Regional Disparities in Carbon Productivity and Driving Factors: Empirical Evidence from 21 Cities in Guangdong Province
-
摘要: 碳生产力的定义是单位碳排放的经济产出,有机结合了低碳和经济两个目标,在国土空间规划中考虑碳生产力因素,有助于推进生态文明建设,引导城市绿色低碳发展. 选取城市发展差异较大的广东省作为样本,对碳生产力区域发展差异进行研究,通过结构分解分析考察不同城市先进制造业产值、城镇化率、能源清洁化程度和能源结构等因素对碳生产力的影响. 结果表明:①2019年广东省碳生产力分布呈现出珠三角地区较高并向周围辐射递减的态势,区域间和城市间碳生产力发展不平衡现象明显. 碳生产力排名前4位的城市与2010年保持一致,分别为深圳市、中山市、佛山市和广州市. ②广东省各地级市交通用地碳生产力水平较低,批发零售、住宿餐饮等其他服务业用地碳生产力水平较高,不同地区工业用地碳生产力存在差异. ③先进制造业和能源结构是对碳生产力影响较大的两个主要因素,深圳市、佛山市和东莞市的先进制造业发展驱动当地碳生产力提升,而能源结构改善驱动了中山市、深圳市和江门市的碳生产力提升. ④相较于其他主要驱动因素,城镇化效应对碳生产力的影响较小. 研究显示,碳生产力发展差异在广东省不同地区和城市间普遍存在,驱动碳生产力变化的主导因素在不同城市展现出的效果和强度也有所不同.Abstract: The definition of carbon productivity is the economic output per unit of carbon emissions, which combines the objectives of low carbon and economic development. Considering carbon productivity factors in land spatial planning helps to promote ecological civilization and guide green and low carbon urban development. This study takes Guangdong Province, a region with significant urban development disparities, as a sample to investigate the regional disparities in carbon productivity. Through structural decomposition analysis, the impact of advanced manufacturing output, urbanization rate, clean energy level, energy structure and other factors on carbon productivity is examined. The results indicated that: (1) In 2019, carbon productivity distribution in Guangdong Province showed a decreasing trend from the Pearl River Delta to the surrounding areas, and there were significant regional and urban disparities in carbon productivity development. The top four cities in carbon productivity remained the same as in 2010, namely Shenzhen, Zhongshan, Foshan, and Guangzhou. (2) The carbon productivity level of transportation land was relatively low in all municipalities of Guangdong Province, while wholesale and retail, accommodation, and catering sectors showed higher levels of carbon productivity. Industrial land use exhibited variations in carbon productivity across different regions. (3) Advanced manufacturing and energy structure are the two main factors influencing carbon productivity. The development of advanced manufacturing improved the carbon productivity in Shenzhen, Foshan and Dongguan, while the upgrade of energy structure improved the carbon productivity in Zhongshan, Shenzhen and Jiangmen. (4) Compared to other major driving factors, the impact of urbanization on carbon productivity is relatively small. The results showed that carbon productivity differences existed widely in areas and cities of Guangdong Province, and the main factors causing changes in carbon productivity show different impacts in different cities and the strengths were diverse.
-
Key words:
- carbon productivity /
- regional imbalance /
- driving factors /
- territorial spatial /
- Guangdong Province
-
表 1 2010—2019年广东省地级市碳生产力排名变化
Table 1. The ranking changes in carbon productivity among cities in Guangdong Province from 2010 to 2019
地级市 碳生产力排名 碳生产力排名变化 2010年 2019年 深圳市 1 1 — 中山市 2 2 — 佛山市 3 3 — 广州市 4 4 — 茂名市 5 6 降1名 珠海市 6 5 升1名 惠州市 7 9 降2名 肇庆市 8 11 降3名 揭阳市 9 10 降1名 湛江市 10 19 降9名 汕尾市 11 16 降5名 东莞市 12 8 升4名 江门市 13 7 升6名 阳江市 14 13 升1名 汕头市 15 12 升3名 河源市 16 14 升2名 潮州市 17 17 — 云浮市 18 18 — 清远市 19 15 升4名 韶关市 20 21 降1名 梅州市 21 20 升1名 -
[1] World Resources Institute.Climate watch historical GHG emissions[EB/OL].Washington DC:World Bank Data,(2023-07-01)[2023-07-01].https://data.worldbank.org/indicator/EN.ATM.CO2E.KT. [2] United Nations Environment Programme.Emissions gap report 2022:the closing window:climate crisis calls for rapid transformation of societies[R].Nairobi,Kenya:United Nations Environment Programme,2022. [3] 熊健,卢柯,姜紫莹,等.“碳达峰、碳中和”目标下国土空间规划编制研究与思考[J].城市规划学刊,2021(4):74-80.XIONG J,LU K,JIANG Z Y,et al.Study and thoughts on territorial spatial planning under the goal of ‘carbon emissions peak and carbon neutrality’[J].Urban Planning Forum,2021(4):74-80. [4] BEINHOCKER E,OPPENHEIM J,TAYLOR M.The carbon productivity challenge:curbing climate change and sustaining economic growth[J].Mckinsey Global Institute,2008,23:45-69. [5] EKINS P,POLLITT H,SUMMERTON P,et al.Increasing carbon and material productivity through environmental tax reform[J].Energy Policy,2012,42:365-376. doi: 10.1016/j.enpol.2011.11.094 [6] HU W,WANG D.How does environmental regulation influence China´s carbon productivity?an empirical analysis based on the spatial spillover effect[J].Journal of Cleaner Production,2020,257:120484. doi: 10.1016/j.jclepro.2020.120484 [7] 杨儒浦,王敏,胡敬韬,等.工业园区减污降碳协同增效评价方法及实证研究[J].环境科学研究,2023,36(2):422-430.YANG R P,WANG M,HU J T,et al.Evaluation method and empirical study on synergistic reduction of pollution and carbon emissions in industrial parks[J].Research of Environmental Sciences,2023,36(2):422-430. [8] 林珊珊,吴玉斌.中国区域碳生产率的空间特性及影响因素分析[J].技术与创新管理,2023,44(3):281-291.LIN S S,WU Y B.Analysis of spatial characteristics and influencing factors of regional carbon productivity in China[J].Technology and Innovation Management,2023,44(3):281-291. [9] 光峰涛,李琳,洪水峰.中国碳生产率动态演进规律与驱动因素研究[J/OL].软科学:1-15[2023-09-11].http://kns.cnki.net/kcms/detail/51.1268.G3.20230203.1012.006.html. [10] 汪中华,宿健,彭可.我国碳生产率区域差异的测算及因素分解[J].统计与决策,2017(8):116-120.WANG Z H,SU J,PENG K.Estimation and factor decomposition of the regional differences in China´s carbon productivity[J].Statistics & Decision,2017(8):116-120. [11] LIU X P,ZHANG X L.Industrial agglomeration,technological innovation and carbon productivity:evidence from China[J].Resources,Conservation and Recycling,2021,166:105330. doi: 10.1016/j.resconrec.2020.105330 [12] WANG K Y,WU M,SUN Y P,et al.Resource abundance,industrial structure,and regional carbon emissions efficiency in China[J].Resources Policy,2019,60:203-214. doi: 10.1016/j.resourpol.2019.01.001 [13] 左明灏,刘林奇.湖南省碳生产率潜在改进空间的测算及影响因素分析[J].金融经济,2021(7):39-45.ZUO M H,LIU L Q.Calculation of potential improvement space of carbon productivity in Hunan Province and analysis of influencing factors[J].Finance Economy,2021(7):39-45. [14] 黎新伍,黎宁,谢云飞.数字经济、制造业集聚与碳生产率[J].中南财经政法大学学报,2022(6):131-145.LI X W,LI N,XIE Y F.Digital economy,manufacturing agglomeration and carbon productivity[J].Journal of Zhongnan University of Economics and Law,2022(6):131-145. [15] 杨秀玉,乔翠霞.农业产业集聚对农业碳生产率的空间溢出效应:基于财政分权的调节作用[J].中国人口·资源与环境,2023,33(2):92-101.YANG X Y,QIAO C X.Spatial spillover effects of agricultural industry agglomeration on agricultural carbon productivity:based on the regulatory role of fiscal decentralization[J].China Population,Resources and Environment,2023,33(2):92-101. [16] 王凯,马月琴,甘畅,等.中国旅游业全要素碳生产率动态演进及其影响因素[J].环境科学研究,2020,33(10):2388-2398.WANG K,MA Y Q,GAN C,et al.Dynamic evolution and influencing factors of total factor carbon productivity in China´s tourism industry[J].Research of Environmental Sciences,2020,33(10):2388-2398. [17] 钟顺昌,汪文竹,闫程莉.碳减排目标下中国省域城市建设用地空间配置响应研究[J].自然资源学报,2023,38(7):1896-1918. doi: 10.31497/zrzyxb.20230717ZHONG S C,WANG W Z,YAN C L.Research on the response of spatial allocation of urban construction land in China´s Provinces under the goal of carbon emission reduction[J].Journal of Natural Resources,2023,38(7):1896-1918. doi: 10.31497/zrzyxb.20230717 [18] 易丹,欧名豪,郭杰,等.土地利用碳排放及低碳优化研究进展与趋势展望[J].资源科学,2022,44(8):1545-1559.YI D,OU M H,GUO J,et al.Progress and prospect of research on land use carbon emissions and low-carbon optimization[J].Resources Science,2022,44(8):1545-1559. [19] 赵荣钦,黄贤金,郧文聚,等.碳达峰碳中和目标下自然资源管理领域的关键问题[J].自然资源学报,2022,37(5):1123-1136. doi: 10.31497/zrzyxb.20220502ZHAO R Q,HUANG X J,YUN W J,et al.Key issues in natural resource management under carbon emission peak and carbon neutrality targets[J].Journal of Natural Resources,2022,37(5):1123-1136. doi: 10.31497/zrzyxb.20220502 [20] 常铭鑫,曾晨,解鹏,等.多情景下的土地利用模拟与特征分析:以武汉市为例[J].华中农业大学学报,2023,42(4):74-85.CHANG M X,ZENG C,XIE P,et al.Land use simulation and characteristic analysis in multiple scenarios:a case study in Wuhan[J].Journal of Huazhong Agricultural University,2023,42(4):74-85. [21] 周伟婷.基于土地利用变化的贵阳市碳排放时空演变和空间关联[J].湖北农业科学,2023,62(5):8-13.ZHOU W T.Spatio-temporal evolution and spatial correlation of carbon emissions in Guiyang City based on land use change[J].Hubei Agricultural Sciences,2023,62(5):8-13. [22] 张圆圆,陈方媛,许翔,等.基于县域尺度的福建省土地利用碳排放效应分析[J].环境科学研究,2023,36(7):1446-1456.ZHANG Y Y,CHEN F Y,XU X,et al.Investigation on county-scale carbon emission effect of land use in Fujian Province[J].Research of Environmental Sciences,2023,36(7):1446-1456. [23] 柳阳,何锋.双碳背景下昆明市土地利用变化碳效应分析及低碳策略研究[J].安徽农学通报,2023,29(10):178-182.LIU Y,HE F.Analysis of carbon effect of land use change in Kunming and research on low-carbon strategy under the background of double carbon[J].Anhui Agricultural Science Bulletin,2023,29(10):178-182. [24] 董成惠.珠三角“虹吸效应”对广东省发展不均衡的影响及应对措施[J].广东经济,2021(8):66-73.DONG C H.Influence of ‘siphon effect’ in Pearl River Delta on the uneven development of Guangdong Province and countermeasures[J].Guangdong Economy,2021(8):66-73. [25] 赵细康.广东区域发展不平衡性的多视角观察与启示[J].新经济,2019(增刊1):19-25.ZHAO X K.Multi-perspective observation and enlightenment of Guangdong´s regional development imbalance[J].New Economy,2019(Suppl 1):19-25. [26] 夏泽宽.从居民收入视角测度广东区域协调发展[J].中国国情国力,2019(5):67-71.XIA Z K.Measuring Guangdong´s regional coordinated development from the perspective of residents´ income[J].China National Conditions and Strength,2019(5):67-71. [27] SHAN Y L,LIU J H,LIU Z,et al.An emissions-socioeconomic inventory of Chinese cities[J].Scientific Data,2019,6:190027. doi: 10.1038/sdata.2019.27 [28] KAYA Y,YOKOBORI K.Environment,energy and economy:strategies for sustainability[M].Tokyo:United Nations University Press,1997:56-59. [29] WANG H,ANG B W,SU B.Assessing drivers of economy-wide energy use and emissions:IDA versus SDA[J].Energy Policy,2017,107:585-599. doi: 10.1016/j.enpol.2017.05.034 [30] SU B,ANG B W.Structural decomposition analysis applied to energy and emissions:some methodological developments[J].Energy Economics,2012,34(1):177-188. doi: 10.1016/j.eneco.2011.10.009 [31] XU B J,ZHONG R Y,LIU Y F.Comparison of CO2 emissions reduction efficiency of household fuel consumption in China[J].Sustainability,2019,11(4):979. doi: 10.3390/su11040979 [32] DAI S Y,NIU D X,HAN Y R.Forecasting of energy-related CO2 emissions in China based on GM(1,1) and least squares support vector machine optimized by modified shuffled frog leaping algorithm for sustainability[J].Sustainability,2018,10(4):958. doi: 10.3390/su10040958 [33] 邢春娜.中国能源消费空间差异及其影响因素分解[J].西部经济管理论坛(原四川经济管理学院学报),2019,30(1):71-78.XING C N.Analysis of spatial difference of energy consumption and influencing factors decomposition in China[J].West Forum on Economy and Management (Journal of Sichuan Economic Management Institute),2019,30(1):71-78. [34] 刘琼芳.福建省产业能源消费碳排放影响因素及其预测研究[J].福建江夏学院学报,2018,8(3):9-20.LIU Q F.The influencing factors and forecast of Fujian Province´s industrial energy consumption carbon emissions[J].Journal of Fujian Jiangxia University,2018,8(3):9-20. -