沈阳一次严重污染天气过程持续和增强气象条件分析
李崇1，袁子鹏1,2，吴宇童1，班伟龙1，李典1，吉曹翔1，高文康3
1. 沈阳市气象局，辽宁 沈阳 110168
2. 辽宁省气象局，辽宁 沈阳 110001
3. 中国科学院大气物理研究所，大气边界层物理与化学国家重点实验室（LAPC），北京 100029

摘要：2015年11月7-9日沈阳出现罕见的持续严重污染天气，采用环流形势、地面常规气象观测、污染物浓度观测、风廓线雷达及雨滴谱资料等，对此次污染成因进行了研究。结果表明：在此次严重污染天气过程中，连续22 h AQI≥500，首要污染物均为PM2.5，其异常峰值最高达到1308 μg/m³，PM2.5与PM10、NO2和CO的相关系数分别达到0.996、0.602和0.891，并且PM2.5与PM10、NO2和CO的正相关性更为显著；污染的同时出现了降水，11月7和8日的降水量分别为9.9和2.3 mm，但降水对污染物的稀释和清除作用并不明显，稳定的大尺度环流和对流层内中低层大气层结稳定，连续4个时次的探空曲线显示925~850 hPa之间存在多个逆温层（逆温强度最大可达5 ℃），相对湿度较大（日均相对湿度在75%以上），是此次严重污染天气持续的有利气象条件。风廓线雷达探测的整层大气垂直速度很小，多介于-1~1 m/s之间，并且近地面2 m/s以下弱下沉的垂直速度为严重污染天气过程提供了较好的动力条件。此外，近地面风力可达3~4级，有利于上游污染物的水平输送。研究显示，此次严重污染天气过程还与外围秸秆燃烧所导致的大量污染物长距离输送有密切关联。

关键词：霾；重污染；气象条件；降水；污染物输送

Analysis of Persistence and Intensification Mechanism of a Heavy Haze Event in
Shenyang
LI Chong1, YUAN Zipeng1,2, WU Yutong1, BAN Weilong1, LI Dian1, JI Caoxiang1, GAO Wenkang3
1. Shenyang Meteorological Bureau, Shenyang 110168, China
2. Liaoning Meteorological Bureau, Shenyang 110001, China
3. State Key Laboratory of Atmospheric Boundary Layer, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract: A heavy continuous haze event that occurred from November 7th to 9th, 2015, in Shenyang area was comprehensively analyzed based on the environmental data including circulation pattern, meteorological observation data, pollutant concentrations, wind profiler and raindrop information. The results show that the AQI was more than 500 for 22 hours. PM2.5 was the primary pollutant, with the highest concentration reaching 1308 μg/m³. The coefficient variables between PM2.5 and PM10, NO2 and CO were 0.996, 0.602 and 0.891 respectively. The positive correlation of PM2.5 with PM10 and CO was significant. The daily precipitation on November 7th and 8th were, respectively, 9.9 mm and 2.3 mm, but the dilution and scavenging effects of precipitation were not obvious for pollutants in this haze event. Stable large-scale circulation and atmospheric stratification occurred in the middle and lower troposphere, while various inversion layers between 925 hPa and 850 hPa, displayed by four consecutive hours sounding curve (the maximum intensity of inversion could reach 5 ℃) and high relative humidity (the mean daily humidity was more than 75%) were the advantageous meteorological conditions. The vertical velocities of the whole atmospheric layer according to wind profiler radar were between -1 to 1 m/s, which were very slow.

Weak vertical velocity below 2 m/s near the ground provided excellent dynamic conditions during this heavy haze event. Near surface wind could reach level 3 to 4, which was advantageous to the transportation of the upstream pollutants. The long distance
运输大量污染物导致的燃烧对沈阳外围地区的霾事件可能与这一事件有关。

Keywords: haze; heavy pollution; weather conditions; precipitation; pollutant transport

霾作为一种由空气中大量微小气溶胶粒子的存在，使得空气变浑浊，导致水平能见度下降至10 km以下的一种天气现象。随着国民经济的迅猛发展和城市化进程的快速推进，工业耗煤量、机动车拥有量以及农作物秸秆燃烧量不断增加，城市重污染天气急剧增多，对人体健康、城市大气环境、交通运输等都会造成严重的影响。重污染天气的出现与空中的微小粒子数量息息相关，其中一方取决定于排放源的强度，另一方面也取决于当地大气的输送和扩散条件。近年来，不少学者从重污染天气的气候特征、大气化学、生消物理机制和数值模拟等方面做了大量的研究，并取得了一系列成果，对温室效应和光化学烟雾事件的成因和人为干预措施提供了科学依据。

2 结果分析与讨论

2.1 严重污染天气过程实例

2015年11月7-9日，中国中东部陆续陷入长时间重污染天气过程中，东北地区尤为严重。在区域性重污染天气过程，沈阳有两个明显特点：(1) 污染重，小时空气质量指数(AQI)连续22 h处于AQI≥500状态，首要污染物均为PM2.5，尤其在4日14:00时的小时ρ(PM$_{2.5}$)达到1 308 μg/m3的异常峰值（见图1），近几天来在沈阳实属罕见；(2) 出现了降水，但降水对污染物的稀释和清除作用并不明显。

HSC-PS32激光雨滴谱仪Parsivel2采用现代激光技术的光学遥测系统，测量的基本参数为粒径和速度，对经过激光束的粒子进行分级和统计。其粒子直径从0.2-25 mm,分成32个通道，粒子速度从0.2-20 m/s,分成32个通道，总精度达到1 024×32×32种。由此推导出粒径分布、降水量和能见度和降水类型等。激光雨滴谱仪监测数据（见图2），7日02:00-06:00，09:00-16:00和8日14:00-17:00沈阳均出现了降水。观测资料显示7日降水相态为雨，并且出现了阵雨；8日为雪，从小时粒子数和小时降水量来看，降雪时的粒子数明显高于降雨时相应的值，而降水强度则低于降雪相应的值。

图3为在沈阳环境监测中心站采集到的SO$_2$、NO$_2$、O$_3$和CO4种大气成分小时浓度值再进行全市11个站点平均后的逐时变化情况。图3中ρ(SO$_2$)呈现波动上升的趋势，并且有一定的日变化特征，分别在每日08:00和20:00前出现波峰时段。由图1、3可见ρ(PM$_{2.5}$)、ρ(PM$_{10}$)、ρ(NO$_2$)、ρ(CO)的变化过
程较为相似，4 种成分的小时浓度均是在 8 日 02:00 开始逐步积累，随着污染天气的出现，浓度持续升高，并在 8 日 12:00—14:00 出现了异常峰值，浓度值分别达到了 1308 μg/m³（8 日 14:00）、1440 μg/m³（8 日 14:00）、125 μg/m³（8 日 13:00）、130 μg/m³（8 日 12:00），之后随着污染天气的减弱，4 种成分浓度明显下降。经计算分析发现四者之间有明显的正相关性，ρ(PM₂₅) 与 ρ(NO₂) 和 ρ(CO) 的相关系数分别达到了 0.996、0.602、0.891，并且 ρ(PM₂₅) 与 ρ(PM₁₀)、ρ(CO) 的正相关性更显著。由于 O₃ 的生成需要消耗大量的氮氧化物，而氮氧化物的主要成分是 NO 和 NO₂，即 NO₂ 作为 O₃ 生成的前体物，两者之间应为明显的反向变化趋势，在 8 日白天气 ρ(NO₂) 出现连续长时间波峰时段后，ρ(O₃)便表现出波动式上升的趋势，并在 9 日 14:00 出现了 66 μg/m³ 的峰值。

刘端阳等[14]在分析 2012 年 6 月 9—11 日一次秸秆燃烧导致的重污染天气过程时，也分析了 ρ(PM₂₅)、ρ(SO₂)、ρ(NO₂)、ρ(CO) 的变化，发现 4 种成分的峰值分别为 1156、49.70 和 1085 μg/m³，均低于该研究中对应成分的各个峰值。

从以上分析可以看出，在此次连续严重污染过程中，ρ(PM₂₅)、ρ(SO₂)、ρ(NO₂) 和 ρ(CO) 异常偏高，高浓度的污染物在近地面长时间积累，使得小时 AQI≥500 持续 22 h，近地面能见度长时间低于 1000 m 大于 20 h 以上，另外，高浓度的污染物与水汽 (见图 4) 的结合使得重污染强度增加，能见度持续降低。
2.2 严重污染天气过程成因分析

2.2.1 天气形势与地面气象要素

分析此次严重污染天气过程前期和持续时的高空形势（图略），大部分时间沈阳高空为槽前偏西或西南气流控制，有利于高层增湿，低层850 hPa为暖脊或弱暖平流，地面连续处在低压倒槽顶部控制，近地面为偏北风或偏东风，并有弱辐合，水汽条件较好，对流的形成和维持比较有利。

由于严重污染天气期间，空气中的污染物粒子具有较强的光散射和吸收能力，从而导致能见度明显下降，因此能见度的降低是严重污染天气的主要特征之一。从沈阳观象台的能见度监测（见图4）可知，在8日08:00天气污染较重的时段，大气能见度明显降低，尤其在降雪出现（8日14:00-17:00）时，能见度已降至500 m以下。

2.2.2 大气层结和风廓线特征

分析沈阳7日08:00至8日20:00逐时（12 h）共4个时次的温、湿度曲线（见图5）可以发现，在严重污染天气时段前期和持续过程中，低层925~850 hPa之间一直维持着逆温层结，尤其是在8日08:00，在925~600 hPa之间存在多个逆温层，这种超稳定的温度结构不利于大气湍流、水汽的垂直交换以及污染物的垂直扩散，为严重污染天气的长时间维持创造了热力条件。

大气层结的高度是反映污染物在铅直方向扩散的重要参数，也是影响大气污染物扩散的主要气象因子之一。大气层结层高度是反映污染物在铅直方向扩散的重要参数，也是影响大气污染物扩散的主要气象因子之一。大气层结层高度是反映污染物在铅直方向扩散的重要参数，也是影响大气污染物扩散的主要气象因子之一。大气层结层高度是反映污染物在铅直方向扩散的重要参数，也是影响大气污染物扩散的主要气象因子之一。
种物理性质在铅垂方向近似趋于均一，根据上述原理，利用以上4个时次的探空资料分析确定不同时次混合层高度均在925 hPa以下，尤其是8日08:00，混合层高度在1000 hPa高度上，较低的大气混合层高度说明此时大气环境容量变小，湍流扩散能量弱，大气垂直方向平均稀释能力较差，污染物浓度陡升。

图 6 为此次严重雾霾过程期间的沈阳观测台风廓线雷达资料绘制的风-时间变化图。从图 6 可以看出，7日01:00—09:00，整层风速从低空到高空呈现大-小-大的分布，低空（990 m以下）以东北风和偏东风为主，风速6~8 m/s，并且风向随高度反向，根据热成风原理，有冷平流；中层（1230~3390 m）以东南风和偏南风为主，风速1~6 m/s，并且风向随高度顺向，有暖平流；高层（3870 m以上）为一致的偏西风，风速较大。7日10:00开始高空风向又偏西风转为西南风。风速变化不大，7日15:00后又转变为一致的偏西风，预示着高空冷空气减弱，低层冷平流变化并不明显，只有在7日10:00—14:00中空风速显著增大，对应高空风向转变时段。

图 5 2015年11月7、8日沈阳08:00和20:00探空实况

ig. 5 The radio sounding curves at 08:00 and 20:00 on November 7th to 8th, 2015, in Shenyang
图 6 沈阳观象台水平风廓线时间-高度图

Fig. 6 Time-height figure for horizontal wind-profiling in Shenyang
具有足够的厚度且能维持较长的时间,有利于出现暖层云降水.直到 8 月降雪过程中和结束后,风廓线特征并没有明显的改变,说明大气稳定层结依然维持[见图 6(b)].可见,中层风速小,湿度大,大气层结较稳定,垂直扩散能力较弱,造成污染物浓度的继续增加.

图 7 为此次过程中风廓线雷达探测的沈阳上空垂直速度特征.在晴空状态时垂直径向速度反映的是大气垂直运动速度;当有云或降水时,风廓线雷达探测的垂直速度反映了云中粒子或降水粒子与大气的垂直运动速度之和.有分析[22-23]发现,风廓线雷达探测到大于 4 m/s 的垂直速度反映了降水的开始和结束,并且垂直速度越大降水越强.从图 7 可看出,存在两个风廓线雷达探测到大于 4 m/s (向下为正)的垂直速度时段,分别对应于 7 日冻雨和 8 月降雪时段,并且降水强度和降水粒子越大,下降末速度越快,向下垂直速度越大.而在两段降水之间的较长时间序列内,风廓线雷达探测的整层大气垂直速度很小,多介于-1 ~ 1 m/s 之间,但是弱的上升速度区中还存在一些小尺度的下沉速度,而弱的下沉速度区中也存在一些小尺度的上升速度,反映了大气的多尺度垂直运动和次级环流对上升和下沉运动的抑制作用,另外也表明大气垂直湍流涡旋尺度小,湍流扩散能力弱.但从 8 日 03:00 开始,近地面层以弱的下沉速度为主,并且最大速度在 2 m/s 左右,对应污染物浓度急剧上升,弱的下沉运动使得大气的混合层高度更低,促进了高浓度污染物的维持和加强,可见近地面的弱下沉的垂直速度为此次严重霾天气过程提供了较好的动力条件.

图 7 垂直速度-时间-高度(2015 年 11 月 7 日 08:00—8 日 20:00)
Fig. 7 Time-height figure for vertical velocity (08:00 BT on November 7th to 20:00 BT on November 8th, 2015, one hour interval)

而近地面层,以东北风和偏北风为主,风力较大,从 11 月 8 日 08:00 EC 模式初始场的 10 m 风场可以看出(图略),本地及上游地区近地面水平风向以偏北和东北风为主,风力可达 3 ~ 4 级,有利于上游污染物的水平输送.

综上分析,此次持续性严重污染天气期间对流层中低层大气扩散能力差,大气层结稳定持续,底层风速偏大,逆温层持续时间长,湿度大,相对湿度较大,近地面的下沉运动,这些均有利于污染物在低层的积累和霾的持续的气象条件.

2.2.3 污染物输送来源分析

不利的空气污染气象条件是造成此次严重污染天气过程中严重的空气污染的原因之一,应用后向轨迹模拟可以反映污染物的来源[24-26].轨迹模式 HYSPLIT 是一种欧拉和拉格朗日混合型的计算模式,包含多种物理过程,可以针对不同类型排放源进行较完整的输送扩散和沉降过程模拟,并能够处理多种气象输入场,被广泛应用于大气污染物输送研究[27-28].应用轨迹模式 HYSPLIT 对 8 日 12:00 和 18:00 出现的污染物分别进行了 48 h 后向轨迹模拟(见图 8).后向轨迹模式主要输入参数:轨迹的终点设置为沈阳,设 3000,500 和 800 m 四个终点高度来代表边界层和低层气团的走向,时间终点分别选在 8 日 04:00(世界时)和 8 日 10:00(世界时).8 日 12:00 模拟结果显示:三层气团的来源各不相同,3000 m(红色曲线)高度气团 48 h 前在 3500 m 高度上,从内蒙古中东部地区出发,向西方向 24 h 后快速进入吉林省境内,又快速向南转折,并且气团高度急剧下降至 1500 m,6 h 后下降至 300 m 以下,到达
11月上旬正是中国东北地区秋冬交替，秋收接近尾声的季节，产生了大量的作物秸秆。根据环境保护部公布的环境卫星秸秆焚烧遥感监测日报和周报[20-30]中提供的全国秸秆焚烧分布遥感监测点分布（见表1）可以发现，11月6日东北地区出现了大量的秸秆燃烧的火点。根据以上两个时次的后向轨迹分析来看，低层300 m和500 m高度的气团来自于或经过这一区域。相关研究表明秸秆燃烧可以产生大量的污染物，如CO、NO、颗粒物等，秸秆燃烧的污染物随气流经过沈阳地区，对此次污染过程带来一定影响。加之遇到不利的天气形势，稳定的大气层结共同影响，导致此次严重污染天气过程持续的时间较长。

表1 2015年11月2—8日环境卫星监测各省秸秆焚烧火点情况[30]

<table>
<thead>
<tr>
<th>排序</th>
<th>省份</th>
<th>火点数/个</th>
<th>火点强度$^{1/2}$ (10$^{-1}$个/m2)</th>
<th>2014年同期火点数</th>
<th>与2014年同期相比</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>黑龙江</td>
<td>663</td>
<td>0.567</td>
<td>89</td>
<td>574</td>
</tr>
<tr>
<td>2</td>
<td>吉林</td>
<td>119</td>
<td>0.238</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>辽宁</td>
<td>54</td>
<td>0.167</td>
<td>138</td>
<td>-84</td>
</tr>
<tr>
<td>4</td>
<td>内蒙古</td>
<td>19</td>
<td>0.034</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

注：表中数据为无云覆盖区域卫星遥感监测结果。各省耕地面积数据来源于2014年中国统计年鉴。1) 以耕地面积计。
4 结论

a) 2015年11月7—9日持续严重污染天气过程中，沈阳空气质量指数AQI连续22 h处于爆表(AQI≥500)状态，首要污染物为PM₁₀，尤其在8日14:00PM₁₀小时滑动平均浓度达到1308 μg/m³的异常峰值，水平能见度最低降至500 m以下，是一次罕见的严重污染天气过程。

b) 高空槽前平移的大尺度环流形势，有利于高层增湿，低层850 hPa为暖脊或强暖平流输送，地面受低压倒槽控制，近地面偏偏南风或偏东风；低压倒槽入海之后强度维持或略有加强，为重污染天气的维持和增强提供了有利的环流和风场。

c) 此次持续严重污染天气期间，连续4个时次低层925—850 hPa之间存在多个逆温层，并且逆温厚度可达5℃，日平均相对湿度在75%以上，大气整层风速从静空到高空呈现大一一小一大一的分布。有别于对流层内中低层大气扩散能力差，大气层结稳定，逆温层持续时间长，高度大、强度大，是污染物在低层的积累和重污染天气持续的原因之一，而近地面层下沉速度在2 m/s以下的弱下沉运动是8日严重污染天气快速加强的动力机制。

d) 此次严重污染天气过程中，沈阳出现了降水，但降水对污染物的稀释和清除作用并不明显，考虑原因主要是因为有利于严重污染天气持续并加强的中层风速小(1—6 m/s)，湿度大(日平均湿度在75%以上)，大气层结较稳定(925—850 hPa之间存在多个逆温层)，垂直扩散能力较弱等有利气象条件依然存在。

e) 近地面层，以东北风和偏北风为主，风力较大，可达3—4级，有利于上游污染物的水平输送。利用后向轨迹模式计算了重污染天气气团的48 h后向轨迹，造成此次过程的气团主要来自于黑龙江和吉林地区，而此时正值大面积焚烧秸秆时节，长距离的输送对区域重污染天气的形成产生重要影响。可见，东北初冬的秸秆焚烧增加了大气污染物，虽然近地面层风速达到3—4级也未能减缓污染。

参考文献(References):

