留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型山地农业区浅层地下水硝酸盐来源及转化过程解析

范祖金 魏兴 周育琳 陈蒙恩 申纪伟 李佳文

范祖金, 魏兴, 周育琳, 陈蒙恩, 申纪伟, 李佳文. 典型山地农业区浅层地下水硝酸盐来源及转化过程解析[J]. 环境科学研究, 2023, 36(10): 1946-1956. doi: 10.13198/j.issn.1001-6929.2023.07.19
引用本文: 范祖金, 魏兴, 周育琳, 陈蒙恩, 申纪伟, 李佳文. 典型山地农业区浅层地下水硝酸盐来源及转化过程解析[J]. 环境科学研究, 2023, 36(10): 1946-1956. doi: 10.13198/j.issn.1001-6929.2023.07.19
FAN Zujin, WEI Xing, ZHOU Yulin, CHEN Meng′en, SHEN Jiwei, LI Jiawen. Analysis of Nitrate Sources and Transformation Processes in Shallow Groundwater in Typical Mountainous Agricultural Area[J]. Research of Environmental Sciences, 2023, 36(10): 1946-1956. doi: 10.13198/j.issn.1001-6929.2023.07.19
Citation: FAN Zujin, WEI Xing, ZHOU Yulin, CHEN Meng′en, SHEN Jiwei, LI Jiawen. Analysis of Nitrate Sources and Transformation Processes in Shallow Groundwater in Typical Mountainous Agricultural Area[J]. Research of Environmental Sciences, 2023, 36(10): 1946-1956. doi: 10.13198/j.issn.1001-6929.2023.07.19

典型山地农业区浅层地下水硝酸盐来源及转化过程解析

doi: 10.13198/j.issn.1001-6929.2023.07.19
基金项目: 重庆市自然科学基金项目(No.CSTB2022NSCQ-MSX1392);重庆市教委科学技术研究项目(No.KJQN202201224, KJQN202201210)
详细信息
    作者简介:

    范祖金(1996-),男,四川广元人,2960365531@qq.com

    通讯作者:

    魏兴(1993-),男,安徽阜阳人,讲师,博士,主要从事地下水循环演化及同位素水文学研究,weixing@sanxiau.edu.cn

  • 中图分类号: X52

Analysis of Nitrate Sources and Transformation Processes in Shallow Groundwater in Typical Mountainous Agricultural Area

Funds: Chongqing Natural Science Foundation of China (No.CSTB2022NSCQ-MSX1392); Chongqing Municipal Education Commission Science and Technology Research of China (No.KJQN202201224, KJQN202201210)
  • 摘要: 为准确识别重庆市典型山地农业区(万州区)浅层地下水硝酸盐来源及转化过程,利用水化学方法和环境同位素技术(δ18O-H2O、δ15N-NO3和δ18O-NO3),对不同土地利用类型的浅层地下水进行分析,并结合贝叶斯同位素混合模型(MixSAIR模型)对各硝酸盐源贡献率进行计算. 结果表明:①研究区浅层地下水属于弱碱性淡水,阴阳离子分别以HCO3和Ca2+为主,水化学类型以HCO3-Ca型为主;硝酸盐是浅层地下水无机氮的主要赋存形式,其中耕地浅层地下水硝酸盐含量普遍高于建设用地和林地,且水样G20、G31和G40硝酸盐含量超过世界卫生组织规定的饮用水标准限值. ②研究区浅层地下水环境同位素值关系显示,硝酸盐转化过程以硝化作用为主,基本不存在反硝化作用. ③MixSAIR模型计算结果表明,耕地浅层地下水硝酸盐主要来源于化学肥料(占36.3%)、污水粪肥(占35.4%)和土壤有机氮(占24.7%);林地浅层地下水硝酸盐主要来源于大气降水(占35.3%)、化学肥料(占31.3%)和土壤有机氮(占22.1%);建设用地浅层地下水硝酸盐主要来源于化学肥料(占46.0%)和污水粪肥(占32.2%). 研究显示,研究区浅层地下水硝酸盐来源整体上以化学肥料和污水粪肥为主,硝酸盐污染防治应控制农业种植过程中化学肥料的过量施用,同时加大农村和城镇污水粪肥排放管理力度.

     

  • 图  1  研究区土地利用类型及浅层地下水采样点分布示意

    Figure  1.  Distribution of land use types and shallow groundwater sampling sites in the study area

    图  2  研究区浅层地下水Piper图

    Figure  2.  Piper diagram demonstrating the hydrochemistry of shallow groundwater in the study area

    图  3  研究区浅层地下水水化学类型空间分布

    Figure  3.  Spatial distribution of hydrochemical types of shallow groundwater in the study area

    图  4  研究区浅层地下水硝酸盐及氮氧同位素空间分布

    Figure  4.  Spatial distribution of nitrate and δ15N-NO3 and δ18O-NO3 of shallow groundwater in the study area

    图  5  研究区浅层地下水[NO3]/[Cl]值与[Cl]关系和硝酸盐氮氧同位素值分布

    Figure  5.  The relationship between [NO3]/[Cl] and [Cl] and the distribution of nitrate nitrogen and oxygen isotopes in shallow groundwater of the study area

    图  6  研究区浅层地下水δ15N-NO3与ln[NO3-N]、δ18O-NO3与ln[NO3-N]、δ15N-NO3与δ18O-NO3的关系

    Figure  6.  The relationships between δ15N-NO3 and ln[NO3-N], δ18O-NO3 and ln[NO3-N], and δ15N-NO3 and δ18O-NO3 of shallow groundwater of the study area

    图  7  研究区浅层地下水各硝酸盐源贡献率

    Figure  7.  The contributions of difference sources to shallow groundwater nitrate in the study area

    表  1  研究区浅层地下水化学参数统计

    Table  1.   Statistical summary of chemical parameters of shallow groundwater in the study area

    采样区项目pHTDS浓度/
    (mg/L)
    ORP/
    mV
    离子浓度/(mg/L)
    K+Na+Ca2+Mg2+HCO3ClSO42-NO3NO2NH4+
    耕地
    (n=35)
    最小值5.9440.49137.000.391.344.541.5611.982.445.280.39
    最大值8.46551.60248.005.0834.83101.5023.17353.3035.1346.1533.030.600.23
    平均值7.47325.47164.001.7012.5556.4310.03185.5711.8722.614.290.040.02
    标准差0.66141.8227.541.057.8527.675.47103.268.0811.355.930.110.05
    林地 (n=12)最小值7.3939.39117.000.220.084.000.1216.772.162.380.37
    最大值9.62450.80218.003.7015.65104.8021.01294.0010.3188.886.570.020.05
    平均值8.22217.60169.001.294.5840.855.57129.693.9120.821.340.000.01
    标准差0.56176.0033.101.014.7837.006.21115.212.5429.211.830.010.02
    建设用地
    (n=9)
    最小值7.1071.96145.000.352.388.243.1941.922.817.720.38
    最大值8.71465.20218.001.7819.02102.9015.09308.4011.6338.913.820.900.17
    平均值7.79287.00179.001.039.0552.007.60174.006.4723.421.410.100.02
    标准差0.56148.0428.840.445.4233.874.1797.763.0911.361.110.300.06
    注:n为水样数;NO3、NO2和NH4+浓度均以N计;“—”表示低于仪器检出限.
    下载: 导出CSV

    表  2  不同硝酸盐源初始δ15N-NO3、δ18O-NO3的平均值和标准差

    Table  2.   Mean and standard deviation of initial δ15N-NO3 and δ18O-NO3 from different sources of nitrate

    硝酸盐源δ15N-NO3/‰δ18O-NO3/‰数据来源
    平均值标准差平均值标准差
    土壤有机氮3.32.44.10.3文献[33,43]
    污水粪肥16.35.77.02.7文献[43]
    化学肥料0.92.0−2.00.5文献[33,43]
    大气降水3.22.444.09.1文献[43]
    下载: 导出CSV
  • [1] REBERSKI J L,RUBINIĆ J,TERZIĆ J,et al.Climate change impacts on groundwater resources in the coastal karstic adriatic area:a case study from the dinaric Karst[J].Natural Resources Research,2020,29(3):1975-1988. doi: 10.1007/s11053-019-09558-6
    [2] MAS-PLA J,MENCIÓ A N.Groundwater nitrate pollution and climate change:learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia)[J].Environmental Science and Pollution Research,2019,26(3):2184-2202. doi: 10.1007/s11356-018-1859-8
    [3] XU S G,KANG P P,SUN Y.A stable isotope approach and its application for identifying nitrate source and transformation process in water[J].Environmental Science and Pollution Research,2016,23(2):1133-1148. doi: 10.1007/s11356-015-5309-6
    [4] ALMASRI M N.Nitrate contamination of groundwater:a conceptual management framework[J].Environmental Impact Assessment Review,2007,27(3):220-242. doi: 10.1016/j.eiar.2006.11.002
    [5] 李翔,汪洋,鹿豪杰,等.京津冀典型区域地下水污染风险评价方法研究[J].环境科学研究,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29

    LI X,WANG Y,LU H J,et al.Groundwater pollution risk assessment method in a typical area of BeijingTianjin-Hebei Region[J].Research of Environmental Sciences,2020,33(6):1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
    [6] ZHANG H,XU Y,CHENG S Q,et al.Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain,China[J].Science of the Total Environment,2020,717:137134. doi: 10.1016/j.scitotenv.2020.137134
    [7] 陈法锦,李学辉,贾国东.氮氧同位素在河流硝酸盐研究中的应用[J].地球科学进展,2007,22(12):1251-1257. doi: 10.3321/j.issn:1001-8166.2007.12.005

    CHEN F J,LI X H,JIA G D.The application of nitrogen and oxygen isotopes in the study of nitrate in rivers[J].Advances in Earth Science,2007,22(12):1251-1257. doi: 10.3321/j.issn:1001-8166.2007.12.005
    [8] XING M,LIU W G,WANG Z F,et al.Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China[J].Applied Geochemistry,2013,35:110-119. doi: 10.1016/j.apgeochem.2013.04.002
    [9] 傅雪梅,孙源媛,苏婧,等.基于水化学和氮氧双同位素的地下水硝酸盐源解析[J].中国环境科学,2019,39(9):3951-3958. doi: 10.3969/j.issn.1000-6923.2019.09.042

    FU X M,SUN Y Y,SU J,et al.Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J].China Environmental Science,2019,39(9):3951-3958. doi: 10.3969/j.issn.1000-6923.2019.09.042
    [10] 杨蓉,李垒.碳氮氧稳定同位素技术在水生态环境中的应用[J].环境科学研究,2022,35(1):191-201. doi: 10.13198/j.issn.1001-6929.2021.07.03

    YANG R,LI L.Applications of stable carbon,nitrogen,and oxygen isotope techniques in aquatic environment and ecology[J].Research of Environmental Sciences,2022,35(1):191-201. doi: 10.13198/j.issn.1001-6929.2021.07.03
    [11] LI R F,RUAN X H,BAI Y,et al.Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin,China[J].Science of the Total Environment,2017,592:78-85. doi: 10.1016/j.scitotenv.2017.03.029
    [12] 王开然,郭芳,姜光辉,等.15N和18O在桂林岩溶水氮污染源示踪中的应用[J].中国环境科学,2014,34(9):2223-2230.

    WANG K R,GUO F,JIANG G H,et al.Application of 15N and 18O to nitrogen pollution source in Karst water in Eastern Guilin[J].China Environmental Science,2014,34(9):2223-2230.
    [13] STOCK B C,JACKSON A L,WARD E J,et al.Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J].PeerJ,2018,6:e5096. doi: 10.7717/peerj.5096
    [14] SU P Y,ZHANG M J,QU D Y,et al.Contrasting water use strategies of Tamarix ramosissima in different habitats in the northwest of loess plateau,China[J].Water,2020,12(10):2791. doi: 10.3390/w12102791
    [15] TORRES-MARTÍNEZ J A,MORA A,MAHLKNECHT J,et al.Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera),combining major ions,stable isotopes and MixSIAR model[J].Environmental Pollution,2021,269:115445. doi: 10.1016/j.envpol.2020.115445
    [16] 裴东艳,谢磊,徐斌,等.基于氮氧同位素技术的黄河上游清水河硝酸盐来源解析[J].中国环境科学,2022,42(9):4115-4121. doi: 10.3969/j.issn.1000-6923.2022.09.016

    PEI D Y,XIE L,XU B,et al.Analysis of nitrate sources in the Qingshui River of the Yellow River with nitrogen and oxygen isotope technique[J].China Environmental Science,2022,42(9):4115-4121. doi: 10.3969/j.issn.1000-6923.2022.09.016
    [17] 王雨旸,杨平恒,张洁茹.重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J].环境科学,2022,43(10):4470-4479. doi: 10.13227/j.hjkx.202112316

    WANG Y Y,YANG P H,ZHANG J R.Sources and biogeochemical processes of nitrate in the laolongdong Karst underground river basin,Chongqing[J].Environmental Science,2022,43(10):4470-4479. doi: 10.13227/j.hjkx.202112316
    [18] 段世辉,蒋勇军,张远瞩,等.岩溶槽谷区地下河硝酸盐来源及其环境效应:以重庆龙凤槽谷地下河系统为例[J].环境科学,2019,40(4):1715-1725. doi: 10.13227/j.hjkx.201808230

    DUAN S H,JIANG Y J,ZHANG Y Z,et al.Sources of nitrate in groundwater and its environmental effects in Karst trough valleys:a case study of an underground river system in the Longfeng trough valley,Chongqing[J].Environmental Science,2019,40(4):1715-1725. doi: 10.13227/j.hjkx.201808230
    [19] 李林霞,李艳利,杨梓睿,等.沁河上游硝酸盐的定量源解析及其季节性差异[J].环境科学研究,2021,34(11):2636-2644. doi: 10.13198/j.issn.1001-6929.2021.06.04

    LI L X,LI Y L,YANG Z R,et al.Quantitative analysis and seasonal differences of nitrate sources in upper reaches of Qin River[J].Research of Environmental Sciences,2021,34(11):2636-2644. doi: 10.13198/j.issn.1001-6929.2021.06.04
    [20] 杨延梅,张田,郑明霞,等.基于水化学及当地稳定同位素的地下水硝酸盐污染空间分布特征及污染源解析[J].环境科学研究,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21

    YANG Y M,ZHANG T,ZHENG M X,et al.Spatial distribution characteristics and pollution source analysis of nitrate pollution in groundwater based on hydrochemistry and local stable isotopes[J].Research of Environmental Sciences,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21
    [21] LI Z J,YANG Q C,YANG Y S,et al.Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J].Journal of Hydrology,2019,576:685-697. doi: 10.1016/j.jhydrol.2019.06.037
    [22] 李学先,吴攀,查学芳,等.基于水化学及稳定同位素的岩溶山区城镇水体硝酸盐来源示踪[J].环境科学学报,2021,41(4):1428-1439. doi: 10.13671/j.hjkxxb.2020.0422

    LI X X,WU P,ZHA X F,et al.Tracing nitrate sources in urban waters of Karst mountainous area using hydrochemistry and stable isotope[J].Acta Scientiae Circumstantiae,2021,41(4):1428-1439. doi: 10.13671/j.hjkxxb.2020.0422
    [23] 崔玉环,王杰,郝泷,等.长江中下游平原升金湖流域硝酸盐来源解析及其不确定性[J].湖泊科学,2021,33(2):474-482. doi: 10.18307/2021.0213

    CUI Y H,WANG J,HAO S,et al.The contribution rates of nitrate sources and their uncertainties in Shengjin Lake Basin,middle and lower reaches of the Yangtze River Plain[J].Journal of Lake Sciences,2021,33(2):474-482. doi: 10.18307/2021.0213
    [24] 于璐,郑天元,郑西来.地下水硝酸盐污染源解析及氮同位素分馏效应研究进展[J].现代地质,2022,36(2):563-573.

    YU L,ZHENG T Y,ZHENG X L.Review of nitrate source apportionment and nitrogen isotope fractionation in groundwater[J].Geoscience,2022,36(2):563-573.
    [25] JIN Z F,ZHENG Q,ZHU C Y,et al.Contribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing model[J].Applied Geochemistry,2018,93:10-19. doi: 10.1016/j.apgeochem.2018.03.014
    [26] 王会霞,史浙明,姜永海,等.地下水污染识别与溯源指示因子研究进展[J].环境科学研究,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10

    WANG H X,SHI Z M,JIANG Y H,et al.Research progress on indicator of groundwater pollution identification and traceability[J].Research of Environmental Sciences,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10
    [27] YU Q B,WANG F,LI X Y,et al.Tracking nitrate sources in the Chaohu Lake,China,using the nitrogen and oxygen isotopic approach[J].Environmental Science and Pollution Research,2018,25(20):19518-19529. doi: 10.1007/s11356-018-2178-9
    [28] CHEN Z X,YU L,LIU W G,et al.Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system,China:implication for nitrate sources and biogeochemical process[J].Environmental Earth Sciences,2014,71(1):217-223. doi: 10.1007/s12665-013-2425-9
    [29] 王诗绘,马玉坤,沈珍瑶.氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展[J].北京师范大学学报(自然科学版),2021,57(1):36-42.

    WANG S H,MA Y K,SHEN Z Y.Identification of nitrate source in receiving water with dual NO3-isotopes (δ(15N) and δ(18O))[J].Journal of Beijing Normal University (Natural Science),2021,57(1):36-42.
    [30] JANI J,TOOR G S.Composition,sources,and bioavailability of nitrogen in a longitudinal gradient from freshwater to estuarine waters[J].Water Research,2018,137:344-354. doi: 10.1016/j.watres.2018.02.042
    [31] HU M M,WANG Y C,DU P C,et al.Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes[J].Science of the Total Environment,2019,658:132-140. doi: 10.1016/j.scitotenv.2018.12.149
    [32] WANG Y J,TANG Y,XU Y,et al.Isotopic dynamics of precipitation and its regional and local drivers in a plateau inland lake basin,Southwest China[J].Science of the Total Environment,2021,763:143043. doi: 10.1016/j.scitotenv.2020.143043
    [33] HU M P,LIU Y M,ZHANG Y F,et al.Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources[J].Water Research,2019,150:418-430. doi: 10.1016/j.watres.2018.11.082
    [34] KENDALL C,MCDONNELL J J.Isotope Tracers in Catchment Hydrology[M].Amsterdam:Elsevier,1998.
    [35] 张金,马金珠,陈春武,等.硝酸盐氮氧同位素在不同生态系统中的研究进展[J].干旱区地理,2015,38(2):312-319.

    ZHANG J,MA J Z,CHEN C W,et al.An overview on application of dual isotope compositions of nitrate in different ecosystems[J].Arid Land Geography,2015,38(2):312-319.
    [36] MARIOTTI A,GERMON J C,HUBERT P,et al.Experimental determination of nitrogen kinetic isotope fractionation:some principles;illustration for the denitrification and nitrification processes[J].Plant and Soil,1981,62(3):413-430. doi: 10.1007/BF02374138
    [37] ARAVENA R,ROBERTSON W D.Use of multiple isotope tracers to evaluate denitrification in ground water:study of nitrate from a large-flux septic system plume[J].Ground Water,1998,36(6):975-982. doi: 10.1111/j.1745-6584.1998.tb02104.x
    [38] XIA Y Q,WELLER D E,WILLIAMS M N,et al.Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds[J].Water Research,2016,105:527-539. doi: 10.1016/j.watres.2016.09.033
    [39] 金赞芳,胡晶,吴爱静,等.基于多同位素的不同土地利用区域水体硝酸盐源解析[J].环境科学,2021,42(4):1696-1705. doi: 10.13227/j.hjkx.202009094

    JIN Z F,HU J,WU A J,et al.Identify the nitrate sources in different land use areas based on multiple isotopes[J].Environmental Science,2021,42(4):1696-1705. doi: 10.13227/j.hjkx.202009094
    [40] FADHULLAH W,YACCOB N S,SYAKIR M I,et al.Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model[J].Science of the Total Environment,2020,700:134517. doi: 10.1016/j.scitotenv.2019.134517
    [41] 赵然,韩志伟,申春华,等.典型岩溶地下河流域水体中硝酸盐源解析[J].环境科学,2020,41(6):2664-2670. doi: 10.13227/j.hjkx.201911046

    ZHAO R,HAN Z W,SHEN C H,et al.Identifying nitrate sources in a typical Karst underground river basin[J].Environmental Science,2020,41(6):2664-2670. doi: 10.13227/j.hjkx.201911046
    [42] XUE D M,BOTTE J,de BAETS B,et al.Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J].Water Research,2009,43(5):1159-1170. doi: 10.1016/j.watres.2008.12.048
    [43] XING M,LIU W G.Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses,Loess Plateau of China[J].Environmental Science and Pollution Research,2016,23(1):388-401. doi: 10.1007/s11356-015-5268-y
    [44] WU J S,JIANG P K,CHANG S X,et al.Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China[J].Canadian Journal of Soil Science,2010,90(1):27-36. doi: 10.4141/CJSS09030
    [45] 范祖金,魏兴,周育琳,等.三峡库区城市浅层地下水水化学和氢氧稳定同位素特征及其指示意义[J].环境科学学报,2023,43(6):258-269.

    FAN Z J,WEI X,ZHOU Y L,et al.Hydrochemical and hydrogen-oxygen stable isotope characteristics of urban shallow groundwater in Three Gorges Reservoir Area and indicative significance[J].Acta Scientiae Circumstantiae,2023,43(6):258-269.
    [46] 吴志强,潘林艳,代俊峰,等.漓江流域岩溶与非岩溶农业小流域水体硝酸盐源解析[J].农业工程学报,2022,38(6):61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007

    WU Z Q,PAN L Y,DAI J F,et al.Nitrate source apportionment of water in Karst and non-karst agricultural sub-basins in the Lijiang River Basin of Guilin,Guangxi,China[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(6):61-71. doi: 10.11975/j.issn.1002-6819.2022.06.007
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  10
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-06-29
  • 网络出版日期:  2023-07-14

目录

    /

    返回文章
    返回