Volume 36 Issue 5
May  2023
Turn off MathJax
Article Contents
LI Yuewu, CHAI Wenxuan, ZHAO Yue, CHE Xiang, LIANG Siyuan, DUAN Yusen, TANG Guigang, GAO Song. VOCs Monitoring System Status and Development Direction in Key Regions of China[J]. Research of Environmental Sciences, 2023, 36(5): 857-865. doi: 10.13198/j.issn.1001-6929.2023.02.19
Citation: LI Yuewu, CHAI Wenxuan, ZHAO Yue, CHE Xiang, LIANG Siyuan, DUAN Yusen, TANG Guigang, GAO Song. VOCs Monitoring System Status and Development Direction in Key Regions of China[J]. Research of Environmental Sciences, 2023, 36(5): 857-865. doi: 10.13198/j.issn.1001-6929.2023.02.19

VOCs Monitoring System Status and Development Direction in Key Regions of China

doi: 10.13198/j.issn.1001-6929.2023.02.19
Funds:  Research Project of O3 and PM2.5 Combined Pollution Collaborative Prevention and Control Technology, China (No.DQGG202025); National Key Research and Development Program of China (No.2022YFC3703501)
  • Received Date: 2022-09-07
  • Rev Recd Date: 2023-02-20
  • Scientific monitoring of volatile organic compounds (VOCs) in the atmosphere is the key basis for the formation mechanism and prevention and control of the combined pollution of O3 and PM2.5. It is of great significance to continuously improve the air quality in China. In order to optimize and improve the VOCs monitoring system and efficiency in China and put forward the development direction and path of photochemical monitoring in the future, the key elements of VOCs monitoring system design, monitoring sites, monitoring items and periods, monitoring technology and quality control technology at home and abroad are evaluated through research, data mining and other methods. This research is carried out from the development history, monitoring points, monitoring items and time periods, monitoring technology and quality of VOCs monitoring at home and abroad. The results show that: (1) China has initially established photochemical monitoring network covering key areas, but in the VOCs monitoring network, key points such as regions, transportation and high emission areas are lacking. It is important to optimize and improve the performance of VOCs monitoring network in China. (2) May to September is an important period of O3 pollution in China. The components involved in Photochemical Assessment Monitoring Stations (PAMS) under the US Environmental Protection Agency (US EPA) aldehydes and ketones are important components affecting O3, especially ethylene, benzene series, formaldehyde and acetaldehyde. And the impact of some branched chain olefins and natural source olefins such as α-pinene, and β-pinene on O3 or particulate matters is also noteworthy. Finally, the monitoring project should be optimized according to the localization characteristics. (3) In terms of monitoring technology, manual monitoring and automatic monitoring have their own advantages, showing the development trend of automatic monitoring as the main and manual monitoring as the auxiliary. The monitoring technology system should be developed in the direction of high precision, standardization, miniaturization, modularization, intelligence, high time resolution and low monitoring cost. At the same time, quality system standard research should be continued to fill in the gaps and improve the quality of monitoring data. The research shows the monitoring points of atmospheric VOCs in China should be optimized, the standardization of monitoring technology system and quality system should be strengthened, and the localized monitoring projects in China should be formed focusing on key periods, so as to scientifically optimize and improve the photochemical monitoring program in China.

     

  • loading
  • [1]
    孟晓艳.2020年全国生态环境质量简况[R].北京:中国环境监测总站,2021.
    [2]
    李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.

    LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778.
    [3]
    王韵杰,张少君,郝吉明.中国大气污染治理:进展·挑战·路径[J].环境科学研究,2019,32(10):1755-1762.

    WANG Y J,ZHANG S J,HAO J M.Air pollution control in China:progress,challenges and future pathways[J].Research of Environmental Sciences,2019,32(10):1755-1762.
    [4]
    United States Environment Protection Agency.SPECIATE 4.5.2009[EB/OL].Washington DC:US Environmental Protection Agency,(2020-03-03)[2022-10-05].https://www.epa.gov/airemissions-modeling/speciate.
    [5]
    杨一鸣,崔积山,童莉,等.美国VOCs定义演变历程对我国VOCs环境管控的启示[J].环境科学研究,2017,30(3):368-379. doi: 10.13198/j.issn.1001-6929.2017.01.52

    YANG Y M,CUI J S,TONG L,et al.Evolution of the definition of volatile organic compounds in the United States and its implications for China[J].Research of Environmental Sciences,2017,30(3):368-379. doi: 10.13198/j.issn.1001-6929.2017.01.52
    [6]
    曹娟,毋振海,鲍捷萌,等.美国人为源VOCs管控经验及其对我国的启示[J].环境科学研究,2022,35(3):633-649. doi: 10.13198/j.issn.1001-6929.2022.01.04

    CAO J,WU Z H,BAO J M,et al.Processes and experience of anthropogenic VOCs management and control in the USA and enlightenment to China[J].Research of Environmental Sciences,2022,35(3):633-649. doi: 10.13198/j.issn.1001-6929.2022.01.04
    [7]
    United States Environment Protection Agency.Community scale air toxics ambient monitoring[EB/OL].Washington DC:US Environmental Protection Agency,(2023-02-10)[2022-10-05].https://www.epa.gov/amtic/community-scale-air-toxics-ambient-monitoring-csatam-final-reports.
    [8]
    United States Environment Protection Agency.PAMS re-engineering[EB/OL].Washington DC:US Environmental Protection Agency,(2020-11-30)[2022-10-05].https://www.epa.gov/ttn/amtic/PAMSreeng.html.
    [9]
    United States Environment Protection Agency.Ncore network[EB/OL].Washington DC:US Environmental Protection Agency,(2022-11-30)[2022-10-05].https://www.epa.gov/ttn/amtic/ncore.html.
    [10]
    United States Environment Protection Agency.PAMS net[EB/OL].Washington DC:US Environmental Protection Agency,(2022-11-30)[2022-10-05].https://www.epa.gov/ttn/amtic/images/PAMSnet.gif
    [11]
    United States Environment Protection Agency.PAMS target list (54)[EB/OL].Washington DC:US Environmental Protection Agency,(2022-11-30)[2022-10-05].https://www.epa.gov/sites/production/files/2019-11/documents/PAMS54.pdf.
    [12]
    United States Environment Protection Agency.PAMS target list (64) [EB/OL].Washington DC:US Environmental Protection Agency,(2019-11-30)[2022-10-05].https://www.epa.gov/sites/production/files/2019-11/documents/targetlist 0.pdf.
    [13]
    United States Environment Protection Agency.VOCs exemption policy[EB/OL].Washington DC:US Environmental Protection Agency,(2022-09-16)[2022-10-05].https://www.epa.gov/ground-level-ozone pollution/volatile-organic-compound-exemptions.
    [14]
    United States Environment Protection Agency.Ozone-trends[EB/OL].Washington DC:US Environmental Protection Agency,(2022-08-01)[2022-10-05].https://www.epa.gov/air-trends/ozone-trends.
    [15]
    United States Environment Protection Agency.Overview of PAMS[EB/OL].Washington DC:US Environmental Protection Agency,(2016-10-30)[2022-10-05].https://www.epa.gov/sites/production/files/2016-10/documents/overview_of_PAMS.pdf.
    [16]
    [17]
    UK AIR.Automatic hydrocarbon network [EB/OL].London:Department for Environment Food & Rural Affairs,(2023-03-08)[2022-10-05].https://uk-air.defra.gov.uk/networks/network-info?view=hc#startcontent.
    [18]
    環境省.大気汚染に係る環境基準[EB/OL].东京:環境省,2014[2022-10-05].http://www.env.go.jp/kijun/taiki.html.
    [19]
    環境省.今後の光化学オキシダント対策に向けた検討スケジュール[EB/OL].东京:環境省,(2014-08-13)[2022-10-05].www.env.go.jp/council/07air-noise/y078-10a/mat1003.pdf.
    [20]
    姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582. doi: 10.13198/j.issn.1001-6929.2021.05.20

    JIANG H,CHANG H M.Analysis of China's ozone pollution situation,preliminary investigation of causes and prevention and control recommendations[J].Research of Environmental Sciences,2021,34(7):1576-1582. doi: 10.13198/j.issn.1001-6929.2021.05.20
    [21]
    钟流举.区域空气质量监测网络系统的设计与实现[M].广州:广东科技出版社,2012.
    [22]
    孙新丽,杜世勇,王书肖,等.大气污染防治综合决策支持技术平台典型城市应用研究[J].环境科学研究,2021,34(1):158-171. doi: 10.13198/j.issn.1001-6929.2020.12.08

    SUN X L,DU S Y,WANG S X,et al.Application and research of decision support technology platform for air pollution prevention and control in typical polluted city[J].Research of Environmental Sciences,2021,34(1):158-171. doi: 10.13198/j.issn.1001-6929.2020.12.08
    [23]
    HAYES P L,CARLTON A G,BAKER K R,et al.Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010[J].Atmospheric Chemistry and Physics,2015,15(10):5773-5801. doi: 10.5194/acp-15-5773-2015
    [24]
    吴亚君,胡君,张鹤丰,等.兰州市典型企业VOCs排放特征及反应活性分析[J].环境科学研究,2019,32(5):802-812. doi: 10.13198/j.issn.1001-6929.2019.02.09

    WU Y J,HU J,ZHANG H F,et al.Characteristics and chemical reactivity of fugitive volatile organic compounds from typical industries in Lanzhou City[J].Research of Environmental Sciences,2019,32(5):802-812. doi: 10.13198/j.issn.1001-6929.2019.02.09
    [25]
    MA P K,ZHAO Y L,ROBINSON A L,et al.Evaluating the impact of new observational constraints on P-S/IVOC emissions,multi-generation oxidation,and chamber wall losses on SOA modeling for Los Angeles,CA[J].Atmospheric Chemistry and Physics,2017,17(15):9237-9259. doi: 10.5194/acp-17-9237-2017
    [26]
    ROBINSON A L,DONAHUE N M,SHRIVASTAVA M K,et al.Rethinking organic aerosols:semivolatile emissions and photochemical aging[J].Science,2007,315(5816):1259-1262. doi: 10.1126/science.1133061
    [27]
    XUAN Z Q,BI C L,LI J F,et al.Source contributions to total concentrations and carcinogenic potencies of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air:a case study in Suzhou City,China[J].Environmental Science and Pollution Research,2017,24(30):23966-23976. doi: 10.1007/s11356-017-0050-y
    [28]
    LIU Y,SHAO M,FU L L,et al.Source profiles of volatile organic compounds (VOCs) measured in China:part Ⅰ[J].Atmospheric Environment,2008,42(25):6247-6260. doi: 10.1016/j.atmosenv.2008.01.070
    [29]
    LIU Y,SHAO M,LU S H,et al.Volatile organic compound (VOC) measurements in the Pearl River Delta (PRD) Region,China[J].Atmospheric Chemistry and Physics,2008,8(6):1531-1545. doi: 10.5194/acp-8-1531-2008
    [30]
    LI Y J,REN B N,QIAO Z,et al.Characteristics of atmospheric intermediate volatility organic compounds (IVOCs) in winter and summer under different air pollution levels[J].Atmospheric Environment,2019,210:58-65. doi: 10.1016/j.atmosenv.2019.04.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (505) PDF downloads(256) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return