Driving Factors of Phytoplankton Functional Groups and Applicability of Water Quality Evaluation: A Case Study of Lake Luoma
-
摘要: 浮游植物在水生态系统中占有重要地位,因其对环境的敏感性而常被用来评估水体健康状况,但其对环境的响应未能充分考虑水生态系统的功能性. 为了解浮游植物功能群对环境的驱动特征和适用性,以骆马湖为研究对象,基于2018年9月—2020年6月8次采样调查结果,分析了浮游植物功能群的时空分布特征及其与环境因子的关系,并对比了TLI指数、Shannon-Wiener多样性指数和Q指数等评价方法对骆马湖的适用性. 结果表明:①骆马湖共检出浮游植物8门104属,可划分为29个功能群,其中9个功能群(P、J、D、MP、A、Y、Lo、X2和W1)为该湖的优势功能群. ②2018年9月—2020年6月骆马湖优势功能群表现为P/J/MP→D/X2→MP→Lo/P→MP的季节性演替特征,其中冬季和初春以D、X2、Lo、P功能群占绝对优势,夏季以MP功能群占绝对优势. ③利用冗余分析(RDA)探讨骆马湖浮游植物功能群与环境因子间的相互关系,结果表明水温(WT)、pH、总氮(TN)、总磷(TP)、高锰酸盐指数(CODMn)和氮磷比(N/P)是影响骆马湖浮游植物功能群的主要环境因子. ④综合对比TLI指数、Shannon-Wiener多样性指数和Q指数3种水质评价方法发现,利用Q指数进行水质评价方法能更好地反映骆马湖水体的营养状态. 研究显示,功能群能直观反映骆马湖浮游植物季节性演替特征,Q指数能客观指示骆马湖水质状况.Abstract: Phytoplankton plays an important role in aquatic ecosystems and is often used to assess water body health due to its sensitivity to the environment, but its response to the environment has not fully considered its function in aquatic ecosystems.In order to understand the driving characteristics and applicability of phytoplankton functional groups to the environment, a survey of phytoplankton and environmental factors in Luoma Lake was conducted with 8 sampling events in 4 seasons from September 2018 to June 2020, and the spatial and temporal distribution characteristics of phytoplankton functional groups and their relationship with environmental factors were analyed. The applicability of evaluation methods such as TLI index, Shannon-Wiener diversity index and Q index to Luoma Lake was compared. The results showed that: (1) A total of 104 genera and 8 phyla were detected in Luoma Lake, which could be divided into 29 functional groups, and 9 functional groups (P, J, D, MP, A, Y, Lo, X2 and W1) were the dominant functional groups. (2) From September 2018 to June 2020, the dominant functional groups showed the seasonal succession characteristics of P/J/MP→D/X2→MP→Lo/P→MP, D, X2, Lo and P dominated in winter and early spring, and MP dominated in summer. (3) Water temperature (WT), pH, total nitrogen (TN), total phosphorus (TP), permanganate index (CODMn) and nitrogen/phosphorus ratio (N/P) were the main environmental factors affecting the phytoplankton functional groups in Luoma Lake. (4) A comprehensive comparison of three water quality evaluation methods, including the TLI index, Shannon-Wiener diversity index, and Q index, revealed that the water quality assessment method using Q index can better reflect the water nutrition status of Luoma Lake. The study showed that functional groups can directly reflect the seasonal succession characteristics of phytoplankton in Luoma Lake, and Q index can objectively indicate the water quality of Luoma Lake.
-
Key words:
- Luoma Lake /
- phytoplankton /
- functional group /
- Q index /
- environmental factors
-
图 6 骆马湖环境因子与Q指数、Shannon-Wiener多样性指数和TLI指数的Pearson相关性分析
注:1—WT;2—SD;3—DO浓度;4—pH;5—TN浓度;6—TP浓度;7—NH4+-N浓度;8—NO3−-N浓度;9—CODMn浓度;10—Chla浓度;11—N/P;12—TLI指数;13—Shannon-Wiener多样性指数;14—Q指数. *表示P<0.05,**表示P<0.01,***表示P<0.001.
Figure 6. Pearson correlation of environmental factors with Q index, Shannon-Wiener index and TLI index in Luoma Lake
表 1 2018年9月—2020年6月骆马湖不同季节水体环境因子的变化
Table 1. Environmental factors in different seasons of Luoma Lake from September 2018 to June 2020
时间 水质指标 平均值±标准差 P(S) P(T) 秋季 冬季 春季 夏季 2018年9月—2019年8月 WT/℃ 17.90±4.13 4.19±1.91 14.45±4.56 26.81±0.68 ** — DO浓度/(mg/L) 7.39±0.45 10.56±0.65 9.25±1.42 6.46±0.48 ** — SD/cm 59.66±10.10 81.73±0.36 74.72±28.17 55.80±17.48 ** — pH 7.97±0.31 8.31±0.13 8.18±0.36 8.18±0.14 — — TN浓度/(mg/L) 2.78±0.42 3.77±0.90 2.30±0.69 2.31±1.82 — ** TP浓度/(mg/L) 0.16±0.06 0.08±0.04 0.03±0.01 0.10±0.06 — ** NH4+-N浓度/(mg/L) 0.37±0.02 0.47±0.10 0.35±0.14 0.27±0.07 — — NO3−-N浓度/(mg/L) 1.88±0.14 1.50±0.33 1.15±0.29 1.11±1.36 — ** CODMn浓度/(mg/L) 4.72±0.34 4.42±0.07 4.02±0.20 4.87±0.07 — — Chla浓度/(mg/m3) 15.03±5.24 10.67±1.29 7.31±1.95 21.99±7.55 ** — N/P 27.85±20.12 69.57±11.83 97.08±34.53 24.03±9.40 ** — 2019年9月—2020年6月 WT/℃ 18.89±6.06 6.04±0.96 16.34±6.50 27.88±1.23 ** — DO浓度/(mg/L) 6.94±0.39 8.31±0.12 8.08±0.08 7.82±0.12 ** — SD/cm 69.17±9.40 73.89±9.42 75.90±9.79 74.48±12.47 — — pH 8.04±0.09 7.54±0.06 7.67±0.19 7.69±0.16 — — TN浓度/(mg/L) 3.44±0.78 2.54±0.09 1.93±0.57 2.57±1.22 — ** TP浓度(mg/L) 0.09±0.02 0.05±0.01 0.04±0.01 0.13±0.07 — ** NH4+-N浓度/(mg/L) 0.27±0.02 0.19±0.05 0.33±0.16 0.46±0.20 — — NO3−-N浓度/(mg/L) 2.19±0.65 1.39±0.09 0.95±0.35 1.41±1.01 — ** CODMn浓度/(mg/L) 4.44±0.36 3.96±0.11 3.13±0.07 4.68±0.59 — — Chla浓度/(mg/m3) 16.05±3.40 12.53±4.05 10.72±4.27 28.59±3.23 ** — N/P 50.76±5.24 57.96±8.51 61.63±27.98 25.50±5.40 ** — 注:P(S)为季节性显著;P(T)为湖区空间性显著;**表示具有显著性差异,P<0.05;—表示无显著差异,P>0.05. 表 2 骆马湖浮游植物功能群分组
Table 2. Phytoplankton functional groups in Luoma lake
功能群代码 代表属 生境(环境描述) A 小环藻属(Cyclotella sp.) 中营养型的小中型水体,对硅缺乏和分层敏感 C 星杆藻属(Asterionella sp.) 富营养型的小中型湖泊,无分层现象 D 针杆藻属(Synedra sp.) 河流在内的浑浊水体 E 锥囊藻属(Dinobryon sp.) 小型浅水寡营养湖泊 F 蹄形藻属(Kirchneriella sp.)、卵囊藻属(Oocystis sp.) 中或富营养型、均匀的、清澈的深水湖泊 G 实球藻属(Pandorina sp.)、空球藻属(Eudorina sp.) 富营养型小型湖泊 H1 鱼腥藻属(Dolichospermum sp.) 小型富营养湖泊,分层的低氮水体 J 栅藻属(Scendesmus sp.)、四角藻属(Tetraedron sp.) 混合的高营养型浅水水体 LM 角藻属(Ceratium sp.) 富到超富营养、中小型水体 Lo 色球藻属(Chroococcus sp.)、平裂藻属(Merismopedia sp.)、
多甲藻属(Peridinium sp.)寡营养型到富营养型湖泊 M 微囊藻属(Microcystis sp.) 富或高富营养的小中型水体 MP 颤藻属(Oscillatoria sp.)、卵形藻属(Cocconeis sp.)、双菱藻
(Surirella sp.)频繁扰动的浑浊型浅水湖泊 N 鼓藻属(Cosmarium sp.) 持续或半持续的混合水层 NA 角星鼓藻属(Staurodesmus sp.) 贫到中营养、静水、低纬 度地区 P 新月藻属(Closterium sp.)、脆杆藻属(Fragilaria sp.) 混合程度较高的中富营养浅水水体 S1 伪鱼腥藻(Anabaenopsis sp.) 对光照、冲刷敏感,适合生活于暗环境中 S2 螺旋藻属(Spirulina sp.) 温暖、高碱性、浅水 SN 尖头藻属(Raphidiopisi sp.) 温暖的混合水体 T 转板藻属(Mougeotia sp.) 持续混合层,光限制,低营养 TB 舟形藻属(Navicula sp.)、桥弯藻属(Cymbella sp.) 强急流 TC 鞘藻属(Oedocladium sp.) 富营养静止水体 TD 水棉藻属(Spirogyra sp.) 中营养型的静止水体,水体流速慢、大型挺水植物或沉水植物密集的河流 W1 裸藻属(Euglena sp.) 富含有机质、或农业废水和生活污水的水体 W2 囊裸藻属(Trachelomonas sp.) 中营养浅水湖泊 X1 纤维藻属(Ankistrodesmus sp.) 混合程度较高的富营养浅水水体 X2 衣藻属(Chlamydomonas sp.) 混合程度较高的中富营养浅水水体 X3 布纹藻属(Gyrosigma sp.) 浅水、清水、混合层 Y 裸甲藻属(Gymnodinium sp.)、隐藻属(Cryptomonas sp.) 广适性静水环境 Z 集星藻属(Actinastrum sp.) 贫营养无扰动型湖泊 -
[1] 侯颖,李信,白灵,等.不同水源补给河流浮游植物群落结构特征及其与环境因子的关系[J].环境科学,2022,43(12):5616-5626.HOU Y,LI X,BAI L,et al.Characteristics of phytoplankton community structure in rivers recharged by different water sources and its relationship with environmental factors[J].Environmental Science,2022,43(12):5616-5626. [2] ZHANG M,SHI X L,YANG Z,et al.Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu[J].Science of the Total Environment,2018,645:876-886. doi: 10.1016/j.scitotenv.2018.07.220 [3] REYNOLDS C S,HUSZAR V,KRUK C,et al.Towards a functional classification of the freshwater phytoplankton[J].Journal of Plankton Research,2002,24(5):417-428. doi: 10.1093/plankt/24.5.417 [4] CAO J,HOU Z Y,LI Z K,et al.Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake[J].Science of the Total Environment,2018,631/632:1127-1137. doi: 10.1016/j.scitotenv.2018.03.026 [5] PADISÁK J,CROSSETTI L O,NASELLI-FLORES L.Use and misuse in the application of the phytoplankton functional classification:a critical review with updates[J].Hydrobiologia,2009,621(1):1-19. doi: 10.1007/s10750-008-9645-0 [6] 张萍,王炜,朱梦圆,等.富春江水库浮游植物功能群变化的成因[J].环境科学,2023.doi: 10.13227/j.hjkx.202301038.GONG R Q,ZHAO H J,GAO Z Q,et al.Factors influencing the variation of phytoplankton functional groups in Fuchunjiang Reservoir[J].Environmental Science,2023.doi: 10.13227/j.hjkx.202301038. [7] CUPERTINO A,GÜCKER B,von RÜCKERT G,et al.Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring:taxonomic versus functional groups[J].Ecological Indicators,2019,101:522-532. doi: 10.1016/j.ecolind.2019.01.054 [8] 陈宇,王涌涛,黄天寅,等.骆马湖水体中药品及个人护理品的污染特征及风险评估[J].环境科学研究,2021,34(4):902-909.CHEN Y,WANG Y T,HUANG T Y,et al.Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J].Research of Environmental Sciences,2021,34(4):902-909. [9] 陈宇,许亚南,项颂,等.骆马湖表层沉积物中PPCPs的赋存特征及生态风险评估[J].环境科学研究,2021,34(8):1835-1843.CHEN Y,XU Y N,XIANG S,et al.Characteristics and ecological risk assessment of PPCPs in surface sediments of Luoma Lake[J].Research of Environmental Sciences,2021,34(8):1835-1843. [10] 胡恺源,王金东,兰林,等.骆马湖水质变化异常及潜在生态风险分析[J].环境科学学报,2022,42(6):197-205. doi: 10.13671/j.hjkxxb.2021.0414HU K Y,WANG J D,LAN L,et al.Analysis of abnormal water quality change and potential ecological risk in Luoma Lake,Jiangsu Province[J].Acta Scientiae Circumstantiae,2022,42(6):197-205. doi: 10.13671/j.hjkxxb.2021.0414 [11] 国家环境保护总局.水和废水分析监测方法(第四版)[M].北京:中国环境出版集团,1990. [12] 张琪,刘国祥,胡征宇.中国淡水拟多甲藻属研究[J].水生生物学报,2012,36(4):751-764.ZHANG Q,LIU G X,HU Z Y.Study on freshwater genusPeridiniopsis (Dinophyta) from China[J].Acta Hydrobiologica Sinica,2012,36(4):751-764. [13] LV H,YANG J,LIU L M,et al.Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir,subtropical China[J].Environmental Science and Pollution Research,2014,21(9):5917-5928. doi: 10.1007/s11356-014-2534-3 [14] 夏莹霏,胡晓东,徐季雄,等.太湖浮游植物功能群季节演替特征及水质评价[J].湖泊科学,2019,31(1):134-146. doi: 10.18307/2019.0113XIA Y F,HU X D,XU J X,et al.Seasonal succession of phytoplankton functional group and assessment of water quality in Lake Taihu[J].Journal of Lake Sciences,2019,31(1):134-146. doi: 10.18307/2019.0113 [15] 孟睿,何连生,过龙根,等.长江中下游草型湖泊浮游植物群落及其与环境因子的典范对应分析[J].环境科学,2013,34(7):2588-2596.MENG R,HE L S,GUO L G,et al.Canonical correspondence analysis between phytoplankton community and environmental factors in macrophtic lakes of the middle and lower reaches of Yangtze River[J].Environmental Science,2013,34(7):2588-2596. [16] 王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2002,18(5):47-49.WANG M C,LIU X Q,ZHANG J H.Evaluate method and classification standard on lake eutrophication[J].Environmental Monitoring in China,2002,18(5):47-49. [17] 赵璐,欧阳添,纪璐璐,等.三峡水库蓄水对支流浮游植物功能群的影响及与资源利用效率的关系[J].环境科学,2023,44(2):857-867.ZHAO L,OUYANG T,JI L L,et al.Impounding impacts of the Three Gorges Reservoir on phytoplankton function groups and its relationship with resource use efficiency[J].Environmental Science,2023,44(2):857-867. [18] 杨毓鑫,杜春艳,钱湛,等.洞庭湖区南汉垸水体浮游植物群落结构特征及其影响因素[J].环境科学研究,2020,33(1):147-154.YANG Y X,DU C Y,QIAN Z,et al.Phytoplankton community structure and its influencing factors in Nanhan polder area of Dongting Lake[J].Research of Environmental Sciences,2020,33(1):147-154. [19] 马欣洋,李秋华,陈倩,等.生态调控后贵州花溪水库浮游植物群落结构的变化特征及影响因素[J].环境科学研究,2020,33(3):589-598.MA X Y,LI Q H,CHEN Q,et al.Variation characteristics and influencing factors of the structure of a phytoplankton community after an ecological regulation in Huaxi Reservoir,Guizhou Province[J].Research of Environmental Sciences,2020,33(3):589-598. [20] LIU Y Y,HUA Z L,LU Y,et al.Quinolone distribution,trophodynamics,and human exposure risk in a transit-station lake for water diversion in East China[J].Environmental Pollution,2022,311:119985. doi: 10.1016/j.envpol.2022.119985 [21] 张庆吉,王业宇,王金东,等.骆马湖浮游植物演替规律及驱动因子[J].环境科学,2020,41(4):1648-1656.ZHANG Q J,WANG Y Y,WANG J D,et al.Succession pattern of phytoplankton and its drivers in Lake Luoma,Jiangsu Province[J].Environmental Science,2020,41(4):1648-1656. [22] 覃宝利,唐金玉,王宣朋,等.骆马湖夏季浮游植物群落结构变化及其驱动因子分析[J].生态与农村环境学报,2019,35(9):1172-1181.QIN B L,TANG J Y,WANG X P,et al.Analysis of phytoplankton community structure changes and the driving factors in summer of Luoma Lake[J].Journal of Ecology and Rural Environment,2019,35(9):1172-1181. [23] 申霞,洪大林,谈永锋,等.骆马湖生态环境现状及其保护措施[J].水资源保护,2013,29(3):39-43. doi: 10.3969/j.issn.1004-6933.2013.03.009SHEN X,HONG D L,TAN Y F,et al.Ecological environment of Luoma Lake and protection measures[J].Water Resources Protection,2013,29(3):39-43. doi: 10.3969/j.issn.1004-6933.2013.03.009 [24] CUI G Y,WANG B L,XIAO J,et al.Water column stability driving the succession of phytoplankton functional groups in Karst hydroelectric reservoirs[J].Journal of Hydrology,2021,592:125607. doi: 10.1016/j.jhydrol.2020.125607 [25] STANKOVIĆ I,VLAHOVIĆ T,UDOVIČ M G,et al.Phytoplankton functional and morpho-functional approach in large floodplain rivers[J].Hydrobiologia,2012,698(1):217-231. doi: 10.1007/s10750-012-1148-3 [26] LIAO N,LI H,-H YOU L,et al.Succession of phytoplankton functional groups and driving variables in a young canyon reservoir[J].International Journal of Environmental Science and Technology,2021,18(7):1911-1924. doi: 10.1007/s13762-020-02949-w [27] SUN X,WANG W.The impact of environmental parameters on phytoplankton functional groups in northeastern China[J].Ecological Engineering,2021,164:106209. doi: 10.1016/j.ecoleng.2021.106209 [28] 黄雪滢,高鸣远,王金东,等.过水性湖泊水质长期演变趋势及驱动因素:以骆马湖为例[J].环境科学,2023,44(1):219-230.HUANG X Y,GAO M Y,WANG J D,et al.Long-term evolution trend and driving factors of water quality in passing lakes:a case study of Luoma Lake[J].Environmental Science,2023,44(1):219-230. [29] 邹伟,李太民,刘利,等.苏北骆马湖大型底栖动物群落结构及水质评价[J].湖泊科学,2017,29(5):1177-1187. doi: 10.18307/2017.0515ZOU W,LI T M,LIU L,et al.Macrozoobenthic community structure and water quality assessment of Lake Luoma,Jiangsu Province,China[J].Journal of Lake Sciences,2017,29(5):1177-1187. doi: 10.18307/2017.0515 [30] 黄文钰,许朋柱,范成新.网围养殖对骆马湖水体富营养化的影响[J].农村生态环境,2002,18(1):22-25.HUANG W Y,XU P Z,FAN C X.Effect of cage aquiculture on eutrophication in Luoma Lake[J].Rural Eco-Environment,2002,18(1):22-25. [31] 唐金玉,覃宝利,吴春,等.骆马湖夏季水质空间分布特征及评价[J].生态与农村环境学报,2019,35(3):360-367.TANG J Y,QIN B L,WU C,et al.Trophic assessment and water-quality spatial distribution of Luoma Lake during summertime[J].Journal of Ecology and Rural Environment,2019,35(3):360-367. [32] 胡婷婷,刘劲松,戴小琳,等.骆马湖水质时空变化特征[J].生态与农村环境学报,2016,32(5):794-801. doi: 10.11934/j.issn.1673-4831.2016.05.016HU T T,LIU J S,DAI X L,et al.Spatio-temporal variation of water quality in Lake Luoma,Jiangsu Province,China[J].Journal of Ecology and Rural Environment,2016,32(5):794-801. doi: 10.11934/j.issn.1673-4831.2016.05.016 [33] DEVERCELLI M,O'FARRELL I.Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river[J].Limnologica,2013,43(2):67-78. doi: 10.1016/j.limno.2012.05.001 [34] XIAO L J,WANG T,HU R,et al.Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir[J].Water Research,2011,45(16):5099-5109. doi: 10.1016/j.watres.2011.07.012 [35] 安瑞志,潘成梅,塔巴拉珍,等.西藏巴松错浮游植物功能群垂直分布特征及其与环境因子的关系[J].湖泊科学,2021,33(1):86-101. doi: 10.18307/2021.0114AN R Z,PAN C M,TA B,et al.Vertical distribution characteristics of phytoplankton functional groups and their relationships with environmental factors in Lake Basomtso,Tibet,China[J].Journal of Lake Sciences,2021,33(1):86-101. doi: 10.18307/2021.0114 [36] 杜彩丽,杨丽,赵诣,等.淀山湖浮游动物群落时空分布特征及其与环境因子的关系[J].环境科学,2019,40(10):4513-4522. doi: 10.13227/j.hjkx.201903099DU C L,YANG L,ZHAO Y,et al.Temporal and spatial variation of zooplankton community structure and its relationship with environmental factors in Dianshan Lake,Shanghai[J].Environmental Science,2019,40(10):4513-4522. doi: 10.13227/j.hjkx.201903099 [37] JAKOBSEN H H,BLANDA E,STAEHR P A,et al.Development of phytoplankton communities:implications of nutrient injections on phytoplankton composition,pH and ecosystem production[J].Journal of Experimental Marine Biology and Ecology,2015,473:81-89. doi: 10.1016/j.jembe.2015.08.011 [38] BERNHARD A E,PEELE E R.Nitrogen limitation of phytoplankton in a shallow embayment in northern Puget Sound[J].Estuaries,1997,20(4):759-769. doi: 10.2307/1352249 [39] 王芳,李永吉,马廷婷,等.基于浮游植物的城市湖泊生态健康评价:以长江下游铜陵市西湖为例[J].湖泊科学,2022,34(6):1890-1900.WANG F,LI Y J,MA T T,et al.Ecological health assessment of urban lakes based on phytoplankton:a case study of west lake in Tongling City,Lower Yangtze River[J]Journal of Lake Sciences,2022,34(6):1890-1900. [40] 罗敏纳,孙蓓丽,朱冰川,等.太湖流域浮游植物功能类群分布特征及其与环境因子的关系[J].湖泊科学,2022,34(5):1471-1488. doi: 10.18307/2022.0506LUO M N,SUN B L,ZHU B C,et al.Distribution characteristics of phytoplankton functional groups and their relationship with environmental factors in Taihu Basin[J].Journal of Lake Sciences,2022,34(5):1471-1488. doi: 10.18307/2022.0506 [41] ZHU L Y,CHEN Y Y,WANG Y W,et al.Ecological assessment of water quality in an urban river replenished with reclaimed water:the phytoplankton functional groups approach[J].Environmental Research Communications,2021,3(11):115006. doi: 10.1088/2515-7620/ac3777 [42] 郭芳,顾继光,赵剑,等.类群划分方法对南亚热带水库夏季浮游植物群落与环境响应关系的影响[J].环境科学,2020,41(11):5050-5059. doi: 10.13227/j.hjkx.202005106GUO F,GU J G,ZHAO J,et al.Effects of phytoplankton classifications on the relationship between phytoplankton community and environment in summer subtropical reservoirs,southern China[J].Environmental Science,2020,41(11):5050-5059. doi: 10.13227/j.hjkx.202005106 [43] 韩丽彬,王星,李秋华,等.贵州高原百花水库浮游植物功能群的动态变化及驱动因子[J].湖泊科学,2022,34(4):1102-1114. doi: 10.18307/2022.0405HAN L B,WANG X,LI Q H,et al.Dynamic changes and driving factors of phytoplankton functional groups in Baihua Reservoir,Guizhou Plateau[J].Journal of Lake Sciences,2022,34(4):1102-1114. doi: 10.18307/2022.0405 [44] 龚川,贡丹丹,刘德富,等.不同光照强度下香溪河浮游植物演替过程研究[J].环境科学研究,2020,33(5):1214-1224. doi: 10.13198/j.issn.1001-6929.2020.04.01GONG C,GONG D D,LIU D F,et al.Phytoplankton succession process in Xiangxi River under different light intensity[J].Research of Environmental Sciences,2020,33(5):1214-1224. doi: 10.13198/j.issn.1001-6929.2020.04.01 [45] 彭凯,李太民,刘利,等.苏北骆马湖浮游植物群落结构及其水质生物评价[J].湖泊科学,2018,30(1):183-191. doi: 10.18307/2018.0118PENG K,LI T M,LIU L,et al.Community structure of phytoplankton and bio-assessment of water quality in Lake Luoma,northern Jiangsu Province[J].Journal of Lake Sciences,2018,30(1):183-191. doi: 10.18307/2018.0118 [46] 王世欢,张生,武蓉,等.寒旱区湖泊浮游植物特征及其对营养状态的指示作用[J].中国环境科学,2023,43(1):311-320. doi: 10.19674/j.cnki.issn1000-6923.2023.0003WANG S H,ZHANG S,WU R,et al.Characteristics of phytoplankton in lakes in cold and arid areas and its indicative role in nutritional status[J].China Environmental Science,2023,43(1):311-320. doi: 10.19674/j.cnki.issn1000-6923.2023.0003 [47] 杜红春,王晓宁,吴虎,等.汉江中下游浮游植物群落结构、功能群特征及水质评价[J].长江流域资源与环境,2021,30(8):1839-1847.DU H C,WANG X N,WU H,et al.Community structure and functional groups of phytoplankton and water quality evaluation in the middle and lower Hanjiang River[J].Resources and Environment in the Yangtze Basin,2021,30(8):1839-1847. [48] DING Y T,PAN B Z,ZHAO G N,et al.Geo-climatic factors weaken the effectiveness of phytoplankton diversity as a water quality indicator in a large sediment-laden river[J].Science of the Total Environment,2021,792:148346. doi: 10.1016/j.scitotenv.2021.148346 -