留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灌木林下土壤有机质积累及影响因素研究进展

周启星 侯泽林 莫凡

周启星, 侯泽林, 莫凡. 灌木林下土壤有机质积累及影响因素研究进展[J]. 环境科学研究, 2023, 36(11): 2169-2178. doi: 10.13198/j.issn.1001-6929.2023.07.12
引用本文: 周启星, 侯泽林, 莫凡. 灌木林下土壤有机质积累及影响因素研究进展[J]. 环境科学研究, 2023, 36(11): 2169-2178. doi: 10.13198/j.issn.1001-6929.2023.07.12
ZHOU Qixing, HOU Zelin, MO Fan. Research Progress on Accumulation of Soil Organic Matter in Shrubs and Its Influence Factors[J]. Research of Environmental Sciences, 2023, 36(11): 2169-2178. doi: 10.13198/j.issn.1001-6929.2023.07.12
Citation: ZHOU Qixing, HOU Zelin, MO Fan. Research Progress on Accumulation of Soil Organic Matter in Shrubs and Its Influence Factors[J]. Research of Environmental Sciences, 2023, 36(11): 2169-2178. doi: 10.13198/j.issn.1001-6929.2023.07.12

灌木林下土壤有机质积累及影响因素研究进展

doi: 10.13198/j.issn.1001-6929.2023.07.12
基金项目: 国家自然科学基金(NSFC)-山东联合基金重点项目(No.U1906222);国家重点研发计划项目(No.2019YFC1804104);高等学校学科创新引智计划项目(No.T2017002)
详细信息
    作者简介:

    周启星(1963-),男,浙江杭州人,教授,博士,博导,主要从事环境科学研究,zhouqx@nankai.edu.cn

  • 中图分类号: X24

Research Progress on Accumulation of Soil Organic Matter in Shrubs and Its Influence Factors

Funds: National Natural Science Foundation of China (NSFC) and Shandong Joint Fund Key Project (No.U1906222); National Key Research and Development Program of China (No.2019YFC1804104); The People's Republic of China as a 111 Program (No.T2017002)
  • 摘要: 灌木是土壤生态系统中重要的组成部分,因为它们涉及土壤排放和消纳大气CO2的多个生物化学过程. 本文综述了灌木与土壤中的微生物、矿物相互作用及其对土壤有机质(SOM)固存的贡献,以及环境因子对SOM转化的影响,并从研究方法、污染物干扰、生态效应、体系构建四个方面进行展望. 结果表明:灌木根系分泌物(总糖、总氨基酸、酚类化合物)和林下动植物残体是SOM的主要来源. 灌木对SOM转化的调节主要是通过与土壤微生物和土壤矿物互作实现的,包括与真菌形成互利共生的菌根体系,以及与土壤矿物形成抗分解的稳定络合物. 此外,SOM的固存受到环境条件的影响,如适合灌木生长的温度、湿度、海拔均会促进SOM的积累,而微生物群落和土壤基质中失衡的化学计量关系则可能会促进矿化. 然而,当前对灌木-微生物复合体系的分子转化机制的认知匮乏限制了灌木驱动土壤固碳的定量评估. 因此,借助最新的技术手段评估现有的灌木-微生物体系固碳机制及局限性,明确高温、干旱、野火及新型环境污染物对灌木林下微生物行为的影响,是制定增强土壤固碳的战略计划、改善碳周转生命周期评估方法、缓解源-汇时间节点转变的迫切需要.

     

  • 图  1  灌木林下SOM来源及转化方式[2,5,11,19]

    Figure  1.  Sources and transformation of shrub soil organic matter[2,5,11,19]

    图  2  乔木为主和灌木为主的生态系统之间植物-真菌相互作用随着时间的变化以及对C和N循环的影响[18]

    注:EMF—外生菌根真菌;ERI—类ericoid菌根真菌;SAP—腐生菌.

    Figure  2.  Changes in plant-fungal interactions between tree-dominated and shrub-dominated ecosystems over time, and implications for carbon and nitrogen cycling[18]

    图  3  环境条件对SOM转化的影响

    Figure  3.  Effects of environmental factors on soil organic matter transformation

  • [1] ZIMOV S A,SCHUUR E A G,CHAPIN F S.Climate change:permafrost and the global carbon budget[J].Science,2006,312(5780):1612-1613. doi: 10.1126/science.1128908
    [2] WHALEN E D,GRANDY A S,SOKOL N W,et al.Clarifying the evidence for microbial- and plant-derived soil organic matter,and the path toward a more quantitative understanding[J].Global Change Biology,2022,28(24):7167-7185. doi: 10.1111/gcb.16413
    [3] SCHMIDT M W I,TORN M S,ABIVEN S,et al.Persistence of soil organic matter as an ecosystem property[J].Nature,2011,478(7367):49-56. doi: 10.1038/nature10386
    [4] ZHANG L,LIU H,ZHAO H C,et al.Fluorescence and absorption characteristics of dissolved organic matter in soil profile of open-pit coal mine dump in different years[J].Research of Environmental Sciences,2021,34(8):1941-1951.
    [5] WALKER T W N,KAISER C,STRASSER F,et al.Microbial temperature sensitivity and biomass change explain soil carbon loss with warming[J].Nature Climate Change,2018,8(10):885-889. doi: 10.1038/s41558-018-0259-x
    [6] MARSCHNER B,BRODOWSKI S,DREVES A,et al.How relevant is recalcitrance for the stabilization of organic matter in soils?[J].Journal of Plant Nutrition and Soil Science,2008,171(1):91-110. doi: 10.1002/jpln.200700049
    [7] XU Z Y,HU Z H,JIAO S,et al.Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality[J].Science of the Total Environment,2023,878:162972. doi: 10.1016/j.scitotenv.2023.162972
    [8] WOOLF D,LEHMANN J.Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence[J].Scientific Reports,2019,9:6522. doi: 10.1038/s41598-019-43026-8
    [9] KELLERMAN A M,KOTHAWALA D N,DITTMAR T,et al.Persistence of dissolved organic matter in lakes related to its molecular characteristics[J].Nature Geoscience,2015,8(6):454-457. doi: 10.1038/ngeo2440
    [10] LI X N,ZHANG R H,ZHANG Q Y,et al.Research progress on the mechanism and potential of biomass carbon serving farmland ecosystem ‘carbon neutralization’[J].Research of Environmental Sciences,2023,36(2):381-392.
    [11] ANGST G,MUELLER K E,NIEROP K G J,et al.Plant- or microbial-derived? a review on the molecular composition of stabilized soil organic matter[J].Soil Biology and Biochemistry,2021,156:108189. doi: 10.1016/j.soilbio.2021.108189
    [12] GAO H N,LI C X,JIAO Y,et al.Shrubs alter alpha and beta diversity of soil fauna in a semiarid grassland[J].The Rangeland Journal,2023,44(4):213-220. doi: 10.1071/RJ22054
    [13] McDERMOTT M T,DOAK P,HANDEL C M,et al.Willow drives changes in arthropod communities of northwestern Alaska:ecological implications of shrub expansion[J].Ecosphere,2021,12(5):e03514. doi: 10.1002/ecs2.3514
    [14] LIU R T,GUO Z X,STEINBERGER Y.Differential responses of ground-active arthropod abundance and diversity to shrub afforestation in heterogeneous textured soils in desertified grassland ecosystems,North China[J].Science of the Total Environment,2022,829:154631. doi: 10.1016/j.scitotenv.2022.154631
    [15] ZHOU Q X,LI X J,OUYANG S H.Carbon-neutral organisms as the new concept in environmental sciences and research prospects[J].Journal of Agro-Environment Science,2022,41(1):1-9.
    [16] LOSAPIO G,NORTON HASDAY E,ESPADALER X,et al.Facilitation and biodiversity jointly drive mutualistic networks[J].Journal of Ecology,2021,109(5):2029-2037. doi: 10.1111/1365-2745.13593
    [17] COSTA A,VILLA S,ALONSO P,et al.Can native shrubs facilitate the early establishment of contrasted co-occurring oaks in Mediterranean grazed areas?[J].Journal of Vegetation Science,2017,28(5):1047-1056. doi: 10.1111/jvs.12550
    [18] FANIN N,CLEMMENSEN K E,LINDAHL B D,et al.Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests[J].New Phytologist,2022,236(2):684-697. doi: 10.1111/nph.18353
    [19] GENRE A,LANFRANCO L,PEROTTO S,et al.Unique and common traits in mycorrhizal symbioses[J].Nature Reviews Microbiology,2020,18(11):649-660. doi: 10.1038/s41579-020-0402-3
    [20] WANG Z H,FANG H,CHEN M.Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a Karst region,China[J].PeerJ,2017,5:e3029. doi: 10.7717/peerj.3029
    [21] BASKARAN P,HYVÖNEN R,BERGLUND S L,et al.Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems[J].New Phytologist,2017,213(3):1452-1465. doi: 10.1111/nph.14213
    [22] KYASCHENKO J,CLEMMENSEN K E,KARLTUN E,et al.Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities[J].Ecology Letters,2017,20(12):1546-1555. doi: 10.1111/ele.12862
    [23] ADAMCZYK B,ADAMCZYK S,SMOLANDER A,et al.Plant secondary metabolites:missing pieces in the soil organic matter puzzle of boreal forests[J].Soil Systems,2018,2(1):2. doi: 10.3390/soils2010002
    [24] CHEN S P,ZHUANG Q Q,CHU X L,et al.Transcriptomics of different tissues of blueberry and diversity analysis of rhizosphere fungi under cadmium stress[J].BMC Plant Biology,2021,21(1):1-19. doi: 10.1186/s12870-020-02777-7
    [25] LIU Q,CHENG L,NIAN H,et al.Linking plant functional genes to rhizosphere microbes:a review[J].Plant Biotechnology Journal,2023,21(5):902-917. doi: 10.1111/pbi.13950
    [26] ZHANG Y N,ZHANG Z Y,CHEN Q.Research progress in regulation mechanism for organic acid transporter gene expression in plants under aluminum stress[J].Molecular Plant Breeding,2017,15(12):4899-4904.
    [27] BAI B,LIU W D,QIU X Y,et al.The root microbiome:community assembly and its contributions to plant fitness[J].Journal of Integrative Plant Biology,2022,64(2):230-243. doi: 10.1111/jipb.13226
    [28] ROCHA R,LOPES T,FIDALGO C,et al.Bacteria associated with the roots of common bean (Phaseolus vulgaris L.) at different development stages:diversity and plant growth promotion[J].Microorganisms,2022,11(1):57.
    [29] QIN Y Q,ZHANG W,FENG Z W,et al.Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere[J].Applied Soil Ecology,2022,170():104294.
    [30] BONFANTE P,VENICE F,LANFRANCO L.The mycobiota:fungi take their place between plants and bacteria[J].Current Opinion in Microbiology,2019,49:18-25. doi: 10.1016/j.mib.2019.08.004
    [31] TEDERSOO L,BAHRAM M,ZOBEL M.How mycorrhizal associations drive plant population and community biology[J].Science,2020,367(6480):867-876.
    [32] MARTINO E,MORIN E,GRELET G A,et al.Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists[J].New Phytologist,2018,217(3):1213-1229. doi: 10.1111/nph.14974
    [33] YANG L B,JIANG Y B,ZHOU T,et al.Effects of litter fall on soil fungal diversity under snow cover in the greater Xing´an Mountains[J].Research of Environmental Sciences,2022,35(4):1037-1044.
    [34] CLEMMENSEN K E,FINLAY R D,DAHLBERG A,et al.Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests[J].New Phytologist,2015,205(4):1525-1536. doi: 10.1111/nph.13208
    [35] JIA B,JIA L,MOU X M,et al.Shrubification decreases soil organic carbon mineralization and its temperature sensitivity in alpine meadow soils[J].Soil Biology and Biochemistry,2022,168:108651. doi: 10.1016/j.soilbio.2022.108651
    [36] LI Z,WU S L,LIU Y J,et al.Plant biomass amendment regulates arbuscular mycorrhizal role in organic carbon and nitrogen sequestration in eco-engineered iron ore tailings[J].Geoderma,2022,428:116178. doi: 10.1016/j.geoderma.2022.116178
    [37] BI Y L,WANG X,CAI Y,et al.Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining-degraded soil by increasing photosynthetic carbon assimilation and allocation to maize[J].Environmental Science and Pollution Research,2022,29(48):72612-72627. doi: 10.1007/s11356-022-19838-z
    [38] KAUR H,SINGH S,KUMAR P.Reconditioning of plant metabolism by arbuscular mycorrhizal networks in cadmium contaminated soils:recent perspectives[J].Microbiological Research,2023,268:127293. doi: 10.1016/j.micres.2022.127293
    [39] CHANG Z Q,YE X Y,ZHANG J H.Soil water infiltration of Subalpine Shrub Forest in Qilian Mountains,northwest of China[J].Agronomy Journal,2021,113(2):829-839. doi: 10.1002/agj2.20496
    [40] ZHAO Y D,HU X,PAN P Y.Positive feedback relationship between shrub encroachment and arbuscular mycorrhizal fungi in the Inner Mongolia grassland of Northern China[J].Applied Soil Ecology,2022,177:104525. doi: 10.1016/j.apsoil.2022.104525
    [41] LEHMANN J,KLEBER M.The contentious nature of soil organic matter[J].Nature,2015,528(7580):60-68. doi: 10.1038/nature16069
    [42] WANG X Y,LIANG C,MAO J D,et al.Microbial keystone taxa drive succession of plant residue chemistry[J].The ISME Journal,2023,17(5):748-757. doi: 10.1038/s41396-023-01384-2
    [43] MENG J Y,LI H,YANG H R,et al.Diversity of phosphorus-solubilizing bacteria in rhizosphere of desert shrubs in inner Mongolia and their phosphorus-solubilizing and siderophore-producing capabilities[J].Research of Environmental Sciences,2021,34(11):2714-2721.
    [44] BAI Z,ZHAO X Y,YAN S K,et al.Microbial metabolic potential to transform plant residual carbon[J].Applied Soil Ecology,2021,157:103726. doi: 10.1016/j.apsoil.2020.103726
    [45] WANG B R,AN S S,LIANG C,et al.Microbial necromass as the source of soil organic carbon in global ecosystems[J].Soil Biology and Biochemistry,2021,162:108422. doi: 10.1016/j.soilbio.2021.108422
    [46] FANIN N,KARDOL P,FARRELL M,et al.The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[J].Soil Biology and Biochemistry,2019,128:111-114. doi: 10.1016/j.soilbio.2018.10.010
    [47] ZHANG A N,CHANG H T,LIU R T,et al.Shrub facilitative effects on the plant litter arthropod community shifts with decreasing precipitation in desertified ecosystems in northwestern China[J].Journal of Arid Environments,2022,200:104724. doi: 10.1016/j.jaridenv.2022.104724
    [48] BERDUGO M,DELGADO-BAQUERIZO M,SOLIVERES S,et al.Global ecosystem thresholds driven by aridity[J].Science,2020,367(6479):787-790. doi: 10.1126/science.aay5958
    [49] ROTH V N,LANGE M,SIMON C,et al.Persistence of dissolved organic matter explained by molecular changes during its passage through soil[J].Nature Geoscience,2019,12(9):755-761. doi: 10.1038/s41561-019-0417-4
    [50] HE J,ZHU N,XU Y S,et al.The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting[J].Bioresource Technology,2022,351:126973. doi: 10.1016/j.biortech.2022.126973
    [51] deLa ROSA J M,FARIA S R,VARELA M E,et al.Characterization of wildfire effects on soil organic matter using analytical pyrolysis[J].Geoderma,2012,191:24-30. doi: 10.1016/j.geoderma.2012.01.032
    [52] GLEIXNER G.Soil organic matter dynamics:a biological perspective derived from the use of compound-specific isotopes studies[J].Ecological Research,2013,28(5):683-695. doi: 10.1007/s11284-012-1022-9
    [53] MA S Q,DE Jiyangzong,QIN X J,et al.Soil organic matter chemistry based on pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS) technology:a review[J].Journal of Zhejiang A & F University,2021,38(5):985-999.
    [54] AHMAD B,WANG Y H,HAO J,et al.Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management[J].Forest Ecology and Management,2021,496:119399. doi: 10.1016/j.foreco.2021.119399
    [55] ZHANG B,CHEN Q,DING X L,et al.Advances in the indicator system and evaluation approaches of soil health[J].Acta Pedologica Sinica,2022,59(6):1479-1491.
    [56] YU H,FAN P,TAN W B,et al.Sustainability of soil humic substances as extracellular electron shuttle in different types of land use[J].Research of Environmental Sciences,2021,34(7):1737-1746.
    [57] STERNER R W,ELSER J J.Ecological stoichiometry:the biology of elements from molecules to the biosphere[J].Science,2003,300(5621):906-907. doi: 10.1126/science.1083140
    [58] FANG Y Y,SINGH B,COLLINS D,et al.Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil[J].Biology and Fertility of Soils,2019,56:219-233.
    [59] GE T D,LUO Y,SINGH B P.Resource stoichiometric and fertility in soil[J].Biology and Fertility of Soils,2020,56(8):1091-1092. doi: 10.1007/s00374-020-01513-5
    [60] HICKS L C,LAJTHA K,ROUSK J.Nutrient limitation may induce microbial mining for resources from persistent soil organic matter[J].Ecology,2021,102(6):e03328. doi: 10.1002/ecy.3328
    [61] CAMENZIND T,PHILIPP GRENZ K,LEHMANN J,et al.Soil fungal mycelia have unexpectedly flexible stoichiometric C∶N and C∶P ratios[J].Ecology Letters,2021,24(2):208-218. doi: 10.1111/ele.13632
    [62] CHEN J,JIA B,GANG S,et al.Decoupling of soil organic carbon and nutrient mineralization across plant communities as affected by microbial stoichiometry[J].Biology and Fertility of Soils,2022,58(6):693-706. doi: 10.1007/s00374-022-01655-8
    [63] ZHU Z K,XIAO M L,WEI L,et al.Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality[J].Chinese Journal of Eco-Agriculture,2022,30(4):592-602.
    [64] HEMINGWAY J D,ROTHMAN D H,GRANT K E,et al.Mineral protection regulates long-term global preservation of natural organic carbon[J].Nature,2019,570(7760):228-231. doi: 10.1038/s41586-019-1280-6
    [65] NEURATH R A,PETT-RIDGE J,CHU-JACOBY I,et al.Root carbon interaction with soil minerals is dynamic,leaving a legacy of microbially derived residues[J].Environmental Science & Technology,2021,55(19):13345-13355.
    [66] XU Y Z,LIU K,YAO S H,et al.Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality[J].Geoderma,2022,412:115727. doi: 10.1016/j.geoderma.2022.115727
    [67] YANG C B,WANG A K,ZHU Z X,et al.Impact of extensive management system on soil properties and carbon sequestration under an age chronosequence of Moso bamboo plantations in subtropical China[J].Forest Ecology and Management,2021,497:119535. doi: 10.1016/j.foreco.2021.119535
    [68] VOGEL C,MUELLER C W,HÖSCHEN C,et al.Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils[J].Nature Communications,2014,5:2947. doi: 10.1038/ncomms3947
    [69] QU H,ZHAO X Y,WANG S K,et al.Abiotic factors affect leaf litter mass loss more strongly than initial litter traits under sand burial conditions[J].CATENA,2021,196:104900. doi: 10.1016/j.catena.2020.104900
    [70] VIITAMÄKI S,PESSI I S,VIRKKALA A M,et al.The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types[J].FEMS Microbiology Ecology,2022,98(8):1-11.
    [71] ZHU P Z,ZHANG G H,ZHANG B J.Soil saturated hydraulic conductivity of typical revegetated plants on steep gully slopes of Chinese Loess Plateau[J].Geoderma,2022,412:115717. doi: 10.1016/j.geoderma.2022.115717
    [72] MARQUART A,GOLDBACH L,BLAUM N.Soil-texture affects the influence of termite macropores on soil water infiltration in a semi-arid savanna[J].Ecohydrology,2020,13(8):e2249. doi: 10.1002/eco.2249
    [73] QUORESHI A M,KUMAR V,ADELEKE R,et al.Editorial:soils and vegetation in desert and arid regions:soil system processes,biodiversity and ecosystem functioning,and restoration[J].Frontiers in Environmental Science,2022,10:962905. doi: 10.3389/fenvs.2022.962905
    [74] LI H F,YU J L,SHAO X N,et al.Effects of six shrub species in semi-humid region on the rainfall interceptions[J].Science of Soil and Water Conservation,2022,20(6):83-93.
    [75] LIU L,XU X,ZHANG L,et al.Global patterns of species richness of the holarctic alpine herb Saxifraga:the role of temperature and habitat heterogeneity[J].Journal of Plant Ecology,2022,15(2):237-252. doi: 10.1093/jpe/rtab085
    [76] XU M Z,ZHA T S,TIAN Y,et al.Elevated physiological plasticity in xerophytic-deciduous shrubs as demonstrated in their variable maximum carboxylation rate[J].Ecological Indicators,2022,144:109475. doi: 10.1016/j.ecolind.2022.109475
    [77] LIAO C R,LI H D,LV G P,et al.Stability and micro-topographic effects of Sophora moorcroftiana population on a restored alluvial fan,Southern Tibetan Plateau[J].Land Degradation & Development,2021,32(5):2037-2049.
    [78] HAPPONEN K,VIRKKALA A M,KEMPPINEN J,et al.Relationships between above-ground plant traits and carbon cycling in tundra plant communities[J].Journal of Ecology,2022,110(3):700-716. doi: 10.1111/1365-2745.13832
    [79] MASCHLER J,BIALIC-MURPHY L,WAN J,et al.Links across ecological scales:plant biomass responses to elevated CO2[J].Global Change Biology,2022,28(21):6115-6134. doi: 10.1111/gcb.16351
    [80] AINSWORTH E A,ROGERS A.The response of photosynthesis and stomatal conductance to rising [CO2]:mechanisms and environmental interactions[J].Plant,Cell & Environment,2007,30(3):258-270.
    [81] TIHOMIR S,DAVIEMARTIN CLEO L,JULIE P,et al.Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs[J].Science of the Total Environment,2022,837:155783. doi: 10.1016/j.scitotenv.2022.155783
  • 加载中
图(3)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  7
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-06-24
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回