天津临港某仓储公司 VOCs 排放特征及臭氧生成潜势

程晓娟，刘芯雨，杨文，郭凤艳，王秀艳
1. 南开大学环境科学与工程学院，天津 300350
2. 浙江大学光电科学与工程学院，浙江 杭州 310058
3. 中国环境科学研究院，北京 100012

摘要：为研究运输环节 VOCs 的排放影响，参考 HJ 732-2014《固定污染源废气 挥发性有机气体 采样气袋法》，选择天津临港工业区某石化储运有限公司为监测对象，对企业的厂内上下风向，有组织和无组织排放源进行采样，利用在线仪器 PTR-TOF-MS 对采集的样品进行 VOCs 定量分析，并对厂内各点 O3、NOx、VOCs 三者关系及污染物的臭氧生成潜势进行研究。结果表明：有组织排放源——洗涤塔、活性炭吸附塔 1、2 号和 2 号的 Σ VOCs（所有 VOCs 组分浓度之和）分别为 18.91、71.48 和 5.65 mg/m3，无组织排放源——堆场和装卸台Σ VOCs 分别为 0.39 和 0.087 mg/m3；甲醇为企业的特征污染物，此外还有烷烃和少量的烯烃，有组织排放中活性炭吸附塔 2 号是影响厂界污染特征的主要环节；有组织和无组织 VOCs 排放量分别为 0.57 和 214.26 t/a，对 O3、NOx、VOCs 三者关系的分析显示，企业厂界处 O3 的形成主要受 VOCs 控制，其臭氧生成潜势为烯烃 > 醇类 > 烷烃，除考虑烯烃的影响外，烯烃也是不可忽视的环境影响因素。

关键词：挥发性有机物；PTR-TOF-MS；污染特征；臭氧生成潜势

Emission Characteristics and Ozone Formation Potential of VOCs from a Warehousing Company in Lingang, Tianjin

CHENG Xiaojuan¹, LIU Xinyu², YANG Wen³, GUO Fengyan¹, WANG Xiuyan¹*
1. College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
2. College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
3. Chinese Research Academy of Environmental Science, Beijing 100012, China

Abstract: A warehousing company in Tianjin Lingang Industrial Park was selected to study VOC emission characteristics from transportation links. The samples were collected from the upwind and downwind of the plant boundary, as well as the organized and unorganized sources according to the HJ 732-2014 air bag sampling method. The relationships between the concentrations of three pollutants O3, NOx, VOCs at the plant boundary, as well as the ozone formation potential (OFP), were analyzed. Using the online instruments of PTR-TOF-MS to quantitatively analyze the samples, the total VOC emission concentrations of the organized sources of scrubber, activated carbon adsorption tower #1 and activated carbon adsorption tower #2 were 18.91, 71.48 and 5.65 mg/m3, respectively. The total VOC emission concentrations of the unorganized sources of the tank group and the loader station were 0.39 and 0.087 mg/m3. Methanol was the enterprise featured pollutant, as well as alkanes and a small amount of alkenes. The activated carbon adsorption tower #2 was a major part of the impact of the plant boundary pollution characteristics. Organized and unorganized VOC emissions were 0.57 and 214.26 t/a. By analyzing the relationship between the concentrations of the three pollutants (i.e., O3, NOx and VOCs), O3 was formed mainly by the control of the VOC emissions at the plant boundary. The OFP of the alkenes was the highest, followed by the OFP of alcohol and alkanes. Therefore, in addition to considering the influence of alcohol, the alkenes should not be ignored.

Keywords: VOCs; PTR-TOF-MS; pollution characteristics; ozone formation potential
VOCs (挥发性有机物) 是一类重要的空气污染物，世界卫生组织将其定义为沸点在 50 ~ 260 ℃，室温下饱和蒸汽压超过 133.32 Pa，在常温下以蒸气形式存在于空气中的一类有机物。天然源和人为源是大气中 VOCs 的两大排放源，前者主要包括火山喷发、植物释放和自然火灾等；人为源主要有机动车尾气、石化行业、燃料燃烧、加油站、燃气站、涂料和垃圾等。其中工业排放占有相当大的比重。工业 VOCs 污染主要源于 4 个环节：VOCs 的生产、储存和运输，以 VOCs 为原料的工艺过程以及含 VOCs 产品的使用和排放，其中储存是 VOCs 排放的重要环节。VOCs 的主要特点是活性高、浓度低、危害大。大多数 VOCs 不仅散发恶臭气味危害人体健康，而且能参与光化学烟雾反应形成 SOA（二次有机气溶胶），部分 VOCs 可对臭氧层造成破坏。

天津市临港工业园区地处太平洋西岸环渤海湾，是天津市滨海新区化学工业区、临港产业园区的核心组成部分。其中化学工业区排放的 VOCs 对大气环境和人类健康有重要影响。目前由于工业源 VOCs 排放特征的复杂性较强，尚不能满足对其来源识别和解析，并且化工行业 VOCs 排放标准（含地方标准）的相关规定也不全面。综上，该研究对天津市临港工业园区化工企业 VOCs 排放情况进行了实地考察，并在此基础上选取某矿业仓储公司作为重点监测对象。研究其 VOCs 的排放特征和环境影响，以期为化工园区制订有效的环境保护和管理措施提供有针对性的依据。

1 样品采集与分析

1.1 样品采集

化工园区仓储属于 GB/T 4754—2011《国民经济行业分类》及代码的其他仓储业 (H5990)，其次是仓储公司是天津市临港工业园区建设的储罐区一期工程，为第三方客户提供综合利用及化学品仓储周转服务，主要包括储罐和装卸两大环节。共设置 01、02 和 03 罐区 35 个，其中 01 和 02 罐区主要储存甲醇和石油，03 罐区主要为苯和石油。此外，本项目共设立 3 个，为双层全容全式丙烷储罐，丙烷用作其他企业生产丙烯的主要原料。01 和 02 罐区产生的呼吸废气分别经活性炭吸附处理，装卸车台区设有水洗洗涤塔，处理后的气体经排气筒排放，企业 VOCs 有组织排放源是储罐区活性炭吸附塔和装卸车台区洗涤塔，无组织排放源为储罐区蒸发损失和装卸车台废气挥发损失。

采样时间为 2015 年 7 月 22 日上午 10:00—12:00，天气晴，西北风，平均风速为 1.4 m/s，最高温度为 32 ℃。采样时段为企业集中装卸时间且温度较高，无组织排放处于高温时期，\(\rho \) (VOCs) 也接近最高排放浓度。参考 HJ 732—2014《固定污染源废气 挥发性有机物的采样气袋法》进行采样，采样清单表 1，共有 3 个有组织排放源，2 个无组织排放源，厂界上下风向和敏感点。在每个采样点采样 1 h，1 h 内等时间段采集 3 个样品，每 30 分钟采集 1 个样品，共采集 30 个样品。其中厂界上风向采样点设在办公区域，为远离污染区，对污染物浓度的监测意义不大。下风向和敏感点设在企业围墙处。无组织和上下风向采样点在距离排放源 4~8 m 处。在厂界下风向用便携式氢氧化物和臭氧仪监测大气中氢氧化物和臭氧的浓度，记录采样的相关数据，将样品带回实验室分析。

表 1 VOCs 源样品采集清单

<table>
<thead>
<tr>
<th>采样点</th>
<th>采样仪器</th>
<th>样品数量</th>
<th>排放高度/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>上风向背景点</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>下风向厂界</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>装置废气洗涤塔</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>有组织 01 道路活性炭吸附塔</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>02 道路活性炭吸附塔</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>装卸车台上下风向</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>无组织 01.02 和 03 道路上下风向</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

| 敏感点 | 天津市临港经济园区管理委员会 | | 9 |

合计 | | 36 | |

1.2 仪器分析

采用在线仪器 PTR-TOF-MS 对 VOCs 进行定量分析。PTR-TOF-MS 是将质量转移反应器 (PTR) 与飞行时间质谱 (TOF-MS) 结合起来对 VOCs 进行分析的强有力工具。是近年新兴的痕量挥发性有机物在线检测技术。TOF-MS 测量痕量 VOCs 时，不受空气中常规组分的干扰，并且不需要对样品进行预处理，可高效快速地完成样品检测，减少检测时间，提高效率。TOF-MS 加上前置 PTR 离子源，可以高分辨检测化合物，进行准确性和定量分析。

使用的分析标准物质为常规监测污染物 (PAMs) 56 种及经筛选后的企业特征污染物 (包括 1,3 丁二烯、正丁醇、丙烯腈、甲醇、1,2 二氯乙烷和氯乙烯)，共 62 种分析标准物质，包含烷烃、烯烃、炔烃、芳烃和醇类，其中 PAMs 标准混合气来自美国，含 56 种 \(\varphi = 1 \times 10^{-5} \) 的气体组分。

1.3 质量控制和质量保证

样品采集全部使用新的聚四氟乙烯气管，采样
时先清洗采样袋2~3次，采样进气口位置靠近排放管道中心位置，采样管长度符合HJ732-2014要求。

为了减少气体样品在采样袋内的吸附转化损失，采集完成的样品当天即会送到实验室利用PTR-TOF-MS进行分析。样品的运输过程避免阳光暴晒。

为保证数据的有效性，执行了严格的保证质量/质量控制措施，每次实验室分析前对仪器使用标准气体进行单点校准和零点漂移校准(14-15)。所有的样品在进行样品分析之后和样品分析之前，进行零空气空白分析，测得结果显示各目标物的浓度均低于方法检出限(10×10^{-3})，确保没有被测目标物留在分析系统，质量控制指标符合要求(16)。

2 结果与讨论

每个样品的Σρ(VOCs)是该样品检出所有VOCs组分浓度之和，将各采样点位的样品分析结果求平均值，即得ρ(VOCs)小时均值，代表各采样点的VOCs排放情况。无组织排放环节ρ(VOCs)为上下风向浓度的差值。

2.1 VOCs排放特征

图1是各排放环节的VOCs组成。由图1可以看出，经过洗涤塔和活性炭吸附处理后，有组织主要污染物为烷烃，烯烃，还有少量的烯烃和芳香烃，无组织排放的污染物为甲醇和烷烃。

![图1 VOCs组成图](image)

图1 VOCs组成图

Fig.1 VOCs compositions of the emission source

2.1.1 无组织排放

有组织排放源主要为卸车平台的水洗洗涤塔，01和02罐的活性炭吸附塔1号和2号，图2绘出各环节VOCs排放成分谱。洗涤塔、活性炭吸附塔1号和2号Σρ(VOCs)分别为18.91、71.48和5.65 mg/m³。活性炭吸附塔1号排放浓度较大，究其原因，主要是因为该罐组大部分存储甲醇，当甲醇浓度较高时活性炭对甲醇的吸附效率下降。上述3个有组织排放源的ρ(甲醇)分别为8.72、71.04和4.54 mg/m³，占各自排放源Σρ(VOCs)的47.79%、99.38%和80.33%，为企业特征排放因子。

结合图1和图2可以看出，洗涤塔排放口监测出的物种较多，以烷烃、酮类和苯系物为主，其中正丁醇(C4H9OH)占10.36%，甲苯(C6H5)占12.98%，C8H18、C8H16和C8H14等重组分烷烃的浓度较高占30%左右，烯烃占4.68%。水洗洗涤塔主要处理水溶性化学品，对微溶或难溶的物质去除效率低。活性炭吸附塔1号的污染物除甲醇外还有乙烷(C2H6)、重组分烷烃和少量烯烃。活性炭吸附塔2号则以C8H18等重组分烷烃为主。各环节VOCs化学组成特征主要与储存的物料有关。

根据GB31571-2015《石油化学工业污染物排放标准》有机特征污染物排放限值规定：ρ(甲醇)为50 mg/m³，ρ(乙烷)为100 mg/m³，ρ(3,3-二甲基丁烷)为1 mg/m³，ρ(甲苯)为15 mg/m³。对比可知，吸附塔排放口1号甲醇超标，应引起企业的高度重视，及时更换处理设施。

2.1.2 无组织排放

无组织排放环节包括卸车平台挥发和罐组呼吸损失。图3列出卸车平台和罐组上下风向成分谱图，罐组呼吸和卸车平台挥发排放的Σρ(VOCs)分别为0.39和0.087 mg/m³。从图3可以看出，卸车平台无组织主要排放甲醇，罐组主要为丙烷(C3H8)、异戊二烯(C5H10)和甲醇。罐组的污染物排放主要来自罐组3，罐组1和2号的大小呼吸产生的废气通过呼吸阀连接管道送到活性炭吸附塔后排出，罐组3未设处理设施且丙烷的周转量较大，大小呼吸损失相对较高，因此排放的Σρ(VOCs)较高。而卸车平台区设有油气回收装置且将排放的废气经洗涤塔处理，其Σρ(VOCs)相对偏低。

2.1.3 厂界

受风速和风向的影响，厂区的污染物向东南扩散。厂界的Σρ(VOCs)为0.37 mg/m³，其中甲醇占排放总量的57.13%，C5H12次之(占20.67%)，烯烃约占18%。利用SPSS软件进行相关性分析可知，活性炭吸附塔2号的污染物特征和厂界相似，对厂界污染特征影响显著。

根据GB31571-2015和GB16297-1996《大气污染物综合排放标准》的厂界排放限值，ρ(NMHCs)为4.0 mg/m³，ρ(甲醇)为12 mg/m³，与图4对比可以看出，无超标排放。
洗涤塔、活性炭吸附塔1号、活性炭吸附塔2号、储罐区、装卸平台和厂界的ρ（甲醇）分别为8.72、71.04、4.54、0.034、0.082和0.21 mg/m³，占各环节排放总浓度的47.79%、99.38%、80.33%、8.66%、93.68%和57.13%，因此是企业的特征污染物，除甲醇外，烷烃和烯烃也是企业排放的主要污染物类型。

图2不同环节有组织排放VOCs成分谱
Fig.2 VOCs profiles of organized mission

2.2 有组织和无组织排放源VOCs排放负荷分析

根据《石化行业VOCs污染源排查工作指南》及《挥发性有机物排污收费试点办法》中的石化行业VOCs排放量计算办法，参照企业各环节的实际情况，采用实测法、物料衡算法和公式法计算出各环节的VOCs排放量及全过程总量。经计算得知，企业有组织和无组织排放源VOCs排放负荷分别为0.57和214.26 t/a，无组织排放源中包括装卸挥发损失、储存与调和挥发损失、废水储存处置过程散逸，其中装卸挥发损失、储存与调和挥发损失分别占无组织排放量的33.32%和66.55%。

2.3 臭氧生成潜势

在计算厂界处的臭氧生成潜势之前，首先分析臭
氧在污染区域生成的主要控制因子。从机理上讲，CO、CH₄ 和 VOCs 是 O₃ 生成的燃料，而 NOx 则是生成 O₃ 反应的催化剂。通过控制 NOx 和 VOCs 等的排放量可以降低大气 O₃ 的含量。美国最早使用 EKMA 曲线来表征 NOx-VOCs 之间的关系，EKMA 图反映了控制 O₃ 生成上 VOCs 与 NOx 的重要性以及 VOCs/NOx（质量浓度比）对 O₃ 生成的影响。

EKMA 曲线可帮助制定最优控制对策，即当 VOCs/NOx 较高时控制 NOx，反之则控制 VOCs 排放。厂界处 ρ (VOCs) 为 0.37 mg/m³，ρ (NOx) 为 0.15 mg/m³，其比值为 2.47 (小于 4)，则 O₃ 的生成主要受 VOCs 的控制。而市区内 ρ (NOx) 的时间变化和季节变化与 O₃ 相似，表明有 NOx 参加的光化学反应是市区 O₃ 生成的主要方式。由此可以看出，在污染源地及其影响区域，VOCs 是影响 O₃ 生成的最关键因子。

VOCs 在太阳光作用下会与氮氧化物发生化学反应生成臭氧造成臭氧污染，并且每种 VOCs 对臭氧生成潜力的贡献各不相同，根据厂界的污染物浓度，参考最大增量反应活性法和 MIR 系数，得到各污染物的臭氧生成潜力，结果如表 2 所示。

表2 厂界排放污染物臭氧生成潜力及贡献率

<table>
<thead>
<tr>
<th>类别</th>
<th>物种</th>
<th>分子式</th>
<th>排放密度/ (mg/m³)</th>
<th>MIR 系数</th>
<th>臭氧生成潜力/ (mg/m³)</th>
<th>贡献率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>醇类</td>
<td>甲醇</td>
<td>CH₃OH</td>
<td>0.21</td>
<td>0.56</td>
<td>0.12</td>
<td>16.40</td>
</tr>
<tr>
<td>醇类</td>
<td>异戊二烯</td>
<td>C₅H₈</td>
<td>0.040</td>
<td>9.10</td>
<td>0.36</td>
<td>49.19</td>
</tr>
<tr>
<td>醇类</td>
<td>乙烯</td>
<td>C₂H₄</td>
<td>0.009</td>
<td>7.40</td>
<td>0.21</td>
<td>28.69</td>
</tr>
<tr>
<td>醇类</td>
<td>苯</td>
<td>C₆H₆</td>
<td>0.076</td>
<td>0.46</td>
<td>0.035</td>
<td>4.78</td>
</tr>
<tr>
<td>醇类</td>
<td>正辛烷</td>
<td>C₈H₁₈</td>
<td>0.013</td>
<td>0.54</td>
<td>0.0069</td>
<td>0.94</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td></td>
<td>0.37</td>
<td>19.06</td>
<td>0.73</td>
<td>100</td>
</tr>
</tbody>
</table>

由表 2 可见，甲醇、异戊二烯、乙烯、正癸烷和正壬烷的臭氧生成潜力贡献率分别是 16.40%、49.19%、28.69%、47.8% 和 0.94%，总的来说是烯烃类 > 醇类 > 烷烃类。虽然醇和烷烃是企业的主要排放污染物，但对臭氧生成潜力小，烯烃类臭氧生成潜力贡献率较高。因此除考虑甲醇对环境的影响外，烯烃也是不可忽视的影响因素。

3 结论

a) 有组织排放源——洗涤塔、活性炭吸附塔 1 号和 2 号的 Σρ (VOCs) 分别为 18.91、71.48 和 5.65 mg/m³，无组织排放源——罐组和装卸台 Σρ (VOCs) 分别为 0.39 和 0.087 mg/m³。仓储企业有组织和无组织排放源的排放特征相似，主要污染物为甲醇、重组分烷烃及少量烯烃，其中每个排放环节的 ρ (甲醇) 占比都超过了 47%，有的甚至高达 99.38%，是区域特征污染物。相关性分析表明，活性炭吸附塔 2 号和厂界的污染特征相关性较高，是影响厂界污染特征的主要因素。

b) 有组织和无组织排放源 VOCs 排放负荷分别为 0.57 和 214.26 t/a，其中无组织排放源中主要包括装卸挥发损失、储存与调和挥发损失，二者分别占无组织排放量的 33.32% 和 66.55%。

c) 厂界处 ρ (VOCs) 和 ρ (NOx) 比为 2.47 (小于 4)，由此看出厂界及污染区的 VOCs 是形成 O₃ 的主要前体物。

d) 厂界处烯烃类的臭氧生成潜力贡献率为 77.88%，因此烯烃是影响臭氧生成潜力的主要因素。除控制甲醇的排放外，还应考虑烯烃的排放影响。

参考文献（References）：

（责任编辑：孙彩萍）

欢迎订阅 2017 年《环境科学研究》

《环境科学研究》是由中华人民共和国环境保护部主管，中国环境科学研究院主办的综合性学术期刊，为中文核心期刊、中国科学引文数据库(CSCD)期刊、中国科技核心期刊(CSTPCD)、中国生物医学核心期刊等，获得“中国国际影响力优秀学术期刊”“RCCSE 中国权威学术期刊”等称号，并被 CA、AJ、CSA；NS、ZR、CABI、JST、IC 等国际权威数据库收录。本刊主要刊登环境科学领域的新成果、新技术、新方法，环境管理的新理论、新经验，以及反映环保领域热点问题的学术论文，并通过特别约稿及时讨论环境重大问题及重要学术理论，为相关政府机构、科研机构、环保科技及管理人员、高等院校师生服务。

《环境科学研究》为月刊，大 16 开，144 页，每月 25 日出版，用纸考究，印刷精美。2017 年每期定价为 55 元，全年定价 660 元。欢迎国内广大读者到当地邮局订阅，邮发代号 82-384；国外由中国国际图书贸易总公司发行，发行代号为 DK11025。读者亦可向编辑部直接订阅（免邮费），填好订阅回执后返给编辑部。需要 2016 年及以前的刊物或者 2006 年前合订本的读者请直接与编辑部联系。

联系地址：北京市朝阳区安外北苑大羊坊 8 号
邮政编码：100012
收件人：《环境科学研究》编辑部
联系电话：010-84915128
期刊网站：http://www.hjkxyj.org.cn
E-mail：hjkxyj@vip.163.com

订阅回执

<table>
<thead>
<tr>
<th>订阅份数</th>
<th>汇款金额</th>
</tr>
</thead>
<tbody>
<tr>
<td>发票名称</td>
<td>需要发票□ 无需发票□</td>
</tr>
<tr>
<td>收件人</td>
<td>电 话</td>
</tr>
<tr>
<td>收件地址</td>
<td></td>
</tr>
<tr>
<td>备 注</td>
<td></td>
</tr>
</tbody>
</table>

汇款收件人：《环境科学研究》编辑部
汇款地址：北京市朝阳区安外北苑大羊坊 8 号
邮政编码：100012

订阅咨询联系人：张嘉绚
联系电话：010-84915128