留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国省际碳排放脱钩效应及驱动因素分析

花瑞祥 蓝艳 李嘉文 景宜然 贾惜春 柴伊琳 李盼文

花瑞祥, 蓝艳, 李嘉文, 景宜然, 贾惜春, 柴伊琳, 李盼文. 中国省际碳排放脱钩效应及驱动因素分析[J]. 环境科学研究, 2023, 36(11): 2159-2168. doi: 10.13198/j.issn.1001-6929.2023.05.09
引用本文: 花瑞祥, 蓝艳, 李嘉文, 景宜然, 贾惜春, 柴伊琳, 李盼文. 中国省际碳排放脱钩效应及驱动因素分析[J]. 环境科学研究, 2023, 36(11): 2159-2168. doi: 10.13198/j.issn.1001-6929.2023.05.09
HUA Ruixiang, LAN Yan, LI Jiawen, JING Yiran, JIA Xichun, CHAI Yilin, LI Panwen. Analysis of the Decoupling Effect and Driving Factors of Inter-Provincial Carbon Emissions in China[J]. Research of Environmental Sciences, 2023, 36(11): 2159-2168. doi: 10.13198/j.issn.1001-6929.2023.05.09
Citation: HUA Ruixiang, LAN Yan, LI Jiawen, JING Yiran, JIA Xichun, CHAI Yilin, LI Panwen. Analysis of the Decoupling Effect and Driving Factors of Inter-Provincial Carbon Emissions in China[J]. Research of Environmental Sciences, 2023, 36(11): 2159-2168. doi: 10.13198/j.issn.1001-6929.2023.05.09

中国省际碳排放脱钩效应及驱动因素分析

doi: 10.13198/j.issn.1001-6929.2023.05.09
基金项目: 世界资源研究所支持“一带一路”项目绿色发展指南研究(第三期)
详细信息
    作者简介:

    花瑞祥(1992-),男,安徽无为人,工程师,硕士,主要从事环境经济学研究,hua.ruixiang@fecomee.org.cn

  • 中图分类号: X24

Analysis of the Decoupling Effect and Driving Factors of Inter-Provincial Carbon Emissions in China

Funds: Greening BRI Subproject Supporting BRI International Green Development Coalition (BRIGC) on Joint Study on Green Development Guidance for BRI Projects Phase Ⅲ by World Resources Institute
  • 摘要: 探究省际碳排放和经济发展的脱钩情况及驱动因素,可为实现中国式现代化和“双碳”目标提供借鉴参考. 本文结合Tapio脱钩模型和冗余分析,分析了我国各省份碳排放与经济发展的脱钩关系及年度脱钩状态转移情况,研究了第一、二、三产业活动碳排放的主要驱动因素(不包括西藏自治区和港澳台地区数据). 结果表明:①2015—2019年,我国碳排放与经济发展总体呈脱钩状态的省份有22个,呈扩张连接状态的省份有2个,呈负脱钩状态的省份有6个. 各省份年度脱钩状态呈现波动变化趋势,且以强脱钩和弱脱钩相互转换为主. ②第一产业活动碳排放与总人口、第二产业增加值相关性均较强,第二产业活动碳排放与总人口、第二产业增加值、能源结构相关性均较强,第三产业活动碳排放与总人口、GDP、科学研究与试验发展(R & D)经费、有效发明专利数、第二产业增加值相关性均较强. 人口、经济规模是碳排放增加的主要驱动因素,而技术进步、能源结构则是碳排放减少的重要因素. ③相较未脱钩状态,脱钩状态下总人口、经济规模、技术水平、能源结构均与碳排放的相关性较大. 研究显示,中国省级碳排放的主要驱动因素为人口和经济规模,碳排放与经济社会发展脱钩的主要驱动因素是技术水平和能源结构.

     

  • 图  1  2016—2019年我国省际碳排放与经济发展年度脱钩状态转移示意

    Figure  1.  The transition of annual decoupling status of provinces in China from 2016 to 2019

    图  2  2015—2019年经济社会因子与碳排放的冗余分析排序

    Figure  2.  Correlation plots of RDA on the relationship between socio-economic factors and carbon emissions from 2015 to 2019

    图  3  不同脱钩情况下社会经济因子与碳排放的冗余分析排序

    Figure  3.  Correlation plots of RDA on the relationship between socio-economic factors and carbon emissions under different decoupling status

    表  1  Tapio脱钩状态分类

    Table  1.   The classification of Tapio decoupling status

    脱钩状态 环境压力 经济增长 脱钩指数
    脱钩 强脱钩 <0 >0 (−∞, 0)
    弱脱钩 >0 >0 [0, 0.8)
    衰退脱钩 <0 <0 (1.2, +∞)
    连接 扩张连接 >0 >0 [0.8, 1.2]
    衰退连接 <0 <0 [0.8, 1.2]
    负脱钩 弱负脱钩 <0 <0 [0, 0.8)
    扩张负脱钩 >0 >0 (1.2, +∞)
    强负脱钩 >0 <0 (−∞, 0)
    下载: 导出CSV

    表  2  2015—2019年我国省际碳排放与经济发展脱钩情况

    Table  2.   The decoupling status between carbon emissions and economic development of provinces in China from 2015 to 2019

    省份 脱钩指数 脱钩状态 省份 脱钩指数 脱钩状态
    北京市 −0.09 强脱钩 河南省 −0.27 强脱钩
    天津市 −0.18 强负脱钩 湖北省 0.21 弱脱钩
    河北省 0.90 扩张连接 湖南省 0.16 弱脱钩
    山西省 0.68 弱脱钩 广东省 0.29 弱脱钩
    内蒙古自治区 −9.23 强负脱钩 广西壮族自治区 0.81 扩张连接
    辽宁省 −0.61 强负脱钩 海南省 0.04 弱脱钩
    吉林省 0.13 弱负脱钩 重庆市 −0.10 强脱钩
    黑龙江省 −0.18 强负脱钩 四川省 −0.09 强脱钩
    上海市 −0.02 强脱钩 贵州省 0.19 弱脱钩
    江苏省 0.27 弱脱钩 云南省 0.05 弱脱钩
    浙江省 0.01 弱脱钩 陕西省 0.10 弱脱钩
    安徽省 0.18 弱脱钩 甘肃省 0.10 弱脱钩
    福建省 0.30 弱脱钩 青海省 0.03 弱脱钩
    江西省 0.25 弱脱钩 宁夏回族自治区 0.04 扩张负脱钩
    山东省 0.76 弱脱钩 新疆维吾尔自治区 0.70 弱脱钩
    下载: 导出CSV

    表  3  我国省际碳排放与经济发展年度脱钩情况

    Table  3.   The annual decoupling status between carbon emissions and economic development of provinces in China

    省份 2016年 2017年 2018年 2019年
    北京市 强脱钩 强脱钩 弱脱钩 强脱钩
    天津市 强脱钩 强脱钩 扩张负脱钩 强负脱钩
    河北省 弱脱钩 强脱钩 扩张负脱钩 强负脱钩
    山西省 扩张负脱钩 弱脱钩 弱脱钩 扩张负脱钩
    内蒙古自治区 弱脱钩 强负脱钩 扩张负脱钩 强负脱钩
    辽宁省 弱负脱钩 弱脱钩 弱脱钩 强负脱钩
    吉林省 强脱钩 强负脱钩 强脱钩 强负脱钩
    黑龙江省 扩张连接 强脱钩 强脱钩 强负脱钩
    上海市 强脱钩 弱脱钩 强脱钩 弱脱钩
    江苏省 弱脱钩 弱脱钩 弱脱钩 弱脱钩
    浙江省 强脱钩 弱脱钩 弱脱钩 强脱钩
    安徽省 弱脱钩 弱脱钩 弱脱钩 弱脱钩
    福建省 强脱钩 弱脱钩 扩张连接 弱脱钩
    江西省 弱脱钩 弱脱钩 弱脱钩 弱脱钩
    山东省 弱脱钩 强脱钩 扩张负脱钩 强负脱钩
    河南省 强脱钩 强脱钩 强脱钩 强脱钩
    湖北省 弱脱钩 弱脱钩 强脱钩 弱脱钩
    湖南省 弱脱钩 弱脱钩 强脱钩 弱脱钩
    广东省 弱脱钩 弱脱钩 弱脱钩 弱脱钩
    广西壮族自治区 弱脱钩 扩张负脱钩 弱脱钩 扩张负脱钩
    海南省 强脱钩 弱脱钩 弱脱钩 弱脱钩
    重庆市 强脱钩 弱脱钩 弱脱钩 强脱钩
    四川省 强脱钩 强脱钩 强脱钩 弱脱钩
    贵州省 弱脱钩 弱脱钩 强脱钩 弱脱钩
    云南省 弱脱钩 弱脱钩 弱脱钩 强脱钩
    陕西省 强脱钩 弱脱钩 弱脱钩 扩张负脱钩
    甘肃省 强脱钩 强脱钩 弱脱钩 弱脱钩
    青海省 扩张负脱钩 强脱钩 强脱钩 强脱钩
    宁夏回族自治区 扩张负脱钩 扩张负脱钩 扩张连接 扩张负脱钩
    新疆维吾尔自治区 扩张负脱钩 弱脱钩 弱脱钩 弱脱钩
    下载: 导出CSV

    表  4  2015—2019年经济社会因子与碳排放冗余分析结果

    Table  4.   The RDA results of socio-economic factors and carbon emissions from 2015 to 2019

    年份 统计量 第1轴 第2轴 第3轴 第4轴
    2015 特征值 0.70 0.08 0.03 0.12
    累计解释量/% 69.71 77.40 80.63 92.48
    相关度 0.94 0.81 0.61 0.00
    相关度累计解释量/% 86.46 96.00 100.00 100.00
    2016 特征值 0.68 0.08 0.04 0.13
    累计解释量/% 68.16 76.37 80.33 93.65
    相关度 0.93 0.80 0.71 0.00
    相关度累计解释量/% 84.86 95.07 100.00 100.00
    2017 特征值 0.66 0.09 0.03 0.14
    累计解释量/% 66.28 75.64 78.93 92.67
    相关度 0.93 0.79 0.64 0.00
    相关度累计解释量/% 83.97 95.84 100.00 100.00
    2018 特征值 0.65 0.09 0.04 0.12
    累计解释量/% 64.63 74.05 77.70 89.66
    相关度 0.93 0.79 0.61 0.00
    相关度累计解释量/% 83.18 95.30 100.00 100.00
    2019 特征值 0.65 0.11 0.04 0.10
    累计解释量/% 65.12 75.50 79.48 89.50
    相关度 0.94 0.81 0.62 0.00
    相关度累计解释量/% 81.94 95.11 100.00 100.00
    下载: 导出CSV

    表  5  不同脱钩下社会经济因子与碳排放冗余分析结果

    Table  5.   The RDA results of socio-economic factors and carbon emissions under different decoupling status

    脱钩状态 统计量 第1轴 第2轴 第3轴 第4轴
    脱钩 特征值 0.68 0.11 0.01 0.12
    累计解释量/% 67.72 78.33 79.74 91.33
    相关度 0.93 0.83 0.48 0.00
    相关度累计解释量/% 84.92 98.23 100.00 100.00
    未脱钩 特征值 0.76 0.15 0.02 0.03
    累计解释量/% 76.38 91.79 93.94 97.20
    相关度 0.98 0.94 0.86 0.00
    相关度累计解释量/% 81.30 97.70 100.00 100.00
    下载: 导出CSV
  • [1] ZHENG X Q,LU Y L,YUAN J J,et al.Drivers of change in China′s energy-related CO2 emissions[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(1):29-36.
    [2] 崔学勤,蔡闻佳,施小明,等.当前应对气候变化的力度决定未来中国的公众健康水平[J].科学通报,2020,65(1):12-17.

    CUI X Q,CAI W J,SHI X M,et al.The nature and scale of the response to climate change will determine the human health for centuries to come in China[J].Chinese Science Bulletin,2020,65(1):12-17.
    [3] HONG C P,ZHANG Q,ZHANG Y,et al.Impacts of climate change on future air quality and human health in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(35):17193-17200.
    [4] 舒娱琴.中国能源消费碳排放的时空特征[J].生态学报,2012,32(16):4950-4960. doi: 10.5846/stxb201109071317

    SHU Y Q.Spatiotemporal characteristics of carbon emissions from energy consumption in China[J].Acta Ecologica Sinica,2012,32(16):4950-4960. doi: 10.5846/stxb201109071317
    [5] 原嫄,周洁.中国省域尺度下产业结构多维度特征及演化对碳排放的影响[J].自然资源学报,2021,36(12):3186-3202. doi: 10.31497/zrzyxb.20211213

    YUAN Y,ZHOU J.Influence of multi-dimensional characteristics and evolution of industrial structure on carbon emissions at provincial scale in China[J].Journal of Natural Resources,2021,36(12):3186-3202. doi: 10.31497/zrzyxb.20211213
    [6] ANDERSEN M S .Do ‘green’ taxes work?decoupling environmental pressures and economic growth[J].Public Policy Research,2005,79-84.
    [7] WANG Q,ZHANG F Y.The effects of trade openness on decoupling carbon emissions from economic growth:evidence from 182 countries[J].Journal of Cleaner Production,2021,279:123838. doi: 10.1016/j.jclepro.2020.123838
    [8] XU W H,XIE Y L,XIA D H,et al.A multi-sectoral decomposition and decoupling analysis of carbon emissions in Guangdong Province,China[J].Journal of Environmental Management,2021,298:113485. doi: 10.1016/j.jenvman.2021.113485
    [9] WANG Q,ZHAO M M,LI R R.Decoupling sectoral economic output from carbon emissions on city level:a comparative study of Beijing and Shanghai,China[J].Journal of Cleaner Production,2019,209:126-133. doi: 10.1016/j.jclepro.2018.10.188
    [10] RAZA M Y,LIN B Q.Decoupling and mitigation potential analysis of CO2 emissions from Pakistan´s transport sector[J].Science of the Total Environment,2020,730:139000. doi: 10.1016/j.scitotenv.2020.139000
    [11] WANG M,FENG C.Decoupling economic growth from carbon dioxide emissions in China´s metal industrial sectors:a technological and efficiency perspective[J].Science of the Total Environment,2019,691:1173-1181. doi: 10.1016/j.scitotenv.2019.07.190
    [12] XIE P J,GAO S S,SUN F H.An analysis of the decoupling relationship between CO2 emission in power industry and GDP in China based on LMDI method[J].Journal of Cleaner Production,2019,211:598-606. doi: 10.1016/j.jclepro.2018.11.212
    [13] 张赫,黄雅哲,王睿,等.中国县域碳排放脱钩关系及其时空特征演变[J].资源科学,2022,44(4):744-755.

    ZHANG H,HUANG Y Z,WANG R,et al.Decoupling and spatiotemporal change of carbon emissions at the county level in China[J].Resources Science,2022,44(4):744-755.
    [14] 袁伟彦,方柳莉,罗明.中国工业碳排放驱动因素及其脱钩效应:基于时变参数C-D生产函数的分解和测算[J].资源科学,2022,44(7):1422-1434.

    YUAN W Y,FANG L L,LUO M.Driving factors of China´s industrial carbon emissions and their decoupling effect:decomposition and calculation of C-D production function based on time-varying parameters[J].Resources Science,2022,44(7):1422-1434.
    [15] 宋晓晖,张裕芬,汪艺梅,等.基于IPAT扩展模型分析人口因素对碳排放的影响[J].环境科学研究,2012,25(1):109-115.

    SONG X H,ZHANG Y F,WANG Y M,et al.Analysis of impacts of demographic factors on carbon emissions based on the IPAT model[J].Research of Environmental Sciences,2012,25(1):109-115.
    [16] LIN S F,WANG S Y,MARINOVA D,et al.Impacts of urbanization and real economic development on CO2 emissions in non-high income countries:empirical research based on the extended STIRPAT model[J].Journal of Cleaner Production,2017,166:952-966. doi: 10.1016/j.jclepro.2017.08.107
    [17] 陈敏,李振亮,段林丰,等.成渝地区工业大气污染物排放的时空演化格局及关键驱动因素[J].环境科学研究,2022,35(4):1072-1081. doi: 10.13198/j.issn.1001-6929.2021.12.16

    CHEN M,LI Z L,DUAN L F,et al.Spatiotemporal Patterns and key driving forces of industrial air pollutant discharge in Chengdu-Chongqing Region[J].Research of Environmental Sciences,2022,35(4):1072-1081. doi: 10.13198/j.issn.1001-6929.2021.12.16
    [18] 李健,王尧,王颖.京津冀区域经济发展与资源环境的脱钩状态及驱动因素[J].经济地理,2019,39(4):43-49.

    LI J,WANG Y,WANG Y.Decoupling analysis and influence factors between resource environment and economic growth in Beijing-Tianjin-Hebei Region[J].Economic Geography,2019,39(4):43-49.
    [19] 宋旭,贾俊松,陈春谛,等.江西省能耗碳排放时空特征、脱钩关系及其驱动因素[J].生态学报,2020,40(20):7451-7463.

    SONG X,JIA J S,CHEN C D,et al.Spatio-temporal characteristics,decoupling relation and its driving factors of the carbon emission from energy consumption in underdeveloped Jiangxi Province[J].Acta Ecologica Sinica,2020,40(20):7451-7463.
    [20] 徐杰,何萍,刘存歧,等.白洋淀沉水植物群落时空变化及影响因素[J].环境科学研究,2022,35(7):1658-1669.

    XU J,HE P,LIU C Q,et al.Spatial-temporal variations of submersed macrophyte communities and their influencing factors in lake Baiyangdian[J].Research of Environmental Sciences,2022,35(7):1658-1669.
    [21] CHANG W C,ZHONG Q M,LIANG S,et al.A high spatial resolution dataset for anthropogenic atmospheric mercury emissions in China during 1998-2014[J].Scientific Data,2022,9:604. doi: 10.1038/s41597-022-01725-4
    [22] ZHENG H R,SHAN Y L,MI Z F,et al.How modifications of China′s energy data affect carbon mitigation targets[J].Energy Policy,2018,116:337-343. doi: 10.1016/j.enpol.2018.02.031
    [23] 王正,樊杰.能源消费碳排放的影响因素特征及研究展望[J].地理研究,2022,41(10):2587-2599.

    WANG Z,FAN J.The characteristics and prospect of influencing factors of energy-related carbon emissions:based on literature review[J].Geographical Research,2022,41(10):2587-2599.
    [24] TAPIO P.Towards a theory of decoupling:degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J].Transport Policy,2005,12(2):137-151. doi: 10.1016/j.tranpol.2005.01.001
    [25] 刘杰,王明飞,邓建明,等.山东省AQI、颗粒物和臭氧时空演化特征及关键影响因素识别分析[J].环境科学研究,2023,36(2):273-284.

    LIU J,WANG M F,DENG J M,et al.Temporal and spatial evolution patterns of AQI,particulate matter,and ozone in Shandong Province and key influencing factors[J].Research of Environmental Sciences,2023,36(2):273-284.
    [26] 花瑞祥,蓝艳.中国与东盟贸易的环境效应及其关键社会经济因子影响分析[J].环境科学研究,2020,33(9):2210-2218.

    HUA R X,LAN Y.Environmental effect of free trade between China and ASEAN and impact analysis of key socio-economic factors[J].Research of Environmental Sciences,2020,33(9):2210-2218.
    [27] SHI P,ZHANG Y,LI Z B,et al.Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales[J].Catena,2017,151:182-190. doi: 10.1016/j.catena.2016.12.017
    [28] 韩梦瑶,刘卫东,谢漪甜,等.中国省域碳排放的区域差异及脱钩趋势演变[J].资源科学,2021,43(4):710-721.

    HAN M Y,LIU W D,XIE Y T,et al.Regional disparity and decoupling evolution of China´s carbon emissions by province[J].Resources Science,2021,43(4):710-721.
    [29] 孙艳芝,沈镭,钟帅,等.中国碳排放变化的驱动力效应分析[J].资源科学,2017,39(12):2265-2274.

    SUN Y Z,SHEN L,ZHONG S,et al.Driving force analysis of carbon emission changes in China[J].Resources Science,2017,39(12):2265-2274.
    [30] 韦彦汀,李思佳,张华.成渝城市群碳排放时空特征及其影响因素[J].中国环境科学,2022,42(10):4807-4816.

    WEI Y T,LI S J,ZHANG H.Temporal-spatial evolution of carbon emission and driving factors in the Chengdu-Chongqing urban agglomeration[J].China Environmental Science,2022,42(10):4807-4816.
    [31] 陈操操,蔡博峰,孙粉,等.京津冀与长三角城市群碳排放的空间聚集效应比较[J].中国环境科学,2017,37(11):4371-4379. doi: 10.3969/j.issn.1000-6923.2017.11.043

    CHEN C C,CAI B F,SUN F,et al.Spatial agglomeration effects of carbon dioxide emissions between Beijing-Tianjin-Heibei Region and Yangtze River Delta Region[J].China Environmental Science,2017,37(11):4371-4379. doi: 10.3969/j.issn.1000-6923.2017.11.043
    [32] 赵玉焕,李浩,刘娅,等.京津冀CO2排放的时空差异及影响因素研究[J].资源科学,2018,40(1):207-215.

    ZHAO Y H,LI H,LIU Y,et al.Identifying driving forces of CO2 emissions in Beijing-Tianjin-Hebei Region from temporal and spatial angles[J].Resources Science,2018,40(1):207-215.
    [33] 戴小文,何艳秋,钟秋波.基于扩展的Kaya恒等式的中国农业碳排放驱动因素分析[J].中国科学院大学学报,2015,32(6):751-759.

    DAI X W,HE Y Q,ZHONG Q B.Analysis of CO2 emission driving factors in China′s agriculture based on expanded Kaya identity[J].Journal of University of Chinese Academy of Sciences,2015,32(6):751-759.
    [34] 周一凡,李彬,张润清.县域尺度下河北省农业碳排放时空演变与影响因素研究[J].中国生态农业学报,2022,30(4):570-581.

    ZHOU Y F,LI B,ZHANG R Q.Spatiotemporal evolution and influencing factors of agricultural carbon emissions in Hebei Province at the county scale[J].Chinese Journal of Eco-Agriculture,2022,30(4):570-581.
    [35] 陈慧灵,高子恒,王振波.省级尺度工业碳排放影响因素及碳转移格局分析[J].生态学报,2023.doi: 10.5846/stxb202205291509.

    CHEN H L,GAO Z H,WANG Z B.Analysis on influencing factors of industrial carbon emission and carbon transfer pattern at provincial level[J].Acta Ecologica Sinica,2023.doi: 10.5846/stxb202205291509.
    [36] 王越,赵婧宇,李志学,等.东北三省碳排放脱钩效应及驱动因素研究[J].环境科学与技术,2019,42(6):190-196.

    WANG Y,ZHAO J Y,LI Z X,et al.Study on decoupling effect and driving factors of carbon emission and economic growth in northeast China[J].Environmental Science & Technology (China),2019,42(6):190-196.
    [37] 段林丰,卢培利,蒲寅羽,等.典型城市群碳排放的脱钩效应及驱动机制研究[J].环境科学与技术,2021,44(11):55-62.

    DUAN L F,LU P L,PU Y Y,et al.The decoupling effect and driving mechanism of carbon emissions in typical city groups[J].Environmental Science & Technology (China),2021,44(11):55-62.
    [38] 吕靖烨,李珏.中国各省份碳排放脱钩效应、驱动因素及预测研究[J].环境科学与技术,2022,45(2):210-220.

    LYU J Y,LI J.Research on the decoupling effect,driving factors and forecast of China′s carbon emissions[J].Environmental Science & Technology (China),2022,45(2):210-220.
    [39] 翁钢民,李聪慧,潘越,等.中国旅游业碳排放脱钩效应及影响因素研究[J].地理与地理信息科学,2021,37(2):114-120. doi: 10.3969/j.issn.1672-0504.2021.02.016

    WENG G M,LI C H,PAN Y,et al.Decoupling effect and influencing factors of carbon emissions in China′s tourism industry[J].Geography and Geo-Information Science,2021,37(2):114-120. doi: 10.3969/j.issn.1672-0504.2021.02.016
    [40] 侯丽朋,王琳,钱瑶,等.“双碳”目标下闽三角碳排放脱钩状态及驱动机制分析[J].生态学报,2022,42(23):9663-9676.

    HOU L P,WANG L,QIAN Y,et al.Decoupling status and driving mechanisms of carbon emissions in the Golden Triangle of Southern Fujian under ‘carbon peaking and neutrality’ goals[J].Acta Ecologica Sinica,2022,42(23):9663-9676.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  55
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-05-18
  • 网络出版日期:  2023-05-18

目录

    /

    返回文章
    返回