的碳排放强度为0.17 kg/km(以CO2计),此外,环境影响类别由大到小依次为呼吸系统影响>化石燃料>气候变化>矿产资源>生态毒性>致癌>酸化和富营养化. ②纯电动汽车碳足迹分布特征与环境影响相似,原材料获取、运行使用阶段的环境影响潜值以及碳排放量合计均占环境影响总潜值和碳足迹的96%,这两阶段是纯电动汽车减污降碳的重点环节. ③低碳减排情景中,清洁电网情景和使用能效情景下纯电动汽车分别可实现17.64%和12.51%的减碳潜力,回收废旧电池中的有价金属,仅实现约2%的碳减排潜力,因此,通过优化电力结构和提高动力系统使用能效相比于电池回收具有更优的碳减排效益.

     

  • 图  1  纯电动汽车全生命周期的系统边界

    Figure  1.  The system boundary of the whole life cycle of pure electric vehicles

    图  2  纯电动汽车不同生命周期阶段的环境影响潜值

    Figure  2.  Environmental impact potential of battery electric vehicles at different life cycle stages

    图  3  原料获取阶段纯电动汽车各部件环境影响潜值占比

    Figure  3.  Proportion of potential environmental impact values of various components of battery electric vehicles at the stage of raw material acquisition

    图  4  纯电动汽车不同生命周期阶段的碳排放

    Figure  4.  Carbon emissions of battery electric vehicles at different lifecycle stages

    图  5  原料获取阶段纯电动汽车各部件碳排放占比

    Figure  5.  Proportion of carbon emissions from various components of battery electric vehicles in the stage of raw material acquisition

    图  6  不同情景下纯电动汽车的碳足迹

    Figure  6.  Carbon footprint of battery electric vehicles under different scenarios

    图  7  不同情景下纯电动汽车生命周期碳减排量

    Figure  7.  Carbon emission reduction in the life cycle of battery electric vehicles under different scenarios

    表  1  车型参数

    Table  1.   Parameters of vehicle type

    参数 数值
    汽车质量/kg 车身 623.10
    底盘 708.83
    动力系统 708.48
    液体流体 25.98
    动力电池容量/Ah 75
    驱动电机总功率/kW 160
    电耗/[kW·h/(100 km)] 13
    下载: 导出CSV

    表  2  汽车行业生命周期评价模型参数[22-23]

    Table  2.   Parameters of life cycle assessment model for automobile industry[22-23]

    影响类别 单位 人均基准值(NFj) 权重因子(DFj)
    人体健康(致癌、呼吸系统影响、气候变化) DALY 1.51×10−2 0.60
    生态系统(生态毒性、酸化和富营养化) PDF 1.19×103 0.25
    资源(矿产资源、化石燃料) MJ 2.47×103 0.15
    下载: 导出CSV

    表  3  纯电动汽车组成材料质量

    Table  3.   Quality of composition materials of battery electric vehicles

    部件 质量/kg
    车身 489.33
    13.90
    塑料 144.05
    橡胶 3.36
    玻璃 47.45
    油漆 14.00
    有机物 13.84
    5.41
    0.29
    0.12
    其他 0.17
    底盘 436.90
    13.14
    塑料 28.40
    橡胶 49.31
    有机物 9.72
    42.59
    37.24
    其他 3.10
    动力系统1) 动力电池 481.9
    驱动电机 93.12
    减速器 44
    电控装置 79
    液体流体 26
    注:1)动力系统数据参考文献[21,25-26],其他数据均为现场调研获得.
    下载: 导出CSV

    表  4  动力电池组成材料质量[21]

    Table  4.   Quality of power battery composition materials[21]

    部件 质量/kg
    正极 磷酸铁锂(LiFePO4) 106.0
    聚偏氟乙烯(PVDF) 14.5
    N-甲基吡咯烷酮(NMP) 4.8
    铝基体 24.1
    负极 石墨 48.2
    聚偏氟乙烯(PVDF) 4.8
    N-甲基吡咯烷酮(NMP) 9.6
    铝基体 38.6
    电解液 六氟磷酸锂(Li PF6) 9.6
    碳酸乙烯酯(EC) 19.3
    二甲基酸酯(DMC) 19.3
    隔膜 聚丙烯(PP) 7.2
    聚乙烯(PE) 7.2
    壳体 聚丙烯(PP) 19.3
    135.0
    电池管理系统 4.8
    4.8
    电路板 4.8
    下载: 导出CSV

    表  5  纯电动汽车各部件生产制造能耗量

    Table  5.   Energy consumption in production and manufacturing of various parts of battery electric vehicles

    部件 电能/(MJ/kg) 热能/(MJ/kg) 数据来源
    车身 玻璃 84.7 文献[21-22,27]
    前盖总成 1.48
    顶盖总成 1.19
    翼子板及侧围 5.08
    行李箱盖总成 3.18
    前侧面车门总成 1.97
    后侧面车门总成 1.97
    电池支架总成 1.01
    前围总成 1.15
    后围总成 1.15
    地板总成 4.29
    车辆总装 0.74
    底盘 悬架弹簧 0.21 2.77 文献[28]
    轮辋 2.68
    轮辐 1.26
    轮胎 2.35
    车轮装配 0.08
    动力系统 动力电池 42.13 文献[21,29]
    驱动电机 5.03 1.82
    减速器 6.93 4.14
    电控装置 1.37
    液体流体 66.92 文献[29-30]
    下载: 导出CSV

    表  6  金属二次回收参数

    Table  6.   Parameters of metal secondary recovery

    金属类型 回收率[21]/% 回收量/kg 能源消耗[33]/MJ
    天然气 电力
    90 793.59 15.87 3 356.89
    92 36.70 5.51 29.36
    80 34.15 281.40 76.50
    90 32.19 307.09
    下载: 导出CSV

    表  7  纯电动汽车不同生命周期阶段环境影响终点评价

    Table  7.   Environmental impact endpoint assessment of battery electric vehicles at different life cycle stages

    影响类别 环境影响潜值/Pt
    原料获取阶段 制造装配阶段 运行使用阶段 报废回收阶段 合计
    人体健康 339.54 33.76 442.30 −36.01 779.59
    生态系统 47.57 4.42 58.30 −6.13 104.17
    资源衰竭 423.03 5.22 32.32 −55.82 404.75
    合计 810.15 43.40 532.92 −97.97 1 288.50
    下载: 导出CSV

    表  8  2030年不同低碳减排情景下的关键参数设置

    Table  8.   Key parameter settings under different low-carbon emission reduction scenarios in 2030

    项目 发电量/(104 kW·h) 碳排放因子/[t/(kW·h)] 电耗/[kW·h/(100 km)] 金属回收率/%
    清洁电网
    情景
    火电 5.66×108[42] 0.84×10−3[43]
    水电 1.88×108[44] 0.0035×10−3[43]
    核电 9.65×107[45] 0.012×10−3[46]
    风电 1.46×108[47] 0.025×10−3[48-49]
    太阳能发电 1.03×108[47] 0.036×10−3[43]
    能效提升情景 10[50]
    电池回收
    情景
    90[51]
    97[52-53]
    97[52-53]
    下载: 导出CSV
  • [1] CHEN Q W,LAI X,HOU Y K,et al.Investigating the environmental impacts of different direct material recycling and battery remanufacturing technologies on two types of retired lithium-ion batteries from electric vehicles in China[J].Separation and Purification Technology,2023,308:122966. doi: 10.1016/j.seppur.2022.122966
    [2] 黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):385-393.

    HUANG Z H,JI L,YIN J,et al.Peak pathway of China´s road traffic carbon emissions[J].Research of Environmental Sciences,2022,35(2):385-393.
    [3] 黎土煜,余大立,张洪申.基于GREET的纯电动公交车与传统公交车全生命周期评估[J].环境科学研究,2017,30(10):1653-1660.

    LI T Y,YU D L,ZHANG H S.Using the GREET model to assess the life cycle of electric and conventional buses[J].Research of Environmental Sciences,2017,30(10):1653-1660.
    [4] 杨儒浦,王敏,胡敬韬,等.工业园区减污降碳协同增效评价方法及实证研究[J].环境科学研究,2023,36(2):422-430.

    YANG R P,WANG M,HU J T,et al.Spatio-temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J].Research of Environmental Sciences,2023,36(2):422-430.
    [5] SAMARAS C,MEISTERLING K.Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles:Implications for Policy[J].Environmental Science & Technology,2008,42:3170-3176.
    [6] GAO L,WINFIELD Z C.Life cycle assessment of environmental and economic impacts of advanced vehicles[J].Energies,2012,5:605-620. doi: 10.3390/en5030605
    [7] ONAT N C,KUCUKVAR M,TATARI O.Conventional,hybrid,plug-in hybrid or electric vehicles? state-based comparative carbon and energy footprint analysis in the United States[J].Applied Energy,2015,150:36-49. doi: 10.1016/j.apenergy.2015.04.001
    [8] TAGLIAFERRI C,EVANGELISTI S,ACCONCIA F,et al.Life cycle assessment of future electric and hybrid vehicles:a cradle-to-grave systems engineering approach[J].Chemical Engineering Research and Design,2016,112:298-309. doi: 10.1016/j.cherd.2016.07.003
    [9] BURCHART-KOROL D,PUSTEJOVSKA P,BLAUT A,et al.Comparative life cycle assessment of current and future electricity generation systems in the czech republic and Poland[J].The International Journal of Life Cycle Assessment,2018,23:2165-2177. doi: 10.1007/s11367-018-1450-z
    [10] SHAFIQUE M,LUO X.Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective[J].Journal of Environmental Management,2022,303:114050. doi: 10.1016/j.jenvman.2021.114050
    [11] MARQUES P,GARCIA R,KULAY L,et al.Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade[J].Journal of Cleaner Production,2019,229:787-794. doi: 10.1016/j.jclepro.2019.05.026
    [12] SHEN W,HAN W,CHOCK D,et al.Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China[J].Energy Policy,2012,49:296-307. doi: 10.1016/j.enpol.2012.06.038
    [13] WU Z,WANG M,ZHENG J,et al.Life cycle greenhouse gas emission reduction potential of battery electric vehicle[J].Journal of Cleaner Production,2018,190:462-470. doi: 10.1016/j.jclepro.2018.04.036
    [14] 赵子贤,邵超峰,陈珏.中国省域私人电动汽车全生命周期碳减排效果评估[J].环境科学研究,2021,34(9):2076-2085.

    ZHAO Z X,SHAO C F,CHEN Y.Effects of private electric vehicles on carbon emission reduction in China during whole life cycle[J].Research of Environmental Sciences,2021,34(9):2076-2085.
    [15] 王嘉诚,刘晓峰,梅文卿,等.全生命周期视角下区域级电动汽车碳排放评估[J].电力建设,2023,44(6):33-40.

    WANG J C,LIU X F,MEI W Q,et al.Carbon-emission assessment of regional electric vehicles from the full life cycle perspective[J].Electric Power Construction,2023,44(6):33-40.
    [16] QIAO Q Y,ZHAO F Q,LIU Z W,et al.Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China[J].Applied Energy,2017,204:1399-1411. doi: 10.1016/j.apenergy.2017.05.041
    [17] 付佩,兰利波,陈颖,等.面向2035的节能与新能源汽车全生命周期碳排放预测评价[J].环境科学,2023,44(4):2365-2374.

    FU P,LAN L B,CHEN Y,et al.Life cycle prediction assessment of energy saving and new energy vehicles for 2035[J].Environmental Science,2023,44(4):2365-2374.
    [18] 杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究[J].环境科学学报,2001(2):234-237.

    YANG J X,WANG R S,LIU J R.Methodology of life cycle impact assessment for Chinese products[J].Acta Scientiae Circumstantiae,2001(2):234-237.
    [19] 中汽中心.2021年中国汽车市场发展回顾及2022年展望[EB/OL].天津:中汽数据有限公司,(2022-01-17)[2023-09-20].http://www.catarc.info/news/12549.cshtml.
    [20] XIA X M,LI P W.A review of the life cycle assessment of electric vehicles:considering the In-fluence of batteries[J].Science of the Total Environment,2022,814:152870. doi: 10.1016/j.scitotenv.2021.152870
    [21] 马金秋.匹配不同动力电池的纯电动汽车全生命周期评价研究[D].西安:长安大学,2019.
    [22] 李雪迎,白璐,杨庆榜,等.我国终点型生命周期影响评价模型及基准值初步研究[J].环境科学研究,2021,34(11):2778-2786.

    LI X Y,BAI L,YANG Q B,et al.Preliminary study on endpoint life cycle impact assessment model and normalisation value in China[J].Research of Environmental Sciences,2021,34(11):2778-2786.
    [23] XIE M H,Ruan J L,Bai W N,et al.Pollutant payback time and environmental impact of Chinese multi-crystalline photovoltaic production based on life cycle assessment[J].Journal of Cleaner Production,2018,184:648-659. doi: 10.1016/j.jclepro.2018.02.290
    [24] IPCC.Good practice guidance and uncertainty management in national greenhouse gas inventories[EB/OL].Manila:UNFCCC Workshop on the Proparation of National Communications form non-Annex Ⅰ Parties,(2001-06-15)[2023-09-20]https://www.ipcc-nggip.iges.or.jp/public/gp/chinese/gpgaum_cn.html,2001-06-15.
    [25] 刘凯辉.比亚迪E6纯电动汽车全生命周期评价[D].福州:福建农林大学,2016.
    [26] MAYYAS A,OMAR M,HAYAJNEH M,et al.Vehicle´s lightweight design vs electrification from life cycle assessment perspective[J].Journal of Cleaner Production,2017,167:687-701. doi: 10.1016/j.jclepro.2017.08.145
    [27] 陈轶嵩,郝卓,兰利波,等.匹配不同动力电池的纯电动汽车全生命周期节能减碳评价研究[J].汽车工程学报,2022,12(4):517-527. doi: 10.3969/j.issn.2095-1469.2022.04.15

    CHEN Y S,HAO Z,LAN L B,et al.Research on energy saving and carbon reduction over the life cycle of battery electric vehicles with different power batteries[J].Chinese Journal of Automotive Engineering,2022,12(4):517-527. doi: 10.3969/j.issn.2095-1469.2022.04.15
    [28] 刘佳慧.氢燃料电池汽车生命周期评价研究[D].西安:长安大学,2020.
    [29] 李娟.纯电动汽车与燃油汽车动力系统生命周期评价与分析[D].长沙:湖南大学,2015.
    [30] 刘书如.锂离子动力电池及纯电动汽车生命周期评价对比研究[D].西安:长安大学,2021.
    [31] Argonne GREET Publication.The greenhouse gases,regulated emissions,and energy use in transportation (GREET) model version 1.5[EB/OL].Washington:U.S. Department of Energy,(1999-08-01)[2023-09-20].https://greet.es.anl.gov/publication-h3k81jas.
    [32] 中汽数据有限公司.面向碳中和的汽车行业低碳发展战略与转型路径(CALCP 2022)[M].北京:机械工业出版社,2022.
    [33] HAO H,MU Z X,JIANG S H,et al.GHG emissions from the production of lithium-Ion batteriesfor electric vehicles in China[J].Sustainability,2017,9(4):504-515. doi: 10.3390/su9040504
    [34] WATARI T,NORTHEY S,GIURCO D,et al.Global copper cycles and greenhouse gas emissions in a 1.5 ℃ world[J].Resources Conservation and Recycling,2022,179:106118. doi: 10.1016/j.resconrec.2021.106118
    [35] SHI S N,ZHANG H R,YANG W,et al.A life-cycle assessment of battery electric and internal combustion engine vehicles:a case in Hebei Province,China[J].Journal of Cleaner Production,2019,218:606-618.
    [36] LIU Y T,QIAO J,XU H B,et al.Optimal vehicle size and driving condition for extended-range electric vehicles in China:a life cycle perspective[J].Plos One,2020,15:0241967.
    [37] SHAFIQUE M,AZAM A,RAFIQ M,et al.Life cycle assessment of electric vehicles and internal combustion engine vehicles:a case study of Hong Kong[J].Research in Transportation Economics,2022,91:101112. doi: 10.1016/j.retrec.2021.101112
    [38] LUO Z,WANG YUE,LV Z,et al.Impacts of vehicle emission on air quality and human health in China[J].Science of the Total Environment,2022,813:152655. doi: 10.1016/j.scitotenv.2021.152655
    [39] REQUIA W J,MOHAMED M,HIGGINS C D,et al.How clean are electric vehicles?evidence-based review of the effects of electric mobility on air pollutants,greenhouse gas emissions and human health[J].Atmospheric Environment,2018,185:64-77. doi: 10.1016/j.atmosenv.2018.04.040
    [40] YANG L,YU B Y,YANG B,et al.Life cycle environmental assessment of electric and internal combustion engine vehicles in China[J].Journal of Cleaner Production,2021,285:124899. doi: 10.1016/j.jclepro.2020.124899
    [41] YANG Z J,WANG B W,JIAO K.Life cycle assessment of fuel cell,electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China[J].Energy,2020,198:117365. doi: 10.1016/j.energy.2020.117365
    [42] 国家发展和改革委员会.能源生产和消费革命战略(2016—2030年)[EB/OL].北京:国家发展和改革委员会,(2017-04-25)[2023-09-20].http://www.gov.cn/xinwen/2017-04/25/content_5230568.htm.
    [43] 廖夏伟,谭清良,张雯,等.中国发电行业生命周期温室气体减排潜力及成本分析[J].北京大学学报自然科学版,2013,49(5):885-891.

    LIAO X W,TAN Q L,ZHANG W,et al.Analysis of life-cycle greenhouse gas emission reduction potential and cost for China's power generation sector[J].Ata Scientiarum Naturalium Universitatis Pekinensis,2013,49(5):885-891.
    [44] 前瞻经济学人.2022年中国水力发电行业全景图谱[EB/OL].深圳:前瞻网,(2022-11-01)[2023-09-20].https://weibo.com/ttarticle/p/show?id=2309404831021332824297.
    [45] 中国电力企业联合会.中国电力行业年度发展报告(2021)[M].北京:中国建材工业出版社,2022.
    [46] WANG L,WANG Y,DU H,et al.A comparative life-cycle assessment of hydro-,nuclear and wind power:a China study[J].Applied Energy,2019,249(4):37-45.
    [47] 生态环境部.中国应对气候变化的政策与行动2020年度报告[EB/OL].北京:生态环境部,(2021-07-13)[2023-09-20].https://www.mee.gov.cn/ywgz/ydqhbh/syqhbh/202107/t20210713_846491.shtml.
    [48] ZHAO X,CAI Q,ZHANG S,et al.The substitution of wind power for coal-fired power to realize China′s CO2 emissions reduction targets in 2020 and 2030[J].Energy,2017,120:164-178. doi: 10.1016/j.energy.2016.12.109
    [49] GAO C K,NA H M,SONG K H,et al.Environmental impact analysis of power generation from biomass and wind farms in different locations[J].Renewable and Sustainable Energy Reviews,2019,102:307-317. doi: 10.1016/j.rser.2018.12.018
    [50] 中国汽车技术研究中心.中国汽车低碳行动计划研究报告(2021)[EB/OL].北京:数字菁英,(2021-12-13)[2023-09-20].https://www.digitalelite.cn/h-nd-1515.html?fromColId=30.
    [51] LI X L,ZHANG J,SONG D W,et al.Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J].Journal of Power Sources,2017,345:78-84. doi: 10.1016/j.jpowsour.2017.01.118
    [52] ROY J J,RAROTRA S,KRIKSTOLAITYTE V,et al.Green recycling methods to treat lithium-ion batteries E-waste:a circular approach to sustainability[J].Advanced Materials,2022,34:2103346. doi: 10.1002/adma.202103346
    [53] SHU X,GUO Y F,YANG W X,et al.Life-cycle assessment of the environmental impact of the batteries used in pure electric passenger cars[J].Energy Reports,2021,7:2302-2315. doi: 10.1016/j.egyr.2021.04.038
    [54] XIONG S,JI J,MA X.Comparative life cycle energy and GHG emission analysis for BEVs and PhEVs:a case study in China[J].Energies,2019,12(5):834. doi: 10.3390/en12050834
    [55] ZHANG R,HANAOKA T.Deployment of electric vehicles in China to meet the carbon neutral target by 2060:provincial disparities in energy systems,CO2 emissions,and cost effectiveness[J].Resources Conservation and Recycling,2021,170(1):105622.
    [56] 张晓梅,庄贵阳,刘杰.城市温室气体清单的不确定性分析[J].环境经济研究,2018,3(1):8-18. doi: 10.19511/j.cnki.jee.2018.01.002

    ZHANG X M,ZHUANG G Y,LIU J.Uncertainty analysis of urban greenhouse gas inventories[J].Journal of Environmental Economics,2018,3(1):8-18. doi: 10.19511/j.cnki.jee.2018.01.002
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  21
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 修回日期:  2023-08-06
  • 网络出版日期:  2023-08-24

目录

    /

    返回文章
    返回