Analysis of Nitrate Sources and Transformation Processes in Shallow Groundwater in Typical Mountainous Agricultural Area
-
摘要: 为准确识别重庆市典型山地农业区(万州区)浅层地下水硝酸盐来源及转化过程,利用水化学方法和环境同位素技术(δ18O-H2O、δ15N-NO3−和δ18O-NO3−),对不同土地利用类型的浅层地下水进行分析,并结合贝叶斯同位素混合模型(MixSAIR模型)对各硝酸盐源贡献率进行计算. 结果表明:①研究区浅层地下水属于弱碱性淡水,阴阳离子分别以HCO3−和Ca2+为主,水化学类型以HCO3-Ca型为主;硝酸盐是浅层地下水无机氮的主要赋存形式,其中耕地浅层地下水硝酸盐含量普遍高于建设用地和林地,且水样G20、G31和G40硝酸盐含量超过世界卫生组织规定的饮用水标准限值. ②研究区浅层地下水环境同位素值关系显示,硝酸盐转化过程以硝化作用为主,基本不存在反硝化作用. ③MixSAIR模型计算结果表明,耕地浅层地下水硝酸盐主要来源于化学肥料(占36.3%)、污水粪肥(占35.4%)和土壤有机氮(占24.7%);林地浅层地下水硝酸盐主要来源于大气降水(占35.3%)、化学肥料(占31.3%)和土壤有机氮(占22.1%);建设用地浅层地下水硝酸盐主要来源于化学肥料(占46.0%)和污水粪肥(占32.2%). 研究显示,研究区浅层地下水硝酸盐来源整体上以化学肥料和污水粪肥为主,硝酸盐污染防治应控制农业种植过程中化学肥料的过量施用,同时加大农村和城镇污水粪肥排放管理力度.
-
关键词:
- 山地农业区 /
- 浅层地下水 /
- 硝酸盐来源 /
- 转化过程 /
- 贝叶斯同位素混合模型(MixSAIR模型)
Abstract: This study aimed to characterize the sources and transformation processes of nitrate in shallow groundwater in a typical mountainous agricultural area of Wanzhou District, Chongqing, China. The isotopes (δ18O-H2O, δ15N-NO3− and δ18O-NO3−) and hydrochemistry of shallow groundwater in different land use types were analyzed, and the Bayesian isotope mixing model (MixSAIR model) was used to calculate the contribution of each nitrate source. The results indicated that: (1) Shallow groundwater in the study area was weakly alkaline fresh water with HCO3-Ca hydrochemical type, and HCO3− and Ca2+ were the main anions and cations, respectively. Nitrogen in shallow groundwater was mainly in the form of nitrate, and nitrate content of shallow groundwater under cultivated land was generally higher than that under construction land and forest land. The nitrate content of water samples G20, G31 and G40 exceeded the drinking water standard limit stipulated by the World Health Organization. (2) Isotopic analysis of the shallow groundwater showed that nitrification dominated the nitrate conversion process, with denitrification mostly absent. (3) The MixSAIR model indicated that nitrate in shallow groundwater under cultivated land mainly originated from chemical fertilizer (occupy 36.3%), sewage manure (occupy 35.4%), and soil organic nitrogen (occupy 24.7%). The nitrate in shallow groundwater under forested land mainly originated from atmospheric precipitation (occupy 35.3%), chemical fertilization (occupy 31.3%), and soil organic nitrogen (occupy 22.1%). The nitrate in shallow groundwater under construction land mainly originated from chemical fertilizer (occupy 46.0%) and sewage manure (occupy 32.2%). The results of this study showed that the main sources of shallow groundwater nitrate in the study area include chemical fertilization and sewage manure. Groundwater nitrate pollution in the study area can be ameliorated by regulating the agricultural application of chemical fertilizers and more effective management of sewage manure discharge in rural and urban areas. -
表 1 研究区浅层地下水化学参数统计
Table 1. Statistical summary of chemical parameters of shallow groundwater in the study area
采样区 项目 pH TDS浓度/
(mg/L)ORP/
mV离子浓度/(mg/L) K+ Na+ Ca2+ Mg2+ HCO3− Cl− SO42- NO3− NO2− NH4+ 耕地
(n=35)最小值 5.94 40.49 137.00 0.39 1.34 4.54 1.56 11.98 2.44 5.28 0.39 — — 最大值 8.46 551.60 248.00 5.08 34.83 101.50 23.17 353.30 35.13 46.15 33.03 0.60 0.23 平均值 7.47 325.47 164.00 1.70 12.55 56.43 10.03 185.57 11.87 22.61 4.29 0.04 0.02 标准差 0.66 141.82 27.54 1.05 7.85 27.67 5.47 103.26 8.08 11.35 5.93 0.11 0.05 林地 (n=12) 最小值 7.39 39.39 117.00 0.22 0.08 4.00 0.12 16.77 2.16 2.38 0.37 — — 最大值 9.62 450.80 218.00 3.70 15.65 104.80 21.01 294.00 10.31 88.88 6.57 0.02 0.05 平均值 8.22 217.60 169.00 1.29 4.58 40.85 5.57 129.69 3.91 20.82 1.34 0.00 0.01 标准差 0.56 176.00 33.10 1.01 4.78 37.00 6.21 115.21 2.54 29.21 1.83 0.01 0.02 建设用地
(n=9)最小值 7.10 71.96 145.00 0.35 2.38 8.24 3.19 41.92 2.81 7.72 0.38 — — 最大值 8.71 465.20 218.00 1.78 19.02 102.90 15.09 308.40 11.63 38.91 3.82 0.90 0.17 平均值 7.79 287.00 179.00 1.03 9.05 52.00 7.60 174.00 6.47 23.42 1.41 0.10 0.02 标准差 0.56 148.04 28.84 0.44 5.42 33.87 4.17 97.76 3.09 11.36 1.11 0.30 0.06 注:n为水样数;NO3−、NO2−和NH4+浓度均以N计;“—”表示低于仪器检出限. -
[1] REBERSKI J L,RUBINIĆ J,TERZIĆ J,et al.Climate change impacts on groundwater resources in the coastal karstic adriatic area:a case study from the dinaric Karst[J].Natural Resources Research,2020,29(3):1975-1988. doi: 10.1007/s11053-019-09558-6 [2] MAS-PLA J,MENCIÓ A N.Groundwater nitrate pollution and climate change:learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia)[J].Environmental Science and Pollution Research,2019,26(3):2184-2202. doi: 10.1007/s11356-018-1859-8 [3] XU S G,KANG P P,SUN Y.A stable isotope approach and its application for identifying nitrate source and transformation process in water[J].Environmental Science and Pollution Research,2016,23(2):1133-1148. doi: 10.1007/s11356-015-5309-6 [4] ALMASRI M N.Nitrate contamination of groundwater:a conceptual management framework[J].Environmental Impact Assessment Review,2007,27(3):220-242. doi: 10.1016/j.eiar.2006.11.002 [5] 李翔,汪洋,鹿豪杰,等.京津冀典型区域地下水污染风险评价方法研究[J].环境科学研究,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29LI X,WANG Y,LU H J,et al.Groundwater pollution risk assessment method in a typical area of BeijingTianjin-Hebei Region[J].Research of Environmental Sciences,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29 [6] ZHANG H,XU Y,CHENG S Q,et al.Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain,China[J].Science of the Total Environment,2020,717:137134. doi: 10.1016/j.scitotenv.2020.137134 [7] 陈法锦,李学辉,贾国东.氮氧同位素在河流硝酸盐研究中的应用[J].地球科学进展,2007,22(12):1251-1257. doi: 10.3321/j.issn:1001-8166.2007.12.005CHEN F J,LI X H,JIA G D.The application of nitrogen and oxygen isotopes in the study of nitrate in rivers[J].Advances in Earth Science,2007,22(12):1251-1257. doi: 10.3321/j.issn:1001-8166.2007.12.005 [8] XING M,LIU W G,WANG Z F,et al.Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China[J].Applied Geochemistry,2013,35:110-119. doi: 10.1016/j.apgeochem.2013.04.002 [9] 傅雪梅,孙源媛,苏婧,等.基于水化学和氮氧双同位素的地下水硝酸盐源解析[J].中国环境科学,2019,39(9):3951-3958. doi: 10.3969/j.issn.1000-6923.2019.09.042FU X M,SUN Y Y,SU J,et al.Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J].China Environmental Science,2019,39(9):3951-3958. doi: 10.3969/j.issn.1000-6923.2019.09.042 [10] 杨蓉,李垒.碳氮氧稳定同位素技术在水生态环境中的应用[J].环境科学研究,2022,35(1):191-201. doi: 10.13198/j.issn.1001-6929.2021.07.03YANG R,LI L.Applications of stable carbon,nitrogen,and oxygen isotope techniques in aquatic environment and ecology[J].Research of Environmental Sciences,2022,35(1):191-201. doi: 10.13198/j.issn.1001-6929.2021.07.03 [11] LI R F,RUAN X H,BAI Y,et al.Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin,China[J].Science of the Total Environment,2017,592:78-85. doi: 10.1016/j.scitotenv.2017.03.029 [12] 王开然,郭芳,姜光辉,等.15N和18O在桂林岩溶水氮污染源示踪中的应用[J].中国环境科学,2014,34(9):2223-2230.WANG K R,GUO F,JIANG G H,et al.Application of 15N and 18O to nitrogen pollution source in Karst water in Eastern Guilin[J].China Environmental Science,2014,34(9):2223-2230. [13] STOCK B C,JACKSON A L,WARD E J,et al.Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J].PeerJ,2018,6:e5096. doi: 10.7717/peerj.5096 [14] SU P Y,ZHANG M J,QU D Y,et al.Contrasting water use strategies of Tamarix ramosissima in different habitats in the northwest of loess plateau,China[J].Water,2020,12(10):2791. doi: 10.3390/w12102791 [15] TORRES-MARTÍNEZ J A,MORA A,MAHLKNECHT J,et al.Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera),combining major ions,stable isotopes and MixSIAR model[J].Environmental Pollution,2021,269:115445. doi: 10.1016/j.envpol.2020.115445 [16] 裴东艳,谢磊,徐斌,等.基于氮氧同位素技术的黄河上游清水河硝酸盐来源解析[J].中国环境科学,2022,42(9):4115-4121. doi: 10.3969/j.issn.1000-6923.2022.09.016PEI D Y,XIE L,XU B,et al.Analysis of nitrate sources in the Qingshui River of the Yellow River with nitrogen and oxygen isotope technique[J].China Environmental Science,2022,42(9):4115-4121. doi: 10.3969/j.issn.1000-6923.2022.09.016 [17] 王雨旸,杨平恒,张洁茹.重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J].环境科学,2022,43(10):4470-4479. doi: 10.13227/j.hjkx.202112316WANG Y Y,YANG P H,ZHANG J R.Sources and biogeochemical processes of nitrate in the laolongdong Karst underground river basin,Chongqing[J].Environmental Science,2022,43(10):4470-4479. doi: 10.13227/j.hjkx.202112316 [18] 段世辉,蒋勇军,张远瞩,等.岩溶槽谷区地下河硝酸盐来源及其环境效应:以重庆龙凤槽谷地下河系统为例[J].环境科学,2019,40(4):1715-1725. doi: 10.13227/j.hjkx.201808230DUAN S H,JIANG Y J,ZHANG Y Z,et al.Sources of nitrate in groundwater and its environmental effects in Karst trough valleys:a case study of an underground river system in the Longfeng trough valley,Chongqing[J].Environmental Science,2019,40(4):1715-1725. doi: 10.13227/j.hjkx.201808230 [19] 李林霞,李艳利,杨梓睿,等.沁河上游硝酸盐的定量源解析及其季节性差异[J].环境科学研究,2021,34(11):2636-2644. doi: 10.13198/j.issn.1001-6929.2021.06.04LI L X,LI Y L,YANG Z R,et al.Quantitative analysis and seasonal differences of nitrate sources in upper reaches of Qin River[J].Research of Environmental Sciences,2021,34(11):2636-2644. doi: 10.13198/j.issn.1001-6929.2021.06.04 [20] 杨延梅,张田,郑明霞,等.基于水化学及当地稳定同位素的地下水硝酸盐污染空间分布特征及污染源解析[J].环境科学研究,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21YANG Y M,ZHANG T,ZHENG M X,et al.Spatial distribution characteristics and pollution source analysis of nitrate pollution in groundwater based on hydrochemistry and local stable isotopes[J].Research of Environmental Sciences,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21 [21] LI Z J,YANG Q C,YANG Y S,et al.Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J].Journal of Hydrology,2019,576:685-697. doi: 10.1016/j.jhydrol.2019.06.037 [22] 李学先,吴攀,查学芳,等.基于水化学及稳定同位素的岩溶山区城镇水体硝酸盐来源示踪[J].环境科学学报,2021,41(4):1428-1439. doi: 10.13671/j.hjkxxb.2020.0422LI X X,WU P,ZHA X F,et al.Tracing nitrate sources in urban waters of Karst mountainous area using hydrochemistry and stable isotope[J].Acta Scientiae Circumstantiae,2021,41(4):1428-1439. doi: 10.13671/j.hjkxxb.2020.0422 [23] 崔玉环,王杰,郝泷,等.长江中下游平原升金湖流域硝酸盐来源解析及其不确定性[J].湖泊科学,2021,33(2):474-482. doi: 10.18307/2021.0213CUI Y H,WANG J,HAO S,et al.The contribution rates of nitrate sources and their uncertainties in Shengjin Lake Basin,middle and lower reaches of the Yangtze River Plain[J].Journal of Lake Sciences,2021,33(2):474-482. doi: 10.18307/2021.0213 [24] 于璐,郑天元,郑西来.地下水硝酸盐污染源解析及氮同位素分馏效应研究进展[J].现代地质,2022,36(2):563-573.YU L,ZHENG T Y,ZHENG X L.Review of nitrate source apportionment and nitrogen isotope fractionation in groundwater[J].Geoscience,2022,36(2):563-573. [25] JIN Z F,ZHENG Q,ZHU C Y,et al.Contribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing model[J].Applied Geochemistry,2018,93:10-19. doi: 10.1016/j.apgeochem.2018.03.014 [26] 王会霞,史浙明,姜永海,等.地下水污染识别与溯源指示因子研究进展[J].环境科学研究,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10WANG H X,SHI Z M,JIANG Y H,et al.Research progress on indicator of groundwater pollution identification and traceability[J].Research of Environmental Sciences,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10 [27] YU Q B,WANG F,LI X Y,et al.Tracking nitrate sources in the Chaohu Lake,China,using the nitrogen and oxygen isotopic approach[J].Environmental Science and Pollution Research,2018,25(20):19518-19529. doi: 10.1007/s11356-018-2178-9 [28] CHEN Z X,YU L,LIU W G,et al.Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system,China:implication for nitrate sources and biogeochemical process[J].Environmental Earth Sciences,2014,71(1):217-223. doi: 10.1007/s12665-013-2425-9 [29] 王诗绘,马玉坤,沈珍瑶.氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展[J].北京师范大学学报(自然科学版),2021,57(1):36-42.WANG S H,MA Y K,SHEN Z Y.Identification of nitrate source in receiving water with dual NO3-isotopes (δ(15N) and δ(18O))[J].Journal of Beijing Normal University (Natural Science),2021,57(1):36-42. [30] JANI J,TOOR G S.Composition,sources,and bioavailability of nitrogen in a longitudinal gradient from freshwater to estuarine waters[J].Water Research,2018,137:344-354. doi: 10.1016/j.watres.2018.02.042 [31] HU M M,WANG Y C,DU P C,et al.Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes[J].Science of the Total Environment,2019,658:132-140. doi: 10.1016/j.scitotenv.2018.12.149 [32] WANG Y J,TANG Y,XU Y,et al.Isotopic dynamics of precipitation and its regional and local drivers in a plateau inland lake basin,Southwest China[J].Science of the Total Environment,2021,763:143043. doi: 10.1016/j.scitotenv.2020.143043 [33] HU M P,LIU Y M,ZHANG Y F,et al.Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources[J].Water Research,2019,150:418-430. doi: 10.1016/j.watres.2018.11.082 [34] KENDALL C,MCDONNELL J J.Isotope Tracers in Catchment Hydrology[M].Amsterdam:Elsevier,1998. [35] 张金,马金珠,陈春武,等.硝酸盐氮氧同位素在不同生态系统中的研究进展[J].干旱区地理,2015,38(2):312-319.ZHANG J,MA J Z,CHEN C W,et al.An overview on application of dual isotope compositions of nitrate in different ecosystems[J].Arid Land Geography,2015,38(2):312-319. [36] MARIOTTI A,GERMON J C,HUBERT P,et al.Experimental determination of nitrogen kinetic isotope fractionation:some principles;illustration for the denitrification and nitrification processes[J].Plant and Soil,1981,62(3):413-430. doi: 10.1007/BF02374138 [37] ARAVENA R,ROBERTSON W D.Use of multiple isotope tracers to evaluate denitrification in ground water:study of nitrate from a large-flux septic system plume[J].Ground Water,1998,36(6):975-982. doi: 10.1111/j.1745-6584.1998.tb02104.x [38] XIA Y Q,WELLER D E,WILLIAMS M N,et al.Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds[J].Water Research,2016,105:527-539. doi: 10.1016/j.watres.2016.09.033 [39] 金赞芳,胡晶,吴爱静,等.基于多同位素的不同土地利用区域水体硝酸盐源解析[J].环境科学,2021,42(4):1696-1705. doi: 10.13227/j.hjkx.202009094JIN Z F,HU J,WU A J,et al.Identify the nitrate sources in different land use areas based on multiple isotopes[J].Environmental Science,2021,42(4):1696-1705. doi: 10.13227/j.hjkx.202009094 [40] FADHULLAH W,YACCOB N S,SYAKIR M I,et al.Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model[J].Science of the Total Environment,2020,700:134517. doi: 10.1016/j.scitotenv.2019.134517 [41] 赵然,韩志伟,申春华,等.典型岩溶地下河流域水体中硝酸盐源解析[J].环境科学,2020,41(6):2664-2670. doi: 10.13227/j.hjkx.201911046ZHAO R,HAN Z W,SHEN C H,et al.Identifying nitrate sources in a typical Karst underground river basin[J].Environmental Science,2020,41(6):2664-2670. doi: 10.13227/j.hjkx.201911046 [42] XUE D M,BOTTE J,de BAETS B,et al.Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J].Water Research,2009,43(5):1159-1170. doi: 10.1016/j.watres.2008.12.048 [43] XING M,LIU W G.Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses,Loess Plateau of China[J].Environmental Science and Pollution Research,2016,23(1):388-401. doi: 10.1007/s11356-015-5268-y [44] WU J S,JIANG P K,CHANG S X,et al.Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China[J].Canadian Journal of Soil Science,2010,90(1):27-36. doi: 10.4141/CJSS09030 [45] 范祖金,魏兴,周育琳,等.三峡库区城市浅层地下水水化学和氢氧稳定同位素特征及其指示意义[J].环境科学学报,2023,43(6):258-269.FAN Z J,WEI X,ZHOU Y L,et al.Hydrochemical and hydrogen-oxygen stable isotope characteristics of urban shallow groundwater in Three Gorges Reservoir Area and indicative significance[J].Acta Scientiae Circumstantiae,2023,43(6):258-269. [46] 吴志强,潘林艳,代俊峰,等.漓江流域岩溶与非岩溶农业小流域水体硝酸盐源解析[J].农业工程学报,2022,38(6):61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007WU Z Q,PAN L Y,DAI J F,et al.Nitrate source apportionment of water in Karst and non-karst agricultural sub-basins in the Lijiang River Basin of Guilin,Guangxi,China[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(6):61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007 -