铁矿区重金属污染对土壤微生物代谢活性的影响

邢奕1, 张莹莹1, 司艳晓1,3, 洪晨1,2*, 王康1, 刘敏1, 赵晓明1

1. 北京科技大学土木与环境工程学院，北京 100083
2. 中国科学院生态环境研究中心，北京 100085
3. 清华大学环境学院，北京 100084

摘要：以北京市密云水库上游某铁矿区为研究对象，利用比色法、微量热法对铁矿区土壤样品中重金属污染的影响进行分析，结果表明：积累在不同重金属污染区的铁矿区微生物代谢活性的变化。结果表明：在积累重金属污染程度较高的 S6, S7, S8 区域内，土壤微生物的代谢活性以其敏感性分布，分别为 0.64, 1.22, 2.84, 1.45 μg/g。微量热代谢活性指数 k (生长速率常数) 在污染程度较低的区域较高，而污染程度区的 S1, S4 样品点的 k 为 0。相关性分析显示，k 是反映微量热代谢活性的最具代表性指标。RDA (冗余分析) 结果显示，w (Cd), w (TN), w (AP), w (TOC), 内梅罗污染指数及 w (Cu) 是影响 k, Pma (最大热输出功率) 的主要因素。 Cd, Cu 污染抑制了土壤微生物的代谢活性，不同代谢活性指标对重金属的敏感性程度表现为 k 最强，Pma、酶活性、FDA 酶活性次之。

关键词：重金属；酶活性；FDA 酶活性；代谢活性

文献标志码: A DOI: 10.13198/j.issn.1001-6929.2015.12.09

Impacts of Long-Term Heavy Metal Pollution on Microbial Metabolic Activity in Iron Mine Soil

XING Yi1, ZHANG Yingying1, SI Yanxiao1,3, HONG Chen1,2*, WANG Kang1, LIU Min1, ZHAO Xiaoming1

1. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China
2. Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
3. School of Environment, Tsinghua University, Beijing 100084, China

Abstract: To examine the spatial changes of microbial metabolic activity in an iron mine upstream from Miyun Reservoir, the microbial activity and microcalorimetry heat metabolism activity index were applied in the method of calorimetry and microcalorimetry from different sample sites. The results showed that w(Cu), w(Cd), w(Zn) and w(Cr) of different soil sampling sites were higher than the Beijing local soil background values. In samples with relatively low degree of heavy metal pollution (S6, S7 and S8), the urease activity was 0.64, 1.22 and 0.64 mg/g, and the FDA enzyme activity was 1.25, 2.84 and 1.45 μg/g, respectively, higher than other points. The microcalorimetry heat metabolism activity index showed that, in light pollution, the constant growth rate of k was very high, while in seriously contaminated sites S1 and S2, the k values approached zero. Correlation analysis showed that k was the most representative index to trace the metabolic heat activity. The RDA results indicated that w(Cd), w(TN), w(AP), w(TOC), Nemerow and w(Cu) were identified to be the major influential environmental factors driving changes occurring in the metabolic activity k, FDA, urease and Pma. The microbial metabolic activity was inhibited by Cd and Cu. k was the metabolic activity index most sensitive to heavy metals, while Pma, urease activity and FDA enzyme activity took second place.

Keywords: heavy metal; urease activity; FDA activity; metabolic activity

铁矿是我国重要的矿产资源之一，截至 2010 年底，我国查明的铁矿资源储量为 714×108 t[1]。铁矿

北京市密云水库上游某铁矿区采矿历史有 30 年之久，采矿活动频繁，矿区采选及冶炼过程产生的大量废弃尾砂对区域内土壤及水系造成了一定影响 [5]。目前，国内一些学者 [22-23] 已经对该区域土壤重金属污染特征进行了研究，但是对区域因受重金属污染土壤的微生物代谢热活性影响的报道并不多。基于此，该研究探讨了该铁矿区土壤重金属污染程度、污染类型及土壤酶（脲酶、FDA 酶）活性，微热代谢热活性指标等微生物代谢热活性的关系，进一步研究该区域内土壤重金属污染后微生物的反应机理，以期为区域环境质量检测及生态环境风险评价提供基础性信息和理论依据。

1 材料与方法
1.1 样品采集与处理

采样地区为北京市密云县北部山区的某铁矿区，位于密云水库上游 10 km 以内。根据矿区具体污染情况，于 2013 年 10 月在铁矿区以尾矿坝为中心、各区域尾矿坝周围 5 km 范围内，根据村落分布，在村落周围设置 8 个表层 (10 ± 20 cm) 土壤采样点 (S5 ~ S12)，在尾矿坝区域设置 4 个荒漠区表层土壤采样点 (S1 ~ S4)，具体如图 1 所示。样品采集选用随机布点法，每个采样点按 Z 字型位置分别采集 4 次，混匀后作为 1 个样品；详细记录采样点周围环境状况，所有样品均密封于塑料封口袋中保存备用。一部分土壤样品立即放入 -20 ℃冰箱中保存，作分子学方面的实验；另一部分土壤样品经自然风干、磨粉、筛分处理后，供土壤理化性质、重金属质量分数测定，所有土壤样品均置于 4 ℃下保存备用。

![采样点分布](image)

图 1 采样点分布

Fig. 1 Location of the sampling sites

1.2 土壤基本理化性质与重金属质量分数测定

土壤基本理化性质采用常规方法测定。将土壤样品于 105 ℃下风干至恒质量，测定土壤含水率。WC = (m_a - m_b) / m_b × 100% （1）式中；WC 为土壤含水率，% ；m_a 湿质量 ；m_b 干质量，g。

pH [m (水) : m (土) 为 2.5 : 1] 采用 pH 计 (Starter-3C, OHAUS, 美国) 测定；w (TOC) (TOC 为总有机碳)、w (TN) 采用 CHNS/O 分析仪（Perkin-Elmer，美国）测定；w (AP) (AP 为有效磷) 采用钼锑抗比色法测定；w (Cu)、w (Cr)、w (Cd)、w (Zn) 采用 ICP-OES 法测定。

1.3 土壤酶活性的测定

1.4 热功率-时间曲线的测定

土壤样品处理：将过 1 mm 筛的土壤样品置于
25℃有氧条件下孵育5d，加入蒸馏水，调节土壤样品反应体系含水量为土壤最大持水量的60%，即为待测土壤样品。

营养物质配置：分别准确称取125mg葡萄糖和硫酸铵置于安瓿瓶中，加入5ml无菌水后摇匀，高温灭菌锅内121℃下灭菌30min。

热功率-时间曲线；准确称取1.0g过1mm筛细的土壤样品置于安瓿瓶（使用前应超声清洗30min并进行灭菌处理）中，注意土壤样品不要碰到安瓿瓶侧壁。使用移液枪吸取0.2mL营养物质，垂直滴加到该安瓿瓶中，拧紧瓶盖，放于温度调至28℃的热稳定性热仪(TM III,美国)中测定热功率-时间曲线。

1.5数据分析

土壤理化性质与代谢热力学参数相关性分析采用SPSS 19.0（SPSS, Chicago, IL,美国）和Origin 8绘图。为消除量纲不同对数据分析的干扰，对环境因子进行标准化和中心化处理，对种群数据进行中心化处理。使用Canoco 4.5软件进行RDA（冗余度分析），研究土壤的脲酶活性、FDA酶活性，热力学参数与土壤理化性质、重金属质量分数的变化情况。

2结果与讨论

2.1土壤基本理化性质与重金属质量分数

由表1可见，矿区内土壤含水量为7.96%～26.10%，最低值出现在尾矿坝内的S1采样点，而且w(TOC)(1.76g/kg)和w(TN)(0.27g/kg)的最低值均出现在该采样点，这可能与该区域地表植被覆盖较少有关。各采样点间w(min)的差异性较大，其中w(Cd)(65.94mg/kg)出现在村庄附近农田的S12采样点，推测与重金属施用活动密切相关。矿区w(Cr)、w(Cd)平均值超过北京市相应土壤背景值的4～5倍，w(Cu)、w(Zn)平均值超过相应土壤背景值的2倍。就全国土壤背景值(GB15618—1995《土壤环境质量标准》)而言，w(Cr)、w(Cu)、w(Cd)平均值超过相应土壤背景值2～3倍，而w(Zn)平均值未超标。研究区内长期的尾矿堆存导致大量重金属在风力及水力作用下不断迁移，使周围土壤环境造成了一定影响。

表1土壤基本理化性质

<table>
<thead>
<tr>
<th>项目</th>
<th>含水量/%</th>
<th>pH</th>
<th>w(TOC)/(g/kg)</th>
<th>w(AP)/(g/kg)</th>
<th>w(TN)/(g/kg)</th>
<th>w(Cd)/(mg/kg)</th>
<th>w(Cr)/(mg/kg)</th>
<th>w(Cu)/(mg/kg)</th>
<th>w(Zn)/(mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>7.96±0.15</td>
<td>7.45±0.07</td>
<td>1.76±0.12</td>
<td>—</td>
<td>0.27±0.01</td>
<td>0.73±0.02</td>
<td>117.29±1.41</td>
<td>41.29±0.43</td>
<td>85.83±1.20</td>
</tr>
<tr>
<td>S2</td>
<td>9.80±0.21</td>
<td>7.31±0.09</td>
<td>3.41±0.18</td>
<td>0.31±0.02</td>
<td>0.56±0.03</td>
<td>0.66±0.03</td>
<td>98.33±1.33</td>
<td>59.94±0.52</td>
<td>96.19±1.42</td>
</tr>
<tr>
<td>S3</td>
<td>9.45±0.28</td>
<td>7.62±0.06</td>
<td>5.79±0.22</td>
<td>1.26±0.04</td>
<td>0.72±0.04</td>
<td>0.65±0.02</td>
<td>74.29±1.52</td>
<td>46.19±0.47</td>
<td>76.12±1.49</td>
</tr>
<tr>
<td>S4</td>
<td>13.92±0.42</td>
<td>7.78±0.11</td>
<td>1.36±0.09</td>
<td>1.39±0.04</td>
<td>0.29±0.01</td>
<td>0.79±0.04</td>
<td>118.31±2.05</td>
<td>42.63±0.49</td>
<td>101.89±1.61</td>
</tr>
<tr>
<td>S5</td>
<td>14.47±0.38</td>
<td>7.71±0.05</td>
<td>11.21±0.32</td>
<td>23.38±0.12</td>
<td>1.25±0.06</td>
<td>0.47±0.02</td>
<td>187.57±1.38</td>
<td>26.71±0.38</td>
<td>83.92±1.67</td>
</tr>
<tr>
<td>S6</td>
<td>17.40±0.49</td>
<td>7.29±0.03</td>
<td>10.09±0.38</td>
<td>38.72±0.43</td>
<td>1.38±0.08</td>
<td>0.25±0.01</td>
<td>107.29±2.13</td>
<td>86.22±0.36</td>
<td>109.67±1.89</td>
</tr>
<tr>
<td>S7</td>
<td>26.10±0.35</td>
<td>7.27±0.07</td>
<td>7.57±0.35</td>
<td>23.69±0.80</td>
<td>0.96±0.07</td>
<td>0.28±0.01</td>
<td>90.16±1.59</td>
<td>28.92±0.45</td>
<td>96.22±2.02</td>
</tr>
<tr>
<td>S8</td>
<td>21.38±0.56</td>
<td>7.74±0.12</td>
<td>13.85±0.41</td>
<td>21.74±0.71</td>
<td>1.52±0.09</td>
<td>0.26±0.01</td>
<td>80.25±1.68</td>
<td>20.87±0.46</td>
<td>73.64±1.91</td>
</tr>
<tr>
<td>S9</td>
<td>13.04±0.28</td>
<td>7.69±0.08</td>
<td>7.03±0.08</td>
<td>9.65±0.46</td>
<td>1.18±0.08</td>
<td>0.49±0.03</td>
<td>120.17±2.12</td>
<td>35.73±0.28</td>
<td>85.43±1.67</td>
</tr>
<tr>
<td>S10</td>
<td>20.12±0.44</td>
<td>7.23±0.06</td>
<td>9.43±0.11</td>
<td>6.29±0.27</td>
<td>1.42±0.03</td>
<td>0.43±0.01</td>
<td>221.63±2.09</td>
<td>40.33±0.91</td>
<td>116.97±1.62</td>
</tr>
<tr>
<td>S11</td>
<td>11.31±0.17</td>
<td>7.56±0.07</td>
<td>30.32±0.01</td>
<td>1.74±0.18</td>
<td>0.52±0.02</td>
<td>0.51±0.02</td>
<td>303.04±2.11</td>
<td>36.77±0.80</td>
<td>112.58±1.89</td>
</tr>
<tr>
<td>S12</td>
<td>15.15±0.23</td>
<td>7.49±0.06</td>
<td>11.74±0.16</td>
<td>65.94±0.91</td>
<td>1.55±0.05</td>
<td>0.38±0.01</td>
<td>303.04±2.11</td>
<td>36.77±0.80</td>
<td>112.58±1.89</td>
</tr>
<tr>
<td>平均值</td>
<td>14.32</td>
<td>7.49</td>
<td>7.57</td>
<td>16.06</td>
<td>0.99</td>
<td>0.49</td>
<td>141.07</td>
<td>38.21</td>
<td>95.34</td>
</tr>
<tr>
<td>北京市土壤背景值[27]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
<td>29.8</td>
</tr>
</tbody>
</table>

GB15618—1995[24]

0.20 90.00 35.00 100.00

注：—表示未检出。

2.2不同重金属污染下脲酶、FDA酶活性

采用内梅罗综合污染指数来表征土壤中重金属的污染程度，重金属污染程度越大，内梅罗综合污染指数也相应越大。土壤重金属污染指数分级标准见文献[31]。

由图2可见，内梅罗综合污染指数在不同采样点间具有较大差异。尾矿库周围采样点(S1～S4)受重金属污染相对较重，属中度污染区；村庄周围采样点
随着重金属污染程度加剧，土壤菌酶，FDA酶活性整体呈下降趋势。说明重金属污染的存在会对土壤菌酶，FDA酶活性造成抑制，也表明土壤菌酶，FDA酶活性变化可以很好地反映土壤重金属的污染程度。相关研究[32]显示，在Pb-Cd重金属复合污染下，在一定重金属含量范围内，土壤菌酶，FDA酶活性随重金属污染程度的增加而降低。在中度污染区，土壤菌酶，FDA酶活性随污染程度的加剧出现缓慢增加的现象，这可能与较低质量分数重金属对土壤酶活性具有一定的促进作用有关。具体来说，重金属在低质量分数范围内对土壤酶活性存在刺激作用，较高质量分数的重金属对土壤酶活性有抑制作用，其机理可能是重金属抑制土壤微生物的生长、繁殖，减少了微生物体内酶的合成、分泌，最终导致土壤酶活性下降。

2.3 重金属类型对酶活性的影响

土壤酶活性（Y_{urea}），FDA酶活性（Y_{FDA}）与各重金属质量分数之间的多元回归方程分别如式（1）（2）所示。

$$Y_{urea} = a_1 + b_1w(Cd) + b_2w(Cr) + b_3w(Zn)$$

$$Y_{FDA} = a_2 + b_1w(Cd) + b_2w(Cr) + b_3w(Zn)$$

（1）

（2）

对于式（1），统计结果显示，F值为7.051，系统自动检验的显著性水平为0.013，该方程在0.05的显著性水平是显著的。结果表明，w(Cd)对脲酶活性影响显著（P<0.05），而w(Cr)对脲酶活性影响不显著（P>0.05）。对于微生物生长必需的Cd元素，在其质量分数超过一定值时，会造成Cd^{2+}与W^{2+}发生交换，致使蛋白质合成受阻，进而对微生物带来毒素作用。对于微生物生长必需的Cu元素，在其质量分数较低时会参与微生物的氧化还原代谢过程，但超出微生物生长所需时，则会影响生物体和蛋白质结合物的合成，进而造成毒素作用[31]。另外，w(Cr)、w(Zn)对脲酶活性也有一定影响（P<0.05），但影响作用远小于w(Cd)[34]。微生物生长所必需的微量元素Zn，在较低质量分数下会对脲酶活性起到促进作用（P<0.05）。而Cr对脲酶活性产生抑制作用，可能由于土壤中w(Cr)过高，一定含量的微量元素会对微生物生长起到促进作用，但是含量过高时则会产生慢性毒害作用。

对于式（2），统计结果显示，F值为7.439，系统自动检验的显著性水平为0.041，该方程在0.05的
显著性水平是显著的。结果显示，w(Cd)对FDA酶活性影响显著($P < 0.05$)，w(Cu)、w(Cr)对FDA酶活性影响不显著($P > 0.05$)，而w(Zn)与FDA酶活性显著不相关。

可见，土壤微生物、FDA酶活性受重金属Cd的影响最大。同时，酶活性还受到Cu、Cr、Zn的轻微影响，三者影响大小表现为Cu > Zn > Cr;FDA酶活性则只受到Cu、Cr的轻微影响，Zn对FDA酶几乎没有影响。这种差异可能与不同酶分子中与重金属结合形成稳定配体的活性位置、基和咪唑类配体位置不同有关。因此，对于长期受到采矿区重金属影响的土壤而言，土壤微生物活性的变化是多种重金属质量分数及其各自毒性作用以及酶性质综合影响的结果。

2.4 微量热代谢热活性

2.4.1 热功率-时间曲线

由图4可知，除S1、S2、S3采样点外，其余采样点土壤微生物生长过程的热输出动态曲线上符合典型的一些微生物生长曲线，大致分为迟延期、对数期、稳定期及衰亡期4个阶段。根据热输出动态曲线可将采样点分为三类：①S5、S6、S7、S8、S12采样点，其热输出动态曲线到达P_n(最大热输出功率)的时间较短，而且P_n较大，均超过$700\mu W$，表明其微生物活性较高；②S3、S9、S10、S11采样点，其热输出动态曲线达到P_n的时间较长，而且峰值较小，说明其微生物活性稍低；③S1、S2、S4采样点，其热输出动态曲线到达P_n的时间较长，但是峰值均较小，这可能是由于土壤微生物数量较少所致。

2.4.2 代谢热力学数据

各采样点代谢热力学参数差别明显，随着内梅罗综合污染指数的增加，k(生长速率常数)和Q_{total}(总放热量)出现相似的变化趋势，即先保持较高水平(4.62~7.61×10^{-3} /min, 28.78~40.44 J/g)，而后下降；但T_m(峰值输出温度)和P_n无规律性变化。

由图5(a)可知，k最高值出现在中度污染的S12采样点，说明在一定的重金属污染质量范围内，重金属质量分数的增加会刺激土壤中微生物的生长。而随着重金属污染程度的增加，k呈急速下降趋势，在重度污染区域内的S1、S4采样点已经检测不出k，即已经检测不出微生物活性。相关研究36-38也表明，k遵循热动力学方程而且能反应微生物代谢活性，可以为研究微生物提供重要的定量指标，这与笔者所得研究结论相同。

![图4 各采样点热输出功率-时间曲线](image)

Fig. 4 Power-time curves after adding nutrition of different sampling sites.

由图5(b)可知，在内梅罗综合污染指数低于2时，Q_{total}较高，而随着污染程度的加剧，Q_{total}急剧下降。这与k的变化情况相似，但k的最高值出现在清洁区而非轻度污染区，这是因为清洁区微生物在未受外界刺激时生长缓慢；而P_n亦处于较高水平，这可能与土壤中微生物丰度较高有关。

由图5(c)可知，T_m与污染程度并无显著相关性，但与k呈显著负相关。k越高，微生物生长繁殖的速度越快，到达P_n的时间就越短。k与Q_{total}和P_n均呈显著相关。说明k在一定程度上能代表微生物的生长代谢情况，也能反映重金属污染下微生物的活性。

由图5(d)可知，污染区S6、S8、S12采样点处P_n均较高，分别为1034、28、1094、94、1107、29 μW，均超过1000 μW。ZHENG等39的研究也表明，P_n与土壤微生物活性的关系并不密切，其只能作为土壤微生物活性高低的参考数据，这与该研究结果相一致。

相关性分析结果显示(表2)显示，w(TOC)、w(AP)、w(TN)、w(Cd)、w(Cu)均与k显著相关($P < 0.05$)，说明土壤理化性质是影响k的重要因素；k与Q_{total}、P_n、H_m(焓变)呈显著相关($P < 0.01$)。CHEN等40的研究表明，k是由热动力学方程得出的可以表征微生物活性的定量指标，这与该研究中k是微量热中最具代表性的代谢热活性指标的结论相一致。
2.5 环境因子对代谢活性的影响

采用 RDA 对影响代谢活性的环境因子进行分析，Monte Carlo permutation 检验结果表明，所有排序轴排序效果均显著（P<0.01），其中前 2 个排序轴中，轴 1 贡献率为 61.38%，轴 2 贡献率为 31.15%。

由图 6 可见，沿轴 1 方向，随着 w(Cd)、w(Cu) 的降低，酶活动性、FDA 酶活性、Pn、Hn 均逐渐增加；随着 w(AP) 的增加，酶、FDA 酶活性逐渐增加。沿轴 2 方向，随着 w(TOC)、w(TN) 的增加，k、Pn、Hn 逐渐增加；随着内梅罗综合指数的降低，k 逐渐增加。同时，表 3 也显示，w(Cd)、w(TN)、w(TOC) 和内梅罗污染指数对代谢活性的影响最大（P<0.01），w(Cu) 对代谢活性的影响也很大（P<0.05）。综上，w(Cd)、w(TN)、w(AP)、w(TOC)、内梅罗污染指数及 w(Cu) 是影响 k、酶活性、FDA 酶活性、Pn 的主要因素。

表 2 各采样点代谢热力学参数与环境因子的相关性

<table>
<thead>
<tr>
<th>项目</th>
<th>含水率</th>
<th>pH</th>
<th>w(TOC)</th>
<th>w(AP)</th>
<th>w(TN)</th>
<th>w(Cd)</th>
<th>w(Cr)</th>
<th>w(Cu)</th>
<th>w(Zn)</th>
<th>Q_{total}</th>
<th>Pn</th>
<th>Tn</th>
<th>k</th>
<th>Hn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{total}</td>
<td>0.619*</td>
<td>0.017</td>
<td>0.918**</td>
<td>0.659**</td>
<td>0.928**</td>
<td>0.905**</td>
<td>0.219</td>
<td>0.714**</td>
<td>0.151</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pn</td>
<td>0.905**</td>
<td>0.569</td>
<td>0.147</td>
<td>0.847**</td>
<td>0.888**</td>
<td>0.870**</td>
<td>0.851**</td>
<td>0.247</td>
<td>0.812**</td>
<td>0.262</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn</td>
<td>0.101</td>
<td>0.184</td>
<td>0.247</td>
<td>0.386</td>
<td>0.047</td>
<td>0.167</td>
<td>0.111</td>
<td>0.127</td>
<td>0.404</td>
<td>0.567</td>
<td>0.375</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0.513</td>
<td>0.070</td>
<td>0.811**</td>
<td>0.757**</td>
<td>0.913**</td>
<td>0.765**</td>
<td>0.337</td>
<td>0.636*</td>
<td>0.196</td>
<td>0.890**</td>
<td>0.884**</td>
<td>0.430</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hn</td>
<td>0.977**</td>
<td>0.540</td>
<td>0.029</td>
<td>0.606**</td>
<td>0.883**</td>
<td>0.888**</td>
<td>0.848**</td>
<td>0.142</td>
<td>0.656*</td>
<td>0.229</td>
<td>0.868**</td>
<td>0.109</td>
<td>0.889**</td>
<td>1</td>
</tr>
</tbody>
</table>

注：**在 0.01 水平（双侧）上显著相关；* 在 0.05 水平（双侧）上显著相关。

表 3 RDA 结果中环境因子的相关性

<table>
<thead>
<tr>
<th>项目</th>
<th>含水率</th>
<th>pH</th>
<th>w(TOC)</th>
<th>w(AP)</th>
<th>w(TN)</th>
<th>w(Cd)</th>
<th>w(Cr)</th>
<th>w(Cu)</th>
<th>w(Zn)</th>
<th>内梅罗污染综合指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>变异系数</td>
<td>0.329</td>
<td>0.0627</td>
<td>0.863</td>
<td>0.588</td>
<td>0.830</td>
<td>0.778</td>
<td>0.0651</td>
<td>0.616</td>
<td>0.333</td>
<td>0.681</td>
</tr>
<tr>
<td>P</td>
<td>0.152</td>
<td>0.830</td>
<td>0.001***</td>
<td>0.058</td>
<td>0.001***</td>
<td>0.001***</td>
<td>0.735</td>
<td>0.016*</td>
<td>0.168</td>
<td>0.004**</td>
</tr>
</tbody>
</table>

注：*** 表示 P<0.001；** 表示 P<0.01；* 表示 P<0.05。
注：Urease—微生物脲酶活性；FDA—FDA 酶活性；Nemerow—内
核综合指数；WC—含水率；0.1—灰分；箭头的矢量线表
示环境因子；实心圆点：表示生物因子，矢量线越长表示某
一环境因子对代谢活性的影响越大，矢量线与排序轴夹角
表示环境因子与排序轴的相关性大小（矢角表示呈正相关，
矢角表示呈负相关，矢角表示无相关），夹角越小相关性越高。

图 6 环境因子对微生物代谢活性影响的 RDA 结果
Fig. 6 Redundancy discrimination analysis relating environmental
variables to the microbio metabolic activity

3 结论

a) 采用内核综合指数法评价该矿区土
壤重金属污染程度，结果显示，尾矿堆附近属于中度
污染区，土壤脲酶和 FDA 酶活性在该区域 S1，S4
采样点分别呈现最低值 (0.03, 0.04 mg/g 和 0.40, 0.45
μg/g)，村庄附近属于轻度污染区，土壤脲酶和 FDA
酶活性在该区域 S6, S7, S8 采样点分别呈现最大值
(0.64, 1.22, 0.64 mg/g 和 1.25, 2.84, 1.45 μg/g)；重
金属污染主要是由 Cd, Cu 造成。

b) 随重金属污染的程度的加剧，土壤脲酶、FDA 酶
活性变化趋势相同，与土壤理化性质的相关性分析表
明，k (生长速率常数) 是微量元素中最具代表性的代谢
热活性指标，RDA 结果表明，内核综合指数对 k 的影响最大，而对其它代谢热活性影响不大明显。Cd, Cu 抑制了 k, 脲酶活性, FDA 酶活性, Pno (最大热
输出功率)。

c) 该研究区域土壤已经受到采矿活动造成的重
金属污染，导致土壤微生物 2 种酶活性及热代谢活性
下降，对微生物生态系统的平衡带来威胁，故应尽量
采取措施减少对环境生态平衡的污染。

参考文献 [References]

[1] 崔立伟, 夏浩东, 王聪, 等. 中国铁矿资源现状与铁矿实物地质

CUI Liwei, XIA Haodong, WANG Cong, et al. Current status of iron
ore resources in China and screening of object iron ore geological

[2] AGNIESZKA B, TOMASZ C, JERZY W. Chemical properties and
toxicity of soils contaminated by mining activity [J]. Ecotoxicology,
2014, 23 (7) :1234-1244.

tDNA-PCR amplification and DGGE fingerprinting for detection of shift
in microbial community diversity in Cu-, Zn-, and Cd-contaminated padd

application in situ reduction of hexavalent chromium and its effects
on indigenous microorganism populations [J]. Science of the Total

[5] 邢呈, 司晓艳, 洪晨, 等. 铁矿区重金属污染对土壤微生物群落

metal pollution on microbial community in iron mine soil [J].
Research of Environmental Sciences, 2013, 26 (11) :1201-1211.

microbial community characteristics in the fermentation cellar of
Chinese Luzhou-flavor liquor determined by PLFA and DGGE

[7] 黄兴生, 朱光华, 唐磊, 等. 北京市密云水库上游铁矿区土壤
重金属污染特征及对比研究 [J]. 环境科学学报, 2012, 32 (6) :
1520-1528.

HUANG Xingsheng, ZHU Xianghua, TANG Lei, et al. Pollution
characteristics and their comparative study of heavy metals in the gold
and iron mine soil of the upstream area of Miyun Reservoir, Beijing

[8] 降勇. 矿区生态环境特征分析与生态修复模式研究 [J]. 环境

investigation of the toxic action of ammonium ferric (III) sulfate on
the metabolic activity of pure microbes [J]. Environmental

toxic effect of cadmium on Candida humicola and Bacillus subtilis
using a microcalorimetric method [J]. Journal of Hazardous

isothermal microcalorimetry; growth models and their application to

[12] RONG Xingming, HUANG Qiaoyun, CHEN Wenli. Microcalorimetric
investigation on the metabolic activity of Bacillus thuringiensis
as influenced by kasolite, montmorillonite and goethite [J]. Applied

measurements of the microbial activities of single-and mixed-
species with trivalent iron in soil [J]. Ecotoxicology and

assessment of microbial activity in long-term fertilization experimental soils of Southern China [J]. FEMS

