Spatiotemporal Variation Characteristics and Driving Factors of Air Quality in Shanxi Province from 2015 to 2020
-
摘要: 山西省是近年来我国空气质量较差的地区之一,本文基于山西省11个地级市2015—2020年空气质量监测结果、气象数据以及2020年的社会经济数据,综合地理加权回归(GWR)模型、多尺度地理加权回归(MGWR)模型以及小波分析等方法开展该地区空气质量时空变化和驱动因素研究. 结果表明:①近年来,山西省SO2、CO和PM2.5浓度均呈明显下降趋势,但NO2和O3污染加重导致山西省空气污染防治形势严峻. ②冬季山西省空气质量空间差异性明显,11个城市中大同市的空气质量最好,临汾市空气质量最差. ③山西省不同社会经济因子与空气污染物相关关系的空间异质性不同,人均GDP和城市绿化覆盖率对SO2浓度影响的空间异质性较高,人均GDP和人口密度对NO2浓度影响的空间异质性较高. ④临汾市、大同市气象因子与PM2.5浓度的相关性一致,两市平均气温与O3浓度均呈显著正相关,风速、降水量和平均相对湿度与O3浓度相关性均较弱,且在两市中存在明显差异. ⑤小波分析结果表明,临汾市、大同市PM2.5浓度与风速在短周期中多呈负相关关系,长周期中PM2.5浓度变化滞后于风速;O3浓度与风速在不同短周期中的相关性不同,长周期中风速变化滞后于O3浓度变化. 研究显示,山西省空气质量持续改善,不同经济因素和气象因素对空气质量时空特征的影响存在明显差异.Abstract: In recent years, Shanxi Province became one of the regions with the worst air quality in China. This research uses the air quality monitoring data, meteorological data, and socio-economic data of 11 cities in Shanxi Province from 2015 and 2020 to study the spatial-temporal changes and driving factors of air quality. It employs comprehensive geographically weighted regression (GWR), multiscale geographically weighted regression (MGWR), and wavelet analysis methods. The results showed that: (1) In recent years, SO2, CO and PM2.5 concentrations in Shanxi Province showed a downward trend, but the worsening levels of NO2 and O3 created a serious challenge for air pollution prevention and control in the region. (2) During the winter, there were significant spatial differences of air quality among 11 cities in Shanxi Province. The air quality of Datong City was better than other cities, and the air quality of Linfen City was worse. (3) The spatial heterogeneity of the relationship between different socioeconomic factors and air pollutants in Shanxi Province was different. The spatial heterogeneity of the impact of per capita GDP and urban greening rate on SO2 was high. The spatial heterogeneity of the impact of per capita GDP and population density on NO2 was high. (4) The correlation between meteorological factors and PM2.5 in Linfen city and Datong city was consistent, with a significant positive correlation between the average temperature and O3. The correlations between wind speed, precipitation, and average relative humidity and O3 were weak, and there were significant differences between the two cities. (5) The wavelet analysis showed that the PM2.5 concentration in the two cities was negatively correlated with wind speed in short cycles, while the change of PM2.5 concentration lagged behind wind speed in the long cycle. The correlation between O3 concentration and wind speed in different short cycles was inconsistent, and the change of wind speed lagged behind the change of O3 concentration in long cycles. In summary, the air quality in Shanxi Province continuously improved, and there were obvious differences in the impact of different economic and meteorological factors on the spatial and temporal characteristics of air quality.
-
图 7 临汾市和大同市PM2.5浓度、O3浓度、风速的小波图
注:黑实线包围的黄色部分表示相关性通过95%显著检验,阴影部分受到边界效应影响,其功率谱不予考虑[33]. 下同.
Figure 7. Wavelet diagram of PM2.5 concentration, O3 concentration and wind speed in Linfen City and Datong City
表 1 OLS和GWR模型分析结果
Table 1. Analysis results of OLS and GWR models
因变量 自变量 OLS模型 GWR模型 回归系数 P VIF值 回归系数最小值 回归系数中值 回归系数最大值 SO2浓度 人口密度 −1.289*** 0.005 2.867 −1.312 −1.279 −1.260 城镇化率 1.370*** 0.002 2.443 1.351 1.354 1.377 人均GDP −0.046 0.808 1.852 −0.062 −0.037 −0.027 工业用电量 −0.095 0.584 1.261 −0.106 −0.092 −0.083 城市绿化覆盖率 0.301 0.111 1.480 0.290 0.297 0.308 AICc1) 11.699 33.681 R2 0.895 0.906 调整R2 0.790 0.741 F-statistic2) 8.505** 0.017 4 带宽 17 NO2浓度 人口密度 0.336 0.427 2.867 0.299 0.343 0.379 城镇化率 0.203 0.570 2.443 0.183 0.206 0.225 人均GDP 0.298 0.304 1.852 0.265 0.282 0.319 工业用电量 −0.151 0.545 1.261 −0.151 −0.145 −0.137 城市绿化覆盖率 −0.526* 0.065 1.480 −0.525 −0.520 −0.512 AICc1) 19.717 41.626 R2 0.759 0.785 调整R2 0.518 0.411 F-statistic2) 3.146 0.117 带宽 17 注:1)AICc值是衡量模型优良度的一种标准,值越小,模型拟合优度越高. 2) F -statistic用于检验模型是否具有显著性. ***、**、*分别表示在1%、5%、10%水平上的显著性. 下同. 表 2 MGWR模型分析结果
Table 2. Analysis results of MGWR model
因变量 自变量 MGWR 回归系数
最小值回归系数
中值回归系数
最大值带宽 SO2浓度 人口密度 −1.318 −1.314 −1.313 10 城镇化率 1.314 1.320 1.340 10 人均GDP −0.072 0.024 0.110 7 工业用电量 −0.116 −0.103 −0.096 10 城市绿化覆盖率 0.256 0.302 0.337 8 AICc 47.603 R2 0.934 调整R2 0.766 NO2浓度 人口密度 0.420 0.463 0.477 9 城镇化率 0.132 0.158 0.188 10 人均GDP 0.163 0.210 0.295 9 工业用电量 −0.200 −0.137 −0.104 10 城市绿化覆盖率 −0.540 −0.530 −0.515 10 AICc 49.500 R2 0.813 调整R2 0.404 表 3 2015—2020年临汾市和大同市PM2.5、O3浓度与气象因子的Pearson相关系数
Table 3. Pearson correlation coefficient between PM2.5, O3 and meteorological factors in Linfen City and Datong City from 2015 to 2020
城市 气象因子 Pearson相关系数 PM2.5浓度 O3浓度 临汾市 风速 −0.338 9*** 0.170 8*** 平均气温 −0.486 5*** 0.744 5*** 降水量 −0.157 5*** −0.048 3 平均相对湿度 0.050 2 −0.102 1*** 大同市 风速 −0.335 8*** 0.006 9 平均气温 −0.312 6*** 0.779 8*** 降水量 −0.163 1*** 0.119 5*** 平均相对湿度 0.074 0** 0.050 7 注:**表示P<0.002,***表示P<0.001. -
[1] BAI X X,TIAN H Z,LIU X Y,et al.Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi Province of China[J].Atmospheric Environment,2021,244:117926. doi: 10.1016/j.atmosenv.2020.117926 [2] ZHANG L C,AN J,LIU M Y,et al.Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing,China[J].Environmental Pollution,2020,262:114276. doi: 10.1016/j.envpol.2020.114276 [3] MAJI K J,SARKAR C.Spatio-temporal variations and trends of major air pollutants in China during 2015-2018[J].Environmental Science and Pollution Research,2020,27(27):33792-33808. doi: 10.1007/s11356-020-09646-8 [4] CHEN J D,WANG B,HUANG S,et al.The influence of increased population density in China on air pollution[J].Science of the Total Environment,2020,735:139456. doi: 10.1016/j.scitotenv.2020.139456 [5] HAN L J,ZHOU W Q,LI W F,et al.Impact of urbanization level on urban air quality:a case of fine particles (PM2.5) in Chinese cities[J].Environmental Pollution,2014,194:163-170. doi: 10.1016/j.envpol.2014.07.022 [6] WANG S G,CHENG S Q,QI X H.Effect of urban greening on incremental PM2.5 concentration during peak hours[J].Frontiers in Public Health,2020,8:551300. doi: 10.3389/fpubh.2020.551300 [7] XIE J L,SUN T L,LIU C F,et al.Quantitative evaluation of impacts of the steadiness and duration of urban surface wind patterns on air quality[J].Science of the Total Environment,2022,850:157957. doi: 10.1016/j.scitotenv.2022.157957 [8] IKRAM M,YAN Z J,LIU Y,et al.Assessing the possible impacts of temperature change on air quality and public health in Beijing,2008-2012[J].Natural Hazards,2016,84(1):153-165. [9] RAVINDRA K,SINGH T,BISWAL A,et al.Impact of COVID-19 lockdown on ambient air quality in megacities of India and implication for air pollution control strategies[J].Environmental Science and Pollution Research ,2021,28(17):21621-21632. doi: 10.1007/s11356-020-11808-7 [10] HU W Y,ZHAO T L,BAI Y Q,et al.Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China:observational analysis and WRF-Chem simulation[J].Science of the Total Environment,2021,758:143710. doi: 10.1016/j.scitotenv.2020.143710 [11] FANG C L,LIU H M,LI G D,et al.Estimating the impact of urbanization on air quality in China using spatial regression models[J].Sustainability,2015,7(11):15570-15592. doi: 10.3390/su71115570 [12] FOTHERINGHAM A S,YUE H,LI Z Q.Examining the influences of air quality in China´s cities using multi-scale geographically weighted regression[J].Transactions in GIS,2019,23(6):1444-1464. doi: 10.1111/tgis.12580 [13] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134. doi: 10.11821/dlxb201701010WANG J F,XU C D.Geodetector:principle and prospective[J].Acta Geographica Sinica,2017,72(1):116-134. doi: 10.11821/dlxb201701010 [14] TORRENCE C,COMPO G P.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological Society,1998,79(1):61-78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 [15] TAN S J,XIE D T,NI C S,et al.Spatiotemporal characteristics of air pollution in Chengdu-Chongqing urban agglomeration (CCUA) in Southwest,China:2015-2021[J].Journal of Environmental Management,2023,325:116503. doi: 10.1016/j.jenvman.2022.116503 [16] 生态环境部.2016—2020年中国生态环境质量报告[M].北京:中国环境出版集团,2022:43-75. [17] 李瑞金,郝乾龙,刘洋,等.山西四城市大气污染特征及PM2.5传输规律研究[J].山西大学学报(自然科学版),2021,44(5):1031-1044.LI R J,HAO Q L,LIU Y,et al.Study on air pollution characteristics and PM2.5 transmission law in four cities of Shanxi Province[J].Journal of Shanxi University (Natural Science Edition),2021,44(5):1031-1044. [18] 焦姣,罗锦洪,杨锦锦,等.山西省城市地区近年来环境空气臭氧污染特征及来源解析[J].环境科学研究,2022,35(3):731-739.JIAO J,LUO J H,YANG J J,et al.Pollution characteristics and source apportionment of ground-level ozone in Shanxi urban region in recent years[J].Research of Environmental Sciences,2022,35(3):731-739. [19] FENG Y Y,NING M,LEI Y,et al.Defending blue sky in China:effectiveness of the ‘Air Pollution Prevention and Control Action Plan’ on air quality improvements from 2013 to 2017[J].Journal of Environmental Management,2019,252:109603. doi: 10.1016/j.jenvman.2019.109603 [20] ZHAI S X,JACOB D J,WANG X A,et al.Fine particulate matter (PM2.5) trends in China,2013-2018:separating contributions from anthropogenic emissions and meteorology[J].Atmospheric Chemistry and Physics,2019,19(16):11031-11041. doi: 10.5194/acp-19-11031-2019 [21] 李慧,王淑兰,张文杰,等.京津冀及周边地区“2+26”城市空气质量特征及其影响因素[J].环境科学研究,2021,34(1):172-184. doi: 10.13198/j.issn.1001-6929.2020.12.26LI H,WANG S L,ZHANG W J,et al.Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas (‘2+26’ cities)[J].Research of Environmental Sciences,2021,34(1):172-184. doi: 10.13198/j.issn.1001-6929.2020.12.26 [22] 李慧,王涵,严沁,等.汾渭平原秋冬季PM2.5化学组分特征及其来源[J].环境科学研究,2023,36(3):449-459.LI H,WANG H,YAN Q,et al.Chemical composition characteristics and source apportionment of PM2.5 in the Fenwei Plain in autumn and winter[J].Research of Environmental Sciences,2023,36(3):449-459. [23] 张可可.基于长短时间序列分析的山西省大气PM2.5污染特征及影响因素研究[D].北京:华北电力大学,2022. [24] 山西省统计局.山西统计年鉴 2021[M].北京:中国统计出版社,2021. [25] LU B B,HU Y G,YANG D Y,et al.GWmodelS:a software for geographically weighted models[J].SoftwareX,2023,21:101291. [26] 卢宾宾,葛咏,秦昆,等.地理加权回归分析技术综述[J].武汉大学学报(信息科学版),2020,45(9):1356-1366.LU B B,GE Y,QIN K,et al.A review on geographically weighted regression[J].Geomatics and Information Science of Wuhan University,2020,45(9):1356-1366. [27] BRUNSDON C,FOTHERINGHAM A S,CHARLTON M E.Geographically weighted regression:a method for exploring spatial nonstationarity[J].Geographical Analysis,2010,28(4):281-298. doi: 10.1111/j.1538-4632.1996.tb00936.x [28] 覃文忠.地理加权回归基本理论与应用研究[D].上海:同济大学,2007:25-84. [29] YU H C,FOTHERINGHAM A S,LI Z Q,et al.Inference in multiscale geographically weighted regression[J].Geographical Analysis,2020,52(1):87-106. doi: 10.1111/gean.12189 [30] FOTHERINGHAM A S,YANG W B,KANG W.Multiscale geographically weighted regression (MGWR)[J].Annals of the American Association of Geographers,2017,107(6):1247-1265. doi: 10.1080/24694452.2017.1352480 [31] OSHAN T,LI Z Q,KANG W,et al.MGWR:a python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale[J].ISPRS International Journal of Geo-Information,2019,8(6):269. doi: 10.3390/ijgi8060269 [32] CAZELLES B,CHAVEZ M,BERTEAUX D,et al.Wavelet analysis of ecological time series[J].Oecologia,2008,156(2):287-304. doi: 10.1007/s00442-008-0993-2 [33] GRINSTED A,MOORE J C,JEVREJEVA S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J].Nonlinear Processes in Geophysics,2004,11(5/6):561-566. doi: 10.5194/npg-11-561-2004 [34] 环境保护部,国家质量监督检验检疫总局.环境空气质量标准:GB 3095—2012[S].北京:中国环境科学出版社,2012. [35] 吕梁市生态环境局.吕梁市“十四五”生态环境保护规划[R].吕梁:吕梁市人民政府办公室,2022. [36] 2020年山西省生态环境状况公报[R].太原:山西省生态环境厅,2021:3-4. [37] LI J D,HAO X,LIAO H,et al.Winter particulate pollution severity in North China driven by atmospheric teleconnections[J].Nature Geoscience,2022,15(5):349-355. doi: 10.1038/s41561-022-00933-2 [38] WANG X Y,ZHANG R H.How did air pollution change during the COVID-19 outbreak in China?[J].Bulletin of the American Meteorological Society,2020,101(10):E1645-E1652. doi: 10.1175/BAMS-D-20-0102.1 [39] 刘俊生.擦亮绿色发展城市底色打造生态宜居美丽大同[N].大同日报,2021-08-18(3). [40] 新华网.红色预警下,为何临汾二氧化硫污染屡次“破千”?[EB/OL].北京:新华网,(2017-01-17)[2023-08-11].http://www.xinhuanet.com/politics/2017-01/17/c_1120330971.htm. [41] HAREL O.The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation[J].Journal of Applied Statistics,2009,36(10):1109-1118. doi: 10.1080/02664760802553000 [42] SONG H X,YANG M H.Analysis on effectiveness of SO2 emission reduction in Shanxi,China by satellite remote sensing[J].Atmosphere,2014,5(4):830-846. doi: 10.3390/atmos5040830 [43] KAUFMANN R K,DAVIDSDOTTIR B,GARNHAM S,et al.The determinants of atmospheric SO2 concentrations:reconsidering the environmental Kuznets curve[J].Ecological Economics,1998,25(2):209-220. doi: 10.1016/S0921-8009(97)00181-X [44] LIU D R,DENG Q L,REN Z G,et al.Variation trends and principal component analysis of nitrogen oxide emissions from motor vehicles in Wuhan City from 2012 to 2017[J].Science of the Total Environment,2020,704:134987. doi: 10.1016/j.scitotenv.2019.134987 [45] 山西省生态环境厅.山西省第二次全国污染源普查公报[R].太原:山西省生态环境厅,2020. [46] MIAO Z,BALEŽENTIS T,SHAO S,et al.Energy use,industrial soot and vehicle exhaust pollution:China´s regional air pollution recognition,performance decomposition and governance[J].Energy Economics,2019,83:501-514. doi: 10.1016/j.eneco.2019.07.002 [47] CHEN Z Y,CHEN D L,ZHAO C F,et al.Influence of meteorological conditions on PM2.5 concentrations across China:a review of methodology and mechanism[J].Environment International,2020,139:105558. doi: 10.1016/j.envint.2020.105558 [48] ROMER P S,DUFFEY K C,WOOLDRIDGE P J,et al.Effects of temperature-dependent NOx emissions on continental ozone production[J].Atmospheric Chemistry and Physics,2018,18(4):2601-2614. doi: 10.5194/acp-18-2601-2018 [49] WANG W J,PARRISH D D,WANG S W,et al.Long-term trend of ozone pollution in China during 2014-2020:distinct seasonal and spatial characteristics and ozone sensitivity[J].Atmospheric Chemistry and Physics,2022,22(13):8935-8949. doi: 10.5194/acp-22-8935-2022 [50] 张峻溪.人为源减排和气候变化对中国地区细颗粒物与臭氧的影响[D].杭州:浙江大学,2022:12-14. -