Effects of Soil Amendment Combined with Bacillus subtilis Application on Cadmium and Arsenic Uptake by Rice
-
摘要: 矿区农田重金属污染严重影响生态环境质量和农产品安全,重金属污染治理修复研究是矿区农田土壤安全利用的前提. 为探究不同土壤调理剂联合芽孢杆菌施用对矿区土壤镉(Cd)和砷(As)的修复效果,采用田间小区试验的方法,设置对照处理(CK)、单一/复合施用芽孢杆菌(J)以及两种土壤调理剂(氧化钙镁肥,D1;硅钙镁钾肥,D2)共8个处理(CK、J、D1、D2、J+D1、J+D2、D1+D2和J+D1+D2),分析不同处理对土壤化学性质、土壤有效态Cd和As含量、水稻产量以及水稻各部分Cd和As含量的影响. 结果表明:①除菌剂外,单一/复合施用两种土壤调理剂能提高土壤pH,对比CK处理,其余处理组均能提高阳离子交换量(CEC)、有效磷(AvP)含量和有效硅(Si)含量. ②单一/复合施用土壤调理剂和菌剂均同时降低了土壤有效态Cd和As含量,二者降幅分别为5.46%~47.53%和5.32%~25.49%,同时有效态Cd和As含量的降幅以D1+D2处理最大,D2处理次之,菌剂(J)单独施用的降幅最小. ③D2、J+D1、J+D2、D1+D2和J+D1+D2这5种处理均能显著降低糙米和精米中Cd的含量,J处理和J+D1+D2处理均能显著降低精米As含量,达到《食品安全国家标准 食品中污染物限量》(GB 2762—2022)中的食品安全生产标准. ④试验材料主要通过改变土壤pH、CEC和有效Si含量来影响土壤Cd和As的生物有效性,以及水稻对Cd和As的吸收和转运. 研究显示,硅钙镁钾肥(D2处理)无论单施还是联合施用均能显著降低糙米Cd含量,达到《食品安全国家标准 食品中污染物限量》(GB 2762—2022)中的食品安全标准,但其对糙米As含量无显著影响,因此硅钙镁钾肥可为单一Cd污染土壤的水稻安全生产提供有效的解决途径.Abstract: Heavy metal pollution in farmland in mining areas seriously affects the ecological and environmental quality and the safety of agricultural products. Conducting research on the remediation and restoration of farmland soil contaminated with cadmium (Cd) and arsenic (As) has become a prerequisite for the safe utilization of farmland soil in these areas. In order to explore the remediation effects of different soil amendments in combination with Bacillus subtilis on the remediation of Cd and As in mining areas, a field plot experiment was conducted, including CK treatment and single or combined application of Bacillus subtilis (J) and two soil amendment (oxycalcium-magnesium amendment, D1; Si-Ca-Mg-K amendment, D2), with a total of 8 treatments (CK, J, D1, D2, J+D1, D1+D2, D1+D2, and J+D2). The effects of different treatments on soil chemical properties, soil available Cd and As content, rice yield, and Cd and As content in various parts of rice were studied. The results showed that: (1) Apart from Bacillus subtilis, single or combined application of two soil amendments could increase the soil pH. Single or combined application of soil amendment with the Bacillus subtilis could increase the cation exchange capacity (CEC) and available phosphorus (AvP) and available silicon. (2) Single or combined application of soil amendment and Bacillus could reduce the available Cd and As contents in soil from 5.46% to 47.53% and from 5.32% to 25.49%, respectively. The greatest reduction in available Cd and As was achieved by the D1+D2 treatment, followed by the D2 treatment, while the Bacillus (J) alone had the least effect. (3) Single application of D2 treatment or combined application of soil amendment with Bacillus (J+D1, J+D2, D1+D2 and J+D1+D2) could significantly reduce the Cd content in brown rice and polished rice. Single application of Bacillus (J) and the combined application of all three materials (J+D1+D2) could significantly reduce the As content in polished rice, reaching the food safety production standard in the National Standard for Food Safety Limit of Pollutants in Food (GB 2762-2022). (4) The remediation test materials in the experiments mainly affected the availability of soil Cd/As and the absorption and transportation of Cd and As in rice by changing the soil pH, CEC and available silicon content. The results of research show that both single and combined application of Si-Ca-Mg-K amendment (D2) can significantly reduce the Cd content in brown rice and meet the national food safety standards. However, it has no significant impact on the As content in brown rice, reaching the food safety standard in the National Standard for Food Safety Limit of Pollutants in Food (GB 2762-2022). Therefore, Si-Ca-Mg-K amendment can provide an effective solution for the safe production of rice in soil polluted by a single Cd.
-
表 1 试验设计与材料用量
Table 1. Experimental design and material consumption
处理组编号 试验材料 材料用量 CK 对照 J 微生物菌剂 200 mL/亩,稀释15倍 D1 D1土壤调理剂 100~150 kg/亩 D2 D2土壤调理剂 100~150 kg/亩 J+D1 菌剂+D1土壤调理剂 菌剂200 mL/亩,稀释15倍;D1调理剂100~150 kg/亩 J+D2 菌剂+D2土壤调理剂 菌剂200 mL/亩,稀释15倍;D2调理剂100~150 kg/亩 D1+D2 D1土壤调理剂+D2土壤调理剂 D1和D2调理剂各100~150 kg/亩 J+D1+D2 菌剂+D1土壤调理剂+D2土壤调理剂 菌剂200 mL/亩,稀释15倍;D1和D2调理剂各100~150 kg/亩 注:1亩≈666.67 m2. 表 2 单一/联合施用不同土壤调理剂和菌剂对水稻产量的影响
Table 2. Effects of single/combined application of different soil amendments and Bacillus subtilis on rice yield
处理组 水稻产量/(kg/hm2) 增产率/% CK 7 560±360a J 8 040±787a 6.3 D1 7 680±120a 1.6 D2 7 920±550a 4.8 J+D1 8 160±523a 7.9 J+D2 7 720±288a 2.1 D1+D2 6 840±80a −9.5 J+D1+D2 8 040±840a 6.3 表 3 不同处理对水稻各部位Cd、As富集和转运的影响
Table 3. Accumulation coefficient and transport coefficient of Cd and As in the rice tissues as affected by different treatments
重金属 处理组 富集系数(BCF) 转运系数(TF) 根 茎 叶 壳 糙米 根-茎 茎-叶 茎-糙米 Cd CK 17.18±2.44a 2.14±0.28a 0.31±0.09a 0.18±0.02a 0.17±0.02a 0.13±0.04a 0.14±0.02ab 0.08±0.01abc J 12.79±0.34abc 1.71±0.34ab 0.25±0.05abc 0.13±0.02ab 0.15±0.03ab 0.13±0.02a 0.15±0.01ab 0.09±0.01ab D1 16.86±1.22ab 1.74±0.36ab 0.28±0.03ab 0.16±0.04a 0.11±0.02bc 0.07±0.03a 0.21±0.01a 0.10±0.00a D2 11.21±1.48c 1.19±0.19bc 0.18±0.05abc 0.07±0.01c 0.09±0.01c 0.12±0.04a 0.17±0.04ab 0.08±0.01abc J+D1 10.58±1.93c 0.83±0.16c 0.17±0.03abc 0.07±0.02c 0.07±0.01c 0.11±0.04a 0.18±0.04ab 0.08±0.01abc J+D2 11.74±1.84bc 1.06±0.07bc 0.13±0.03bc 0.04±0.00c 0.07±0.01c 0.09±0.01a 0.12±0.02ab 0.06±0.01bc D1+D2 8.84±1.13c 1.47±0.23abc 0.19±0.03abc 0.08±0.02bc 0.08±0.01c 0.12±0.01a 0.14±0.03ab 0.06±0.01c J+D1+D2 8.33±0.19c 1.25±0.21bc 0.12±0.02c 0.05±0.01c 0.07±0.00c 0.14±0.02a 0.10±0.01b 0.06±0.00c CK 12.18±1.55a 0.31±0.02a 0.76±0.04a 1.42±0.17a 0.02±0.00a 0.02±0.00d 2.76±0.43a 0.06±0.00ab J 9.19±1.41abc 0.30±0.03a 0.56±0.03b 1.14±0.06ab 0.01±0.00a 0.04±0.00bcd 1.86±0.25ab 0.05±0.00b D1 5.41±0.81c 0.26±0.02a 0.37±0.06c 1.47±0.23a 0.01±0.00a 0.06±0.01a 1.33±0.32b 0.05±0.01b As D2 7.82±0.30bc 0.24±0.05a 0.40±0.01bc 1.13±0.09ab 0.01±0.00a 0.03±0.01cd 1.68±0.42ab 0.06±0.01ab J+D1 7.29±0.72bc 0.29±0.04a 0.50±0.06bc 1.28±0.05ab 0.01±0.00a 0.04±0.00bc 1.79±0.35ab 0.05±0.00b J+D2 10.03±0.52ab 0.29±0.01a 0.50±0.07bc 1.22±0.14ab 0.01±0.00a 0.03±0.00bcd 1.75±0.29ab 0.04±0.00b D1+D2 10.09±2.18ab 0.20±0.05a 0.39±0.08bc 0.86±0.09b 0.02±0.00a 0.02±0.00d 1.91±0.13ab 0.07±0.00a J+D1+D2 6.23±1.16bc 0.30±0.06a 0.41±0.06bc 1.11±0.16ab 0.01±0.00a 0.05±0.01ab 1.44±0.20b 0.04±0.00b 注:不同字母表示不同处理组同一部位的差异显著(P<0.05),下同. -
[1] 环境保护部,国土资源部.《全国土壤污染状况调查公报》[EB/OL].中华人民共和国中央人民政府门户网站,(2014-04-17)[2023-08-02].https://www.gov.cn/foot/2014-04/17/content_2661768.htm. [2] ROY M,MCDONALD L M.Metal uptake in plants and health risk assessments in metal-contaminated smelter soils[J].Land Degradation & Development,2015,26(8):785-792. [3] SHAO X X,HUANG B,ZHAO Y C,et al.Impacts of human activities and sampling strategies on soil heavy metal distribution in a rapidly developing region of China[J].Ecotoxicology and Environmental Safety,2014,104:1-8. doi: 10.1016/j.ecoenv.2014.02.007 [4] LIU G F,MENG J,HUANG Y L,et al.Effects of carbide slag,lodestone and biochar on the immobilization,plant uptake and translocation of As and Cd in a contaminated paddy soil[J].Environmental Pollution,2020,266:115194. doi: 10.1016/j.envpol.2020.115194 [5] WAN Y N,HUANG Q Q,CAMARA A Y,et al.Water management impacts on the solubility of Cd,Pb,As,and Cr and their uptake by rice in two contaminated paddy soils[J].Chemosphere,2019,228:360-369. doi: 10.1016/j.chemosphere.2019.04.133 [6] 李翔鸿,陈克云,黄荣荣,等.富硅稻壳灰对水稻吸收砷的调控作用[J].环境科学研究,2022,35(12):2801-2809.LI X H,CHEN K Y,HUANG R R,et al.Using silicon-rich rich husk ash to regulate arsenic uptake by rice[J].Research of Environmental Sciences,2022,35(12):2801-2809. [7] 吴家梅,官迪,陈山等.硅肥等量施用对土壤砷赋存形态和水稻吸收砷的影响[J].环境科学研究,2023.doi: 10.13198/j.issn.1001-6929.WU J M,GUAN D,CHEN S,et al.Effects of equal amounts silicon fertilizers application on soil arsenic fractions and arsenic uptake by rice[J].Research of Environmental Sciences,2023.doi: 10.13198/j.issn.1001-6929. [8] 曹庭悦,刘鸣达,沃惜慧,等.硅、磷配施对水稻镉吸收转运的影响及其机制[J].农业环境科学学报,2020,39(1):37-44. doi: 10.11654/jaes.2019-0796CAO T Y,LIU M D,WO X H,et al.Effects of combined application of silicon and phosphorus on cadmium uptake and transport in rice and its mechanisms[J].Journal of Agro-Environment Science,2020,39(1):37-44. doi: 10.11654/jaes.2019-0796 [9] ARAO T,KAWASAKI A,BABA K,et al.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J].Environmental Science & Technology,2009,43(24):9361-9367. [10] WANG X Q,YU H Y,LI F B,et al.Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3:possible mechanisms and environmental implications[J].Science of the Total Environment,2019,649:535-543. doi: 10.1016/j.scitotenv.2018.08.387 [11] 曹锐,王悦,陈爽,等.镉砷复合污染水稻土原位钝化修复技术研究进展[J].土壤学报,2023,60(3):657-672.CAO R,WANG Y,CHENG S,et al.Research progress on in-situ passivation remediation technology of cadmium and arsenic compound contaminated paddy soil[J].Acta Pedologica Sinica,2023,60(3):657-672. [12] WANG Y F,YING Y Q,LU S G.Si-Ca-K-Mg amendment reduces the phytoavailability and transfer of Cd from acidic soil to rice grain[J].Environmental Science and Pollution Research,2020,27(26):33248-33258. doi: 10.1007/s11356-020-09444-2 [13] WANG H Y,WEN S L,CHEN P,et al.Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields[J].Environmental Science and Pollution Research,2016,23(4):3781-3788. doi: 10.1007/s11356-015-5638-5 [14] SINGH N,GUPTA S,MARWA N,et al.Arsenic mediated modifications in Bacillus aryabhattai and their biotechnological applications for arsenic bioremediation[J].Chemosphere,2016,164:524-534. doi: 10.1016/j.chemosphere.2016.08.119 [15] JOSHI D N,FLORA S J S,KALIA K.Bacillus sp. strain DJ-1,potent arsenic hypertolerant bacterium isolated from the industrial effluent of India[J].Journal of Hazardous Materials,2009,166(2/3):1500-1505. [16] DOLPHEN R,THIRAVETYAN P.Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria[J].Chemosphere,2019,223:448-454. doi: 10.1016/j.chemosphere.2019.02.054 [17] ZHU L,TENG Y,HAN W D,et al.Rapid screening of pharmaceutical products for elemental impurities by a high-resolution portable energy dispersive X-ray fluorescence spectrometer using an efficient fundamental parameter method[J].Analyst,2023,148(5):1116-1122. doi: 10.1039/D2AN01749K [18] 穆莉,王跃华,徐亚平,等.湖南省某县稻田土壤重金属污染特征及来源解析[J].农业环境科学学报,2019,38(3):573-582. doi: 10.11654/jaes.2018-0791MU L,WANG Y H,XU Y P,et al.Pollution characteristics and sources of heavy metals in paddy soils in a County of Hunan Province,China[J].Journal of Agro-Environment Science,2019,38(3):573-582. doi: 10.11654/jaes.2018-0791 [19] CHEN H F,ZHANG Q,ZHANG Z H.Comparative transcriptome combined with metabolomic and physiological analyses revealed ROS-mediated redox signaling affecting rice growth and cellular iron homeostasis under varying pH conditions[J].Plant and Soil,2019,434(1):343-361. [20] 杨榕,李博文,刘微.胶质芽孢杆菌对印度芥菜富集土壤Cd及土壤pH的影响[J].环境科学学报,2013,33(6):1648-1654. doi: 10.13671/j.hjkxxb.2013.06.025YANG R,LI B W,LIU W.Effects of Bacillus mucilaginosus on soil pH and Cd accumulation by Brassica juncea[J].Acta Scientiae Circumstantiae,2013,33(6):1648-1654. doi: 10.13671/j.hjkxxb.2013.06.025 [21] 王萍,李一曼,王雪佳,等.巨大芽孢杆菌对土壤理化性质及植物富集镉锌的影响[J].环境科学,2022,43(12):5798-5807.WANG P,LI Y M,WANG X J,et al.Effects of Bacillus megaterium on soil physicochemical properties and its effects on the accumulation of Cd and Zn in plant[J].Environmental Science,2022,43(12):5798-5807. [22] 王一,王松,施柳,等.不同稳定化材料对镉砷复合污染土壤稳定化修复效果研究[J].土壤通报,2022,53(5):1203-1211.WANG Y,WANG S,SHI L,et al.Study on the effect of different stabilizing materials on the stabilization and remediation of cadmium and arsenic contaminated soil[J].Chinese Journal of Soil Science,2022,53(5):1203-1211. [23] 刘书锦,黄益宗,李颜,等.外源亚精胺对水稻吸收积累镉砷的影响[J].农业环境科学学报,2020,39(10):2172-2180. doi: 10.11654/jaes.2020-0828LIU S J,HUANG Y Z,LI Y,et al.The effects of exogenous spermidine on the cadmium and arsenic uptake and accumulation in rice[J].Journal of Agro-Environment Science,2020,39(10):2172-2180. doi: 10.11654/jaes.2020-0828 [24] 黄蕊,林震,田发祥,等.增施硅肥情况下化肥减施对水稻产量及镉吸收的影响[J].环境科学研究,2021,34(10):2428-2437. doi: 10.13198/j.issn.1001-6929.2021.05.28HUANG R,LIN Z,TIAN F X,et al.Effects of chemical fertilizer reduction on rice yield and cadmium accumulation under increasing silicon fertilizer application[J].Research of Environmental Sciences,2021,34(10):2428-2437. doi: 10.13198/j.issn.1001-6929.2021.05.28 [25] YANG X,WEN E G,GE C J,et al.Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic,cadmium,and lead accumulation in rice and enzyme activities in a paddy soil[J].Journal of Hazardous Materials,2023,443:130203. doi: 10.1016/j.jhazmat.2022.130203 [26] 易轩韬,欧阳坤,辜娇峰,等.谷壳灰硅肥改善土壤质量降低水稻镉砷累积的效应[J].环境科学,2023.doi: 10.13227/j.hjkx.202303212.YI X T,OUYANG K,GU J F,et al.Effect of silica fertilizer-husk ash to improve soil quality and reduce Cd and As accumulation in rice[J].Environmental Sciences,2023.doi: 10.13227/j.hjkx.202303212. [27] 李仁英,张婍,谢晓金,等.不同品种水稻对砷的吸收转运及其健康风险研究[J].土壤通报,2019,50(2):489-496. doi: 10.19336/j.cnki.trtb.2019.02.33LI R Y,ZHANG Q,XIE X J,et al.Arsenic uptake and translocation of different rice cultivars and its health risk[J].Chinese Journal of Soil Science,2019,50(2):489-496. doi: 10.19336/j.cnki.trtb.2019.02.33 [28] 李开叶,赵婷婷,陈佳,等.不同有机物料对水稻根表铁膜及砷镉吸收转运的影响[J].环境科学,2021,42(4):2047-2055. doi: 10.13227/j.hjkx.202007307LI K Y,ZHAO T T,CHEN J,et al.Effects of different organic materials on absorption and translocation of arsenic and cadmium in rice[J].Environmental Science,2021,42(4):2047-2055. doi: 10.13227/j.hjkx.202007307 [29] ISLAM S,RAHMAN M M,ISLAM M R,et al.Effect of irrigation and genotypes towards reduction in arsenic load in rice[J].Science of the Total Environment,2017,609:311-318. doi: 10.1016/j.scitotenv.2017.07.111 [30] 吴珂萌,严露,柳赛花,等.杂交稻和常规稻对复合污染稻田土壤砷镉提取效果差异研究[J].环境科学研究,2023,36(3):571-580.WU K M,YAN L,LIU S H,et al.Study on difference in arsenic and cadmium extraction between hybrid rice and conventional rice in co-contaminated paddy soil[J].Research of Environmental Sciences,2023,36(3):571-580. [31] LI W L,XU B B,SONG Q J,et al.The identification of ‘hotspots’ of heavy metal pollution in soil-rice systems at a regional scale in Eastern China[J].Science of the Total Environment,2014,472:407-420. doi: 10.1016/j.scitotenv.2013.11.046 [32] LIU J,MA J,HE C W,et al.Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon[J].New Phytologist,2013,200(3):691-699. doi: 10.1111/nph.12494 [33] MA J,CAI H M,HE C W,et al.A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells[J].New Phytologist,2015,206(3):1063-1074. doi: 10.1111/nph.13276 [34] ETESAMI H.Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues:mechanisms and future prospects[J].Ecotoxicology and Environmental Safety,2018,147:175-191. doi: 10.1016/j.ecoenv.2017.08.032 [35] ETESAMI H,JEONG B R,RAHEB A.Arsenic (As) resistant bacteria with multiple plant growth-promoting traits:potential to alleviate As toxicity and accumulation in rice[J].Microbiological Research,2023,272:127391. doi: 10.1016/j.micres.2023.127391 [36] XUE W J,ZHANG C B,WANG P P,et al.Rice vegetative organs alleviate cadmium toxicity by altering the chemical forms of cadmium and increasing the ratio of calcium to manganese[J].Ecotoxicology and Environmental Safety,2019,184:109640. doi: 10.1016/j.ecoenv.2019.109640 [37] ZOU M M,QIN W D,WANG Q,et al.Translocation pattern of heavy metals in soil-rice systems at different growth stages:a case study in the Taihu region,Eastern China[J].Chemosphere,2023,330:138558. doi: 10.1016/j.chemosphere.2023.138558 -