Research on the Impact of Digital Intelligence Integration Development on Collaborative Governance of Pollution Reduction and Carbon Reduction in China
-
摘要: 新发展阶段中国生态文明建设进入减污降碳协同治理的关键时期. 数字化和智能化的新技术、新基础设施、新工艺装备、新场景应用为减污降碳协同增效提供了重大契机与技术支撑. 为研究数智融合发展对减污降碳的协同治理作用,构建2011—2020年我国30个省(自治区、直辖市)数智融合发展指数与减污降碳协同指数评价指标体系(不包括西藏自治区和港澳台地区数据,下同),并对二者时空演变特征进行分析,运用多元线性回归模型分析数智融合发展对减污降碳协同治理的影响. 结果表明:2011—2020年中国数智融合发展呈现明显的上升态势与区域聚集性,其中2020年广东省数智融合发展水平以0.730领先全国;减污降碳协同水平呈明显上升趋势. 数智融合发展可以显著促进地区减污降碳的协同治理,但存在较强的区域异质性特征. 同时,数智融合发展可以通过提高科技创新水平、优化能源生产结构对减污降碳的协同治理产生显著的间接影响. 因此,应大力推动中国数智融合发展,夯实数智融合驱动减污降碳协同治理的理论体系,有效发挥数智融合这一数字经济新形态对减污降碳的协同治理作用.Abstract: At present, China is promoting the great rejuvenation of the Chinese nation with Chinese-style modernization comprehensively, taking ‘promoting harmonious coexistence between man and nature’ as an important part of the essential requirements of Chinese-style modernization, and promoting green development and harmonious coexistence between human and nature. At the same time, China′s ecological civilization construction also faces two strategic tasks of achieving fundamental improvement in the ecological environment, carbon peaking and carbon neutrality, which further highlights the requirements of multi-objective governance of the ecological environment. Coordinated promotion of pollution reduction and carbon emission reduction has become an inevitable choice for the comprehensive green transformation of China's economic and social development in the new development stage. Digital and intelligent new technologies, new infrastructure, new process equipment, and new scenario applications provide major opportunities and technical support for collaborative pollution and carbon reduction. To study the synergistic governance effect of digital and intelligent integration development on pollution reduction and carbon reduction, an innovative evaluation index system for digital and intelligent integration development index and pollution reduction and carbon reduction synergy index in 30 provinces (autonomous regions, municipalities) of China from 2011 to 2020 was constructed (excluding the data of Tibet Autonomous Region, Hong Kong Special Administrative Region, Macao Special Administrative Region and Taiwan Province of China). The spatiotemporal evolution characteristics of the two were analyzed, and a multiple linear regression model was constructed to analyze the impact of digital and intelligent integration development on pollution reduction and carbon reduction synergistic governance. The research results indicate that during the measurement period, the development of digital and intelligent integration in China showed a significant upward trend and regional agglomeration, with Guangdong Province leading the country in terms of digital and intelligent integration development level by 0.730 in 2020. At the same time, the synergistic effects of pollution reduction and carbon reduction in China are showing a significant upward trend. The integration of digital and intelligent development can significantly promote collaborative governance of regional pollution reduction and carbon reduction, but there are strong regional heterogeneity characteristics. At the same time, the integration of digital and intelligent development can have a significant indirect impact on the collaborative governance of pollution reduction and carbon reduction by improving the level of technological innovation and adjusting the path of energy production structure. Therefore, China should vigorously promote the integration of digital and intelligent development, consolidate the theoretical system of collaborative governance driven by digital and intelligent integration for pollution reduction and carbon reduction, and effectively play the role of digital and intelligent integration as a new form of digital economy in collaborative governance of pollution reduction and carbon reduction.
-
表 1 数智融合发展指数与减污降碳协同指数测算指标体系
Table 1. Calculation index system for the integration of digital intelligence development index and the collaborative index of pollution reduction and carbon reduction
一级指标 二级指标 三级指标 四级指标 指标属性 权重 数智融合发展指数 数智业务发展水平 软件业务 软件业务收入 正向 0.040 信息技术服务收入 正向 0.039 电信业务 电信业务总量 正向 0.026 通信技术制造业主营业务收入 正向 0.053 电商业务 快递业务量 正向 0.049 电子商务销售额 正向 0.030 数智产业发展水平 产业聚集 (信息传输、软件和信息技术服务业就业人数)/行政区划面积 正向 0.078 科学研究和技术服务业就业人数/行政区划面积 正向 0.069 产业规模 第三产业增加值占GDP比重 正向 0.006 通信设备、计算机及电子设备制造业法人单位数 正向 0.024 科学研究和技术服务业法人单位数 正向 0.024 数智基础设施水平 数智基建 互联网宽带接入用户数/常住人口数 正向 0.008 互联网域名数 正向 0.031 互联网宽带接入端口数 正向 0.013 长途光缆线路长度 正向 0.008 移动电话年末用户数 正向 0.011 电话普及率 正向 0.007 移动电话交容机容量 正向 0.010 普惠金融 北京大学数字普惠金融指数 正向 0.006 数智企业发展水平 企业数智 上市公司报告中“人工智能技术”频次 正向 0.064 上市公司报告中“区块链”频次 正向 0.077 上市公司报告中“云计算技术”频次 正向 0.048 上市公司报告中“大数据技术”频次 正向 0.053 上市公司报告中“数字技术应用”频次 正向 0.038 智慧金融 上市金融公司数字化程度 正向 0.059 智慧制造 机器人安装密度 正向 0.034 数智人文素养水平 人力资本 高等学校在校生人数/年末总人口 正向 0.005 人均受教育年限 正向 0.011 科教投入 地区教育投入支出占财政支出比重 正向 0.004 地区科技投入支出占财政支出比重 正向 0.013 技术市场成交额占GDP比重 正向 0.026 规模以上工业企业R&D经费 正向 0.034 数智政务治理水平 数字政务 地方政府城市治理注意力词频数 正向 0.001 地方政府公共服务词频数 正向 0.001 减污降碳协同指数 污染物排放强度指数 二氧化硫排放强度 负向 0.5 废水排放强度 烟粉尘排放强度 一般工业固体废物排放强度 氮氧化物排放量强度 PM2.5浓度 碳排放强度指数 二氧化碳排放强度 负向 0.5 表 2 实证所用各变量的描述性统计
Table 2. Descriptive statistics of each main variables in empirical analysis
变量名称 符号 样本量 平均值 标准差 最小值 最大值 污染物排放强度指数 Poll 300 0.172 0.133 0.017 0.715 碳排放强度指数 Carbon 300 2.285 1.732 0.292 8.310 减污降碳协同指数 ISEC 300 0.736 0.147 0.130 0.962 数智融合发展指数 Digital 300 0.093 0.109 0.011 0.730 制造业规模 Man 300 150.8 177.2 7.200 1020 工业增值 Ind 300 8.760 8.007 0.415 39.14 人均城市道路面积 Rod 300 15.90 4.798 4.040 26.78 经济增速 Gdp 300 0.090 0.071 -0.280 0.275 人口密度 Pop 300 2 892 1 144 764 5821 科研强度 Sci 300 1 393 1 057 45 5 621 环保税 Tax 300 64.28 56.74 2.849 358.9 是否存在低碳试点 Exp 300 0.827 0.379 0 1 污水日处理能力 Sew 300 547.4 460.6 32.10 2749 生活垃圾清运量 Gar 300 665.7 511.2 66.25 3347 互联网上网人数 Net 300 0.062 0.075 0.001 0.532 移动电话交换机容量 Mob 300 0.242 0.253 0.008 1.662 绿色发明专利申请数 Pat 300 0.746 0.140 0.264 1.038 清洁能源比 Ene 300 0.137 0.032 0.068 0.220 表 3 数智融合发展影响减污降碳协同治理的基准回归结果
Table 3. Benchmark regression results of the impact of digital-intellectual integration development on collaborative governance of pollution reduction and carbon reduction
变量 减污降碳协同治理水平 数智融合发展水平 0.580*** 0.292*** 0.284*** (3.80) (3.25) (3.73) 常数项 0.683*** 0.345*** 0.344*** (48.30) (7.39) (5.72) 特征因素控制 NO YES YES 政策因素控制 NO NO YES 个体固定效应 NO YES YES 观测值 300 300 300 R2 0.296 0.707 0.722 注:***、**、*分别表示在1%、5%、10%水平下显著. 括号内数值为标准误. 下同. 表 4 数智融合发展影响减污降碳协同治理的稳健性检验结果
Table 4. Robustness test results of the impact of digital-intellectual integration development on collaborative governance of pollution reduction and carbon reduction
变量 减污降碳协同治理水平 污水日处理能力 生活垃圾清运量 污染物排放强度 碳排放强度 优劣距离解法 0.431*** (5.41) 取对数处理 0.132*** (13.55) 数智融合
发展水平0.377*** 0.224*** −0.229*** −1.069* (4.58) (3.37) (−3.76) (−2.00) 常数项 0.345*** 1.056*** 0.091*** 0.028 0.679*** 3.806*** (5.92) (26.49) (3.73) (1.64) (9.72) (6.79) 特征因素控制 YES YES YES YES YES YES 政策因素控制 YES YES YES YES YES YES 个体效应 YES YES YES YES YES YES 观测值 300 300 300 300 300 300 拟合度 0.734 0.861 0.731 0.820 0.712 0.431 表 5 数智融合发展影响减污降碳协同治理的异质性检验结果
Table 5. Regional heterogeneity test results of the impact of digital-intellectual integration development on collaborative governance of pollution reduction and carbon reduction
变量 减污降碳协同治理水平 东部地区 中部地区 西部地区 数智融合发展水平 0.295*** 1.175* 0.112 (4.99) (2.15) (0.11) 常数项 0.397*** 0.299** 0.405*** (4.14) (3.26) (4.13) 特征因素控制 YES YES YES 政策因素控制 YES YES YES 个体效应 YES YES YES 观测值 110 80 110 拟合度 0.804 0.901 0.790 表 6 数智融合发展影响减污降碳协同治理的工具变量检验结果
Table 6. Test results of instrumental variables for the impact of digital-intellectual integration development on collaborative governance of pollution reduction and carbon reduction
变量 第一阶段 第二阶段 变量 第一阶段 第二阶段 数智融合发展水平 减污降碳协同治理水平 数智融合发展水平 减污降碳协同治理水平 移动电话交换机容量 0.160*** 互联网上网人数 0.708*** (7.66) (10.07) 数智融合发展水平 0.483*** 数智融合发展水平 0.341*** (4.43) (3.06) 控制变量 YES YES 控制变量 YES YES 表 7 数智融合发展影响减污降碳协同治理的机制检验结果
Table 7. Mechanism test results of the impact of digital-intellectual integration development on collaborative governance of pollution reduction and carbon reduction
变量 减污降碳协同治理水平 绿色发明专利申请数量 减污降碳协同治理水平 清洁能源比 减污降碳协同治理水平 数智融合发展水平 0.284*** 0.223*** 0.164*** 0.078*** 0.204*** (4.73) (3.45) (3.27) (5.61) (3.35) 绿色发明专利申请数量 0.534** (11.39) 清洁能源比 1.017*** (4.27) 控制变量 YES YES YES YES YES -
[1] LIU H D,LUO Y X,GENG J J,et al.Research hotspots and frontiers of product R&D management under the background of the digital intelligence era:bibliometrics based on citespace and histcite[J].Applied Sciences,2021,11(15):6759. doi: 10.3390/app11156759 [2] ZHOU B,ZHANG C,SONG H Y,et al.How does emission trading reduce China´s carbon intensity? an exploration using a decomposition and difference-in-differences approach[J].Science of the Total Environment,2019,676:514-523. doi: 10.1016/j.scitotenv.2019.04.303 [3] 卞锦婷,黄凌,李红丽,等.上海市PM2.5和臭氧复合污染期多路径减排效果评估[J].环境科学研究,2023,36(2):314-324.BIAN J T,HUANG L,LI H L,et al.Effect evaluation of multi-path emission reduction in Shanghai during PM2.5 and ozone combined pollution period[J].Research of Environmental Sciences,2023,36(2):314-324. [4] YANG X H,YANG X Y,ZHU J G,et al.Synergic emissions reduction effect of China´s ‘Air Pollution Prevention and Control Action Plan’:benefits and efficiency[J].Science of the Total Environment,2022,847:157564. doi: 10.1016/j.scitotenv.2022.157564 [5] CHEN W Q,TANG H Y,HE L,et al.Co-effect assessment on regional air quality:a perspective of policies and measures with greenhouse gas reduction potential[J].Science of the Total Environment,2022,851:158119. doi: 10.1016/j.scitotenv.2022.158119 [6] 姜华,高健,李红,等.我国大气污染协同防控理论框架初探[J].环境科学研究,2022,35(3):601-610.JIANG H,GAO J,LI H,et al.Preliminary research on theoretical framework of cooperative control of air pollution in China[J].Research of Environmental Sciences,2022,35(3):601-610. [7] 刘学军,沙志鹏,宋宇,等.我国大气氨的排放特征、减排技术与政策建议[J].环境科学研究,2021,34(1):149-157. doi: 10.13198/j.issn.1001-6929.2020.11.14LIU X J,SHA Z P,SONG Y,et al.China′s atmospheric ammonia emission characteristics,mitigation options and policy recommendations[J].Research of Environmental Sciences,2021,34(1):149-157. doi: 10.13198/j.issn.1001-6929.2020.11.14 [8] ISHIDA H.The effect of ICT development on economic growth and energy consumption in Japan[J].Telematics and Informatics,2015,32(1):79-88. doi: 10.1016/j.tele.2014.04.003 [9] XU Q,ZHONG M R,LI X.How does digitalization affect energy? international evidence[J].Energy Economics,2022,107:105879. doi: 10.1016/j.eneco.2022.105879 [10] 张争妍,李豫新.数字经济对我国碳排放的影响研究[J].财经理论与实践,2022,43(5):146-154.ZHANG Z Y,LI Y X.Research on the impact of digital economy on China´s carbon emissions[J].The Theory and Practice of Finance and Economics,2022,43(5):146-154. [11] CHEN X H,ZHOU P,HU D B.Influences of the ongoing digital transformation of the Chinese economy on innovation of sustainable green technologies[J].Science of the Total Environment,2023,875:162708. doi: 10.1016/j.scitotenv.2023.162708 [12] CHEN L F,WANG K F.The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China´s cities:evidence from a quasi-natural experiment[J].Energy Economics,2022,110:106018. doi: 10.1016/j.eneco.2022.106018 [13] WU D S,XIE Y,LYU S J.Disentangling the complex impacts of urban digital transformation and environmental pollution:evidence from smart city pilots in China[J].Sustainable Cities and Society,2023,88:104266. doi: 10.1016/j.scs.2022.104266 [14] YE C.Digital economy,science and technology innovation and carbon emissions:a dynamic analysis of PVAR based on provincial panel data[J].Journal of Risk Analysis and Crisis Response,2023.doi: https://doi.org/10.54560/jracr.v13i1.354. [15] DING Y,YANG Y L.The influence of digital development on China´s carbon emission efficiency:in the view of economic and environmental balance[J].Frontiers in Environmental Science,2023.doi: 10.3389/FENVS.2023.1075890. [16] YI M,LIU Y F,SHENG M S,et al.Effects of digital economy on carbon emission reduction:new evidence from China[J].Energy Policy,2022,171:113271. doi: 10.1016/j.enpol.2022.113271 [17] CHENG Y,ZHANG Y,WANG J J,et al.The impact of the urban digital economy on China´s carbon intensity:spatial spillover and mediating effect[J].Resources,Conservation and Recycling,2023,189:106762. doi: 10.1016/j.resconrec.2022.106762 [18] ZHANG G X,LIU W,DUAN H B.Environmental regulation policies,local government enforcement and pollution-intensive industry transfer in China[J].Computers & Industrial Engineering,2020,148:106748. [19] 唐湘博,张野,曹利珍,等.中国减污降碳协同效应的时空特征及其影响机制分析[J].环境科学研究,2022,35(10):2252-2263.TANG X B,ZHANG Y,CAO L Z,et al.Spatio-temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J].Research of Environmental Sciences,2022,35(10):2252-2263. [20] LIU Y H,SHEN Y,FAN L L,et al.Parallel radars:from digital twins to digital intelligence for smart radar systems[J].Sensors,2022,22(24):9930. doi: 10.3390/s22249930 [21] GUO B N,WANG Y,ZHANG H,et al.Impact of the digital economy on high-quality urban economic development:evidence from Chinese cities[J].Economic Modelling,2023,120:106194. doi: 10.1016/j.econmod.2023.106194 [22] WU J,ZHAO R Z,SUN J S.What role does digital finance play in low-carbon development?evidence from five major urban agglomerations in China[J].Journal of Environmental Management,2023,341:118060. doi: 10.1016/j.jenvman.2023.118060 [23] DU Z L,WANG Y.Does energy-saving and emission reduction policy affects carbon reduction performance? a quasi-experimental evidence in China[J].Applied Energy,2022,324:119758. doi: 10.1016/j.apenergy.2022.119758 [24] 刘军,杨渊鋆,张三峰.中国数字经济测度与驱动因素研究[J].上海经济研究,2020,32(6):81-96. doi: 10.19626/j.cnki.cn31-1163/f.2020.06.008LIU J,YANG Y J,ZHANG S F.Research on the measurement and driving factors of China′s digital economy[J].Shanghai Journal of Economics,2020,32(6):81-96. doi: 10.19626/j.cnki.cn31-1163/f.2020.06.008 [25] 王锋正,刘向龙,张蕾,等.数字化促进了资源型企业绿色技术创新吗?[J].科学学研究,2022,40(2):332-344. doi: 10.3969/j.issn.1003-2053.2022.02.015WANG F Z,LIU X L,ZHANG L,et al.Does digitalization promote green technology innovation of resource-based enterprises?[J].Studies in Science of Science,2022,40(2):332-344. doi: 10.3969/j.issn.1003-2053.2022.02.015 [26] 赵涛,张智,梁上坤.数字经济、创业活跃度与高质量发展:来自中国城市的经验证据[J].管理世界,2020,36(10):65-76. doi: 10.3969/j.issn.1002-5502.2020.10.006ZHAO T,ZHANG Z,LIANG S K.Digital economy,entrepreneurship,and high-quality economic development:empirical evidence from urban China[J].Management World,2020,36(10):65-76. doi: 10.3969/j.issn.1002-5502.2020.10.006 [27] 黄群慧,余泳泽,张松林.互联网发展与制造业生产率提升:内在机制与中国经验[J].中国工业经济,2019(8):5-23. doi: 10.19581/j.cnki.ciejournal.2019.08.001HUANG Q H,YU Y Z,ZHANG S L.Internet development and productivity growth in manufacturing industry:internal mechanism and China experiences[J].China Industrial Economics,2019(8):5-23. doi: 10.19581/j.cnki.ciejournal.2019.08.001 [28] BARON R M,KENNY D A.The moderator-mediator variable distinction in social psychological research:conceptual,strategic,and statistical considerations[J].Journal of Personality and Social Psychology,1986,51(6):1173-1182. doi: 10.1037/0022-3514.51.6.1173 [29] 江艇.因果推断经验研究中的中介效应与调节效应[J].中国工业经济,2022(5):100-120. doi: 10.3969/j.issn.1006-480X.2022.05.007JIANG T.Mediating effects and moderating effects in causal inference[J].China Industrial Economics,2022(5):100-120. doi: 10.3969/j.issn.1006-480X.2022.05.007 -