[1] |
ZIMOV S A,SCHUUR E A G,CHAPIN F S.Climate change:permafrost and the global carbon budget[J].Science,2006,312(5780):1612-1613. doi: 10.1126/science.1128908
|
[2] |
WHALEN E D,GRANDY A S,SOKOL N W,et al.Clarifying the evidence for microbial- and plant-derived soil organic matter,and the path toward a more quantitative understanding[J].Global Change Biology,2022,28(24):7167-7185. doi: 10.1111/gcb.16413
|
[3] |
SCHMIDT M W I,TORN M S,ABIVEN S,et al.Persistence of soil organic matter as an ecosystem property[J].Nature,2011,478(7367):49-56. doi: 10.1038/nature10386
|
[4] |
ZHANG L,LIU H,ZHAO H C,et al.Fluorescence and absorption characteristics of dissolved organic matter in soil profile of open-pit coal mine dump in different years[J].Research of Environmental Sciences,2021,34(8):1941-1951.
|
[5] |
WALKER T W N,KAISER C,STRASSER F,et al.Microbial temperature sensitivity and biomass change explain soil carbon loss with warming[J].Nature Climate Change,2018,8(10):885-889. doi: 10.1038/s41558-018-0259-x
|
[6] |
MARSCHNER B,BRODOWSKI S,DREVES A,et al.How relevant is recalcitrance for the stabilization of organic matter in soils?[J].Journal of Plant Nutrition and Soil Science,2008,171(1):91-110. doi: 10.1002/jpln.200700049
|
[7] |
XU Z Y,HU Z H,JIAO S,et al.Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality[J].Science of the Total Environment,2023,878:162972. doi: 10.1016/j.scitotenv.2023.162972
|
[8] |
WOOLF D,LEHMANN J.Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence[J].Scientific Reports,2019,9:6522. doi: 10.1038/s41598-019-43026-8
|
[9] |
KELLERMAN A M,KOTHAWALA D N,DITTMAR T,et al.Persistence of dissolved organic matter in lakes related to its molecular characteristics[J].Nature Geoscience,2015,8(6):454-457. doi: 10.1038/ngeo2440
|
[10] |
LI X N,ZHANG R H,ZHANG Q Y,et al.Research progress on the mechanism and potential of biomass carbon serving farmland ecosystem ‘carbon neutralization’[J].Research of Environmental Sciences,2023,36(2):381-392.
|
[11] |
ANGST G,MUELLER K E,NIEROP K G J,et al.Plant- or microbial-derived? a review on the molecular composition of stabilized soil organic matter[J].Soil Biology and Biochemistry,2021,156:108189. doi: 10.1016/j.soilbio.2021.108189
|
[12] |
GAO H N,LI C X,JIAO Y,et al.Shrubs alter alpha and beta diversity of soil fauna in a semiarid grassland[J].The Rangeland Journal,2023,44(4):213-220. doi: 10.1071/RJ22054
|
[13] |
McDERMOTT M T,DOAK P,HANDEL C M,et al.Willow drives changes in arthropod communities of northwestern Alaska:ecological implications of shrub expansion[J].Ecosphere,2021,12(5):e03514. doi: 10.1002/ecs2.3514
|
[14] |
LIU R T,GUO Z X,STEINBERGER Y.Differential responses of ground-active arthropod abundance and diversity to shrub afforestation in heterogeneous textured soils in desertified grassland ecosystems,North China[J].Science of the Total Environment,2022,829:154631. doi: 10.1016/j.scitotenv.2022.154631
|
[15] |
ZHOU Q X,LI X J,OUYANG S H.Carbon-neutral organisms as the new concept in environmental sciences and research prospects[J].Journal of Agro-Environment Science,2022,41(1):1-9.
|
[16] |
LOSAPIO G,NORTON HASDAY E,ESPADALER X,et al.Facilitation and biodiversity jointly drive mutualistic networks[J].Journal of Ecology,2021,109(5):2029-2037. doi: 10.1111/1365-2745.13593
|
[17] |
COSTA A,VILLA S,ALONSO P,et al.Can native shrubs facilitate the early establishment of contrasted co-occurring oaks in Mediterranean grazed areas?[J].Journal of Vegetation Science,2017,28(5):1047-1056. doi: 10.1111/jvs.12550
|
[18] |
FANIN N,CLEMMENSEN K E,LINDAHL B D,et al.Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests[J].New Phytologist,2022,236(2):684-697. doi: 10.1111/nph.18353
|
[19] |
GENRE A,LANFRANCO L,PEROTTO S,et al.Unique and common traits in mycorrhizal symbioses[J].Nature Reviews Microbiology,2020,18(11):649-660. doi: 10.1038/s41579-020-0402-3
|
[20] |
WANG Z H,FANG H,CHEN M.Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a Karst region,China[J].PeerJ,2017,5:e3029. doi: 10.7717/peerj.3029
|
[21] |
BASKARAN P,HYVÖNEN R,BERGLUND S L,et al.Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems[J].New Phytologist,2017,213(3):1452-1465. doi: 10.1111/nph.14213
|
[22] |
KYASCHENKO J,CLEMMENSEN K E,KARLTUN E,et al.Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities[J].Ecology Letters,2017,20(12):1546-1555. doi: 10.1111/ele.12862
|
[23] |
ADAMCZYK B,ADAMCZYK S,SMOLANDER A,et al.Plant secondary metabolites:missing pieces in the soil organic matter puzzle of boreal forests[J].Soil Systems,2018,2(1):2. doi: 10.3390/soils2010002
|
[24] |
CHEN S P,ZHUANG Q Q,CHU X L,et al.Transcriptomics of different tissues of blueberry and diversity analysis of rhizosphere fungi under cadmium stress[J].BMC Plant Biology,2021,21(1):1-19. doi: 10.1186/s12870-020-02777-7
|
[25] |
LIU Q,CHENG L,NIAN H,et al.Linking plant functional genes to rhizosphere microbes:a review[J].Plant Biotechnology Journal,2023,21(5):902-917. doi: 10.1111/pbi.13950
|
[26] |
ZHANG Y N,ZHANG Z Y,CHEN Q.Research progress in regulation mechanism for organic acid transporter gene expression in plants under aluminum stress[J].Molecular Plant Breeding,2017,15(12):4899-4904.
|
[27] |
BAI B,LIU W D,QIU X Y,et al.The root microbiome:community assembly and its contributions to plant fitness[J].Journal of Integrative Plant Biology,2022,64(2):230-243. doi: 10.1111/jipb.13226
|
[28] |
ROCHA R,LOPES T,FIDALGO C,et al.Bacteria associated with the roots of common bean (Phaseolus vulgaris L.) at different development stages:diversity and plant growth promotion[J].Microorganisms,2022,11(1):57.
|
[29] |
QIN Y Q,ZHANG W,FENG Z W,et al.Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere[J].Applied Soil Ecology,2022,170():104294.
|
[30] |
BONFANTE P,VENICE F,LANFRANCO L.The mycobiota:fungi take their place between plants and bacteria[J].Current Opinion in Microbiology,2019,49:18-25. doi: 10.1016/j.mib.2019.08.004
|
[31] |
TEDERSOO L,BAHRAM M,ZOBEL M.How mycorrhizal associations drive plant population and community biology[J].Science,2020,367(6480):867-876.
|
[32] |
MARTINO E,MORIN E,GRELET G A,et al.Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists[J].New Phytologist,2018,217(3):1213-1229. doi: 10.1111/nph.14974
|
[33] |
YANG L B,JIANG Y B,ZHOU T,et al.Effects of litter fall on soil fungal diversity under snow cover in the greater Xing´an Mountains[J].Research of Environmental Sciences,2022,35(4):1037-1044.
|
[34] |
CLEMMENSEN K E,FINLAY R D,DAHLBERG A,et al.Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests[J].New Phytologist,2015,205(4):1525-1536. doi: 10.1111/nph.13208
|
[35] |
JIA B,JIA L,MOU X M,et al.Shrubification decreases soil organic carbon mineralization and its temperature sensitivity in alpine meadow soils[J].Soil Biology and Biochemistry,2022,168:108651. doi: 10.1016/j.soilbio.2022.108651
|
[36] |
LI Z,WU S L,LIU Y J,et al.Plant biomass amendment regulates arbuscular mycorrhizal role in organic carbon and nitrogen sequestration in eco-engineered iron ore tailings[J].Geoderma,2022,428:116178. doi: 10.1016/j.geoderma.2022.116178
|
[37] |
BI Y L,WANG X,CAI Y,et al.Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining-degraded soil by increasing photosynthetic carbon assimilation and allocation to maize[J].Environmental Science and Pollution Research,2022,29(48):72612-72627. doi: 10.1007/s11356-022-19838-z
|
[38] |
KAUR H,SINGH S,KUMAR P.Reconditioning of plant metabolism by arbuscular mycorrhizal networks in cadmium contaminated soils:recent perspectives[J].Microbiological Research,2023,268:127293. doi: 10.1016/j.micres.2022.127293
|
[39] |
CHANG Z Q,YE X Y,ZHANG J H.Soil water infiltration of Subalpine Shrub Forest in Qilian Mountains,northwest of China[J].Agronomy Journal,2021,113(2):829-839. doi: 10.1002/agj2.20496
|
[40] |
ZHAO Y D,HU X,PAN P Y.Positive feedback relationship between shrub encroachment and arbuscular mycorrhizal fungi in the Inner Mongolia grassland of Northern China[J].Applied Soil Ecology,2022,177:104525. doi: 10.1016/j.apsoil.2022.104525
|
[41] |
LEHMANN J,KLEBER M.The contentious nature of soil organic matter[J].Nature,2015,528(7580):60-68. doi: 10.1038/nature16069
|
[42] |
WANG X Y,LIANG C,MAO J D,et al.Microbial keystone taxa drive succession of plant residue chemistry[J].The ISME Journal,2023,17(5):748-757. doi: 10.1038/s41396-023-01384-2
|
[43] |
MENG J Y,LI H,YANG H R,et al.Diversity of phosphorus-solubilizing bacteria in rhizosphere of desert shrubs in inner Mongolia and their phosphorus-solubilizing and siderophore-producing capabilities[J].Research of Environmental Sciences,2021,34(11):2714-2721.
|
[44] |
BAI Z,ZHAO X Y,YAN S K,et al.Microbial metabolic potential to transform plant residual carbon[J].Applied Soil Ecology,2021,157:103726. doi: 10.1016/j.apsoil.2020.103726
|
[45] |
WANG B R,AN S S,LIANG C,et al.Microbial necromass as the source of soil organic carbon in global ecosystems[J].Soil Biology and Biochemistry,2021,162:108422. doi: 10.1016/j.soilbio.2021.108422
|
[46] |
FANIN N,KARDOL P,FARRELL M,et al.The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[J].Soil Biology and Biochemistry,2019,128:111-114. doi: 10.1016/j.soilbio.2018.10.010
|
[47] |
ZHANG A N,CHANG H T,LIU R T,et al.Shrub facilitative effects on the plant litter arthropod community shifts with decreasing precipitation in desertified ecosystems in northwestern China[J].Journal of Arid Environments,2022,200:104724. doi: 10.1016/j.jaridenv.2022.104724
|
[48] |
BERDUGO M,DELGADO-BAQUERIZO M,SOLIVERES S,et al.Global ecosystem thresholds driven by aridity[J].Science,2020,367(6479):787-790. doi: 10.1126/science.aay5958
|
[49] |
ROTH V N,LANGE M,SIMON C,et al.Persistence of dissolved organic matter explained by molecular changes during its passage through soil[J].Nature Geoscience,2019,12(9):755-761. doi: 10.1038/s41561-019-0417-4
|
[50] |
HE J,ZHU N,XU Y S,et al.The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting[J].Bioresource Technology,2022,351:126973. doi: 10.1016/j.biortech.2022.126973
|
[51] |
deLa ROSA J M,FARIA S R,VARELA M E,et al.Characterization of wildfire effects on soil organic matter using analytical pyrolysis[J].Geoderma,2012,191:24-30. doi: 10.1016/j.geoderma.2012.01.032
|
[52] |
GLEIXNER G.Soil organic matter dynamics:a biological perspective derived from the use of compound-specific isotopes studies[J].Ecological Research,2013,28(5):683-695. doi: 10.1007/s11284-012-1022-9
|
[53] |
MA S Q,DE Jiyangzong,QIN X J,et al.Soil organic matter chemistry based on pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS) technology:a review[J].Journal of Zhejiang A & F University,2021,38(5):985-999.
|
[54] |
AHMAD B,WANG Y H,HAO J,et al.Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management[J].Forest Ecology and Management,2021,496:119399. doi: 10.1016/j.foreco.2021.119399
|
[55] |
ZHANG B,CHEN Q,DING X L,et al.Advances in the indicator system and evaluation approaches of soil health[J].Acta Pedologica Sinica,2022,59(6):1479-1491.
|
[56] |
YU H,FAN P,TAN W B,et al.Sustainability of soil humic substances as extracellular electron shuttle in different types of land use[J].Research of Environmental Sciences,2021,34(7):1737-1746.
|
[57] |
STERNER R W,ELSER J J.Ecological stoichiometry:the biology of elements from molecules to the biosphere[J].Science,2003,300(5621):906-907. doi: 10.1126/science.1083140
|
[58] |
FANG Y Y,SINGH B,COLLINS D,et al.Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil[J].Biology and Fertility of Soils,2019,56:219-233.
|
[59] |
GE T D,LUO Y,SINGH B P.Resource stoichiometric and fertility in soil[J].Biology and Fertility of Soils,2020,56(8):1091-1092. doi: 10.1007/s00374-020-01513-5
|
[60] |
HICKS L C,LAJTHA K,ROUSK J.Nutrient limitation may induce microbial mining for resources from persistent soil organic matter[J].Ecology,2021,102(6):e03328. doi: 10.1002/ecy.3328
|
[61] |
CAMENZIND T,PHILIPP GRENZ K,LEHMANN J,et al.Soil fungal mycelia have unexpectedly flexible stoichiometric C∶N and C∶P ratios[J].Ecology Letters,2021,24(2):208-218. doi: 10.1111/ele.13632
|
[62] |
CHEN J,JIA B,GANG S,et al.Decoupling of soil organic carbon and nutrient mineralization across plant communities as affected by microbial stoichiometry[J].Biology and Fertility of Soils,2022,58(6):693-706. doi: 10.1007/s00374-022-01655-8
|
[63] |
ZHU Z K,XIAO M L,WEI L,et al.Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality[J].Chinese Journal of Eco-Agriculture,2022,30(4):592-602.
|
[64] |
HEMINGWAY J D,ROTHMAN D H,GRANT K E,et al.Mineral protection regulates long-term global preservation of natural organic carbon[J].Nature,2019,570(7760):228-231. doi: 10.1038/s41586-019-1280-6
|
[65] |
NEURATH R A,PETT-RIDGE J,CHU-JACOBY I,et al.Root carbon interaction with soil minerals is dynamic,leaving a legacy of microbially derived residues[J].Environmental Science & Technology,2021,55(19):13345-13355.
|
[66] |
XU Y Z,LIU K,YAO S H,et al.Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality[J].Geoderma,2022,412:115727. doi: 10.1016/j.geoderma.2022.115727
|
[67] |
YANG C B,WANG A K,ZHU Z X,et al.Impact of extensive management system on soil properties and carbon sequestration under an age chronosequence of Moso bamboo plantations in subtropical China[J].Forest Ecology and Management,2021,497:119535. doi: 10.1016/j.foreco.2021.119535
|
[68] |
VOGEL C,MUELLER C W,HÖSCHEN C,et al.Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils[J].Nature Communications,2014,5:2947. doi: 10.1038/ncomms3947
|
[69] |
QU H,ZHAO X Y,WANG S K,et al.Abiotic factors affect leaf litter mass loss more strongly than initial litter traits under sand burial conditions[J].CATENA,2021,196:104900. doi: 10.1016/j.catena.2020.104900
|
[70] |
VIITAMÄKI S,PESSI I S,VIRKKALA A M,et al.The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types[J].FEMS Microbiology Ecology,2022,98(8):1-11.
|
[71] |
ZHU P Z,ZHANG G H,ZHANG B J.Soil saturated hydraulic conductivity of typical revegetated plants on steep gully slopes of Chinese Loess Plateau[J].Geoderma,2022,412:115717. doi: 10.1016/j.geoderma.2022.115717
|
[72] |
MARQUART A,GOLDBACH L,BLAUM N.Soil-texture affects the influence of termite macropores on soil water infiltration in a semi-arid savanna[J].Ecohydrology,2020,13(8):e2249. doi: 10.1002/eco.2249
|
[73] |
QUORESHI A M,KUMAR V,ADELEKE R,et al.Editorial:soils and vegetation in desert and arid regions:soil system processes,biodiversity and ecosystem functioning,and restoration[J].Frontiers in Environmental Science,2022,10:962905. doi: 10.3389/fenvs.2022.962905
|
[74] |
LI H F,YU J L,SHAO X N,et al.Effects of six shrub species in semi-humid region on the rainfall interceptions[J].Science of Soil and Water Conservation,2022,20(6):83-93.
|
[75] |
LIU L,XU X,ZHANG L,et al.Global patterns of species richness of the holarctic alpine herb Saxifraga:the role of temperature and habitat heterogeneity[J].Journal of Plant Ecology,2022,15(2):237-252. doi: 10.1093/jpe/rtab085
|
[76] |
XU M Z,ZHA T S,TIAN Y,et al.Elevated physiological plasticity in xerophytic-deciduous shrubs as demonstrated in their variable maximum carboxylation rate[J].Ecological Indicators,2022,144:109475. doi: 10.1016/j.ecolind.2022.109475
|
[77] |
LIAO C R,LI H D,LV G P,et al.Stability and micro-topographic effects of Sophora moorcroftiana population on a restored alluvial fan,Southern Tibetan Plateau[J].Land Degradation & Development,2021,32(5):2037-2049.
|
[78] |
HAPPONEN K,VIRKKALA A M,KEMPPINEN J,et al.Relationships between above-ground plant traits and carbon cycling in tundra plant communities[J].Journal of Ecology,2022,110(3):700-716. doi: 10.1111/1365-2745.13832
|
[79] |
MASCHLER J,BIALIC-MURPHY L,WAN J,et al.Links across ecological scales:plant biomass responses to elevated CO2[J].Global Change Biology,2022,28(21):6115-6134. doi: 10.1111/gcb.16351
|
[80] |
AINSWORTH E A,ROGERS A.The response of photosynthesis and stomatal conductance to rising [CO2]:mechanisms and environmental interactions[J].Plant,Cell & Environment,2007,30(3):258-270.
|
[81] |
TIHOMIR S,DAVIEMARTIN CLEO L,JULIE P,et al.Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs[J].Science of the Total Environment,2022,837:155783. doi: 10.1016/j.scitotenv.2022.155783
|