长江下游及河口区水动力特征
乔飞，郑丙辉，雷坤*，周刚，柳青
中国环境科学研究院，北京 100012

摘要：基于EFDC模型，构建长江下游及河口区二维水动力模型，对河流和河口区进行整体模拟，研究长江下游及河口区水动力特征。模型在空间上采用变尺度、拟合边界的形式网格，在时间上采用变时间步长，在模拟过程中自动识别干湿网格，更好地保证模拟精度与效率。利用1998年冬季及2005年夏季和秋季实测资料，对河口净度等敏感参数进行参数率定和验证。结果表明，模拟的潮位和流速与实测成果拟合较好。很好地反映了各水期长江下游及河口区的水动力要素的空间分布特征。应用模型模拟2004-2007年不同水期的水动力过程，并对模拟结果进行分析。显示：从空间来看，河道、河口净度存在显著差异，落潮潮流场空间分布差异大；受潮流和潮流的相互作用，潮位和潮流净度位置具有对数相关关系，从时间来看，径流量丰枯变化大，对潮流和流速入海时间都有一定影响，潮流量、径流量入海时间与径流量之间也存在显著的定量关系。

关键词：长江；河口；水动力模拟；潮流；EFDC

Hydrodynamics in the Lower Reaches of the Yangtze River and Its Estuary
QIAO Fei, ZHENG Binghui, LEI Kun*, ZHOU Gang, LIU Qing

Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract: Based on the EFDC model, a two-dimensional hydrodynamic model for the lower reaches of the Yangtze River and the estuary area was constructed. In this model, mutative scale and fitting border rectangular grids were used for space fitting. Dynamic time step and automatic identification of wet and dry grids during the simulation were applied to ensure the simulation accuracy and efficiency. The modeled results matched well with the monitored data including water level and flow direction in 1998 and 2005, and the model was verified to reflect the hydrodynamic characteristics of the research area. The model was used to simulate the hydrodynamics in different water periods from 2004-2007, and results showed that flow state in the reaches and estuary were significantly different, and the water path and tidal flows had large differences in space during periods of the flood and ebb tides. Due to the interactions between runoff and tide range, the tide boundary changed from 150 to 450 km from estuary to upstream of the river, and had a logarithmic relationship between tide boundary distance and runoff amount. The runoff varied largely among different floodings, dry and normal season, and played a significant role in total flow into sea and transport time, and the different quantitative relationships were created.

Keywords: Yangtze River; estuary; hydrodynamic simulation; tide; EFDC

长江下游感潮河段及河口区同时受到河流动力作用(上游径流的下泄)和海洋动力作用(潮流运动)两方面的影响，水位、流量、泥沙等水文要素和流速、流向等水力要素变化规律非常复杂，对航运、工程及环境有很大的影响。众多学者通过大量的现场观测工作，对长江冲淡水、余流、冲流锋形成机制等方面进行了深入研究，分析长江下游及河口区的水文水力特征。乐堂雄等提出了长江冲淡水路径研究的模式，并分析了风场对路径的作用。
江冲淡水转向特征，探讨冲淡水影响规律和原因。浦
泳修等[4]通过观测数据统计，分析了长江冲淡水扩
展方向的周期变化。陈武良等[5]在实际观测的
基础上分析了长江径流与潮流形成的羽状锋的特征
等，揭示其对长江口水下三角洲塑造的影响。朱建
分析了局部水动力的作用和影响因子。这些观测、实
验资料及分析成果成为进一步研究长江口水动力机
制必要条件，也可为长江污染物输送研究[7]提供参
考。

与此同时，应用数学模型开展长江口水动力机制
研究的领域也全面展开。李浩锋等[8]运用有限差分
和有限元相结合的方法，对所有冲淡非恒定流的三维
运动方程和连续方程，模拟长江河口潮汐河道中
的三维流速分布和潮位随时间的变化过程。赵士清[9]
用二维平面数值模型，研究了长江口水动力过程，揭
示水流动平面规律，并提出了一个垂向分为三层的长江
口潮流三维模型，在考虑计算的同时可以分析
水的动力学分布。刘子龙等[10]在水平方向平面采用
了正交曲线贴体坐标系统，对长江口水动力进行了三维
动力进行三维水动力数值模拟研究，讨论斜
压对流的影响。张素香[13]利用 EFDC 模型对长江
口和杭州湾洋流进行了三维水动力模拟，揭示潮汐潮
流作用及潮汐流作用机制[14]。卢丽锋[15]采用 COHERENS 模型及
三维水动力模型对长江河口冲淡水扩散与混合
过程的时空变化及其控制因素。综上可以看出，初期
的数值模拟研究多集中在模型开发和改进，而近期数值
模拟研究的重点逐渐向模拟的应用和拓展方面转变。

当前围绕长江河口展开的研究工作较多，而面对
长江下游及河口区的复杂水动力特征，为
进一步系统地了解长江下游及河口区的复杂水动力
特征，笔者构建了包含长江下游潮汐河段、长江口及
其毗邻区域为一体的三维水动力模型，旨在揭示江
流、潮汐作用下长江下游及河口区水动力过程的变化
特征和内在影响规律，为下一步研究长江口径流
潮汐相互作用、污染物输送等提供支持。

1 长江下游及河口区概况

长江每年约有 9.24 × 10¹¹ m³ 的淡水倾泻入海，
约占渤海、黄海、东海主要入海径流量的 80% 以上，
占东海径流量的 92% 左右。长江下游河口段多达 624
km 的感潮河口段，是我国最长的感潮河段，感潮河段
潮位和潮流量关系复杂，径流和潮流的相互作用的不
断变化，潮位界条件[15]和余流均呈明显的季节性变化
[16]，涨落潮流速和历时也呈现出明显的不对称
性[17]。

长江口水动力研究工作的开展，地址在于长江口
及河口区的复杂水动力过程的变化。黄海、东海
等多沙、多浪、多波浪、多泥沙等复杂条件
下，长江口的水动力过程变得复杂。对长江口水
域进行三维水动力数值模拟研究，对
于研究长江径流和潮流相互作用具有重要意义。

长江口是丰水、多沙、多浪、多波浪、多泥沙等复杂条
件下，长江口的水动力过程变得复杂。对长江口水
域进行三维水动力数值模拟研究，对
于研究长江径流和潮流相互作用具有重要意义。

2 研究方法

2.1 模型选用

水动力模拟区域包含长江下游感潮河段及整个
河口区，河道与河口在横向尺度上存在很大的差异，
并且区域水动力过程复杂，对模型适用性的要求较
高。EFDC 模型由美国 EPA (美国国家环境保护局)推
荐，能够模拟一维、二维、三维水动力过程，计算在
中得到成功应用。在水质[31]、富营养化[32]、突发事件
应急[33]、温排水[34]、泥沙输送[35]、湿地[36]、TMDL[日
最大负荷分配][37]等多类水体中得到成功应用。在水质[31]、富营养化[32]、突发事件
应急[33]、温排水[34]、泥沙输送[35]、湿地[36]、TMDL[日
最大负荷分配][37]等多类水体中得到成功应用。
2.2 模型控制方程

EFDC 模型的控制方程组基于纵向尺度远大于竖向尺度的薄层流场，采用垂向静压假设，模拟不可压缩的变密度流场。在水平方向上，将 x-y 直角坐标转换为曲线正交坐标系统，以实现对不规则边界的确切拟合。在垂直方向上进行 σ 变换，将实际水深转换为 0~1，因而模型的垂向精度保持一致，可以更好地拟合底层边界。

基本控制方程

\[z = (z^* + h)/(\zeta + h) \] (1)

式中：\(z \) 为单位化后的相对水深，无量纲；\(z^* \) 为垂向分层后某一层的实际水位，\(m; \zeta \) 为水体自由表面水位，\(m; h \) 为水下地形高程，\(m \) 用基准面以下深度表示，低于基准面为正值，高于基准面为负值。

水平动量方程

\[\partial_t (m \xi u) + \partial_z (m \xi Hu) + \partial_z (m \xi v) - \left(mf + v \partial_z m_\xi + u \partial_m m_\xi \right) Hu = -m \partial_z (g \zeta + \rho) - \left(\partial_z (h - z \partial_z H) \right) \partial_z \rho + \partial_z \left(\frac{m H^2 \xi}{A} \partial_z u \right) + Q \] (2)

电平动量方程

\[\partial_t (m Hv) + \partial_z (m Hv u) + \partial_z (m Hv v) + \partial_z \left(mx Hu \right) \partial_z \rho + \partial_z \left(\frac{m H^2 \xi}{A} \partial_z u \right) - \frac{m \partial_z (h - z \partial_z H) \partial_z \rho + \partial_z \left(\frac{m H^2 \xi}{A} \partial_z u \right) + Q \] (3)

垂向静压方程

\[\partial_z \rho = -gH (\rho - \rho_0) \rho \partial_z H = gH \rho \] (4)

连续方程

\[\partial_t (m \zeta) + \partial_z (m \xi Hu) + \partial_z (m Hv) + \partial_z (m \xi w) = 0 \] (5)

在其（0,1）的区间内对连续方程进行垂向积分，根据垂向边界条件，当 \(z = 0, w = 0 \) 和当 \(z = 1, w = 0 \) 时，可得垂向积分的连续方程

\[\partial_z (m \zeta) + \partial_z (m \xi Hu) + \partial_z (m Hv) + \partial_z (m \xi w) = 0 \] (6)

式中：\(u \) 和 \(v \) 为正交曲线坐标系中的 x 和 y 方向的水平流速分量，m/s；g 为重力加速度，m/s²；\(m, m_\xi \) 和 \(m_\psi \) 分别为 x 和 y 方向的尺度转换因子，m；\(m = m_\xi, m_\psi, m^2 \); \(f \) 为科氏力，s⁻¹；w 为 \(\sigma \) 坐标系下的垂向的流速分量，m/s，它与 z 坐标系下垂向流速 \(w^* \) 的关系为 \(w = w^* - z (\partial_\zeta + u_\xi \partial_\xi) - (1 - z) (u_\xi \partial_\zeta + v_\xi \partial_\zeta) \); 总水深 \(H = h + \zeta \)，是相对于未扰动水深 \(z^* = 0 \) 的水深和自由表面高程（水位）的和，\(m; \rho \) 为相对于参考静压密度的压力项，m²/s²；\(\xi \) 为垂向湍标性系数，m²/s²；\(\zeta \) 为浮力项，无量纲，\(b = (\rho - \rho_0) \rho_0 sp \) 为密度，g/m³，是温度（T）、盐度（S）和压力（p）的函数；\(\rho_0 \) 为参考密度，g/m³；而在温度和盐度的输运方程中，\(Q_s \) 和 \(Q_t \) 为盐度和温度的源汇项；\(A_\xi \) 为垂向湍标扩散系数，m²/s.

3 模型构建和验证

3.1 网格设置

水动力模型包含范围较广，河道，和河口和海区各区域水体空间尺度变化较大，为了尽可能满足不同区域计算精度的同时保持较高的计算效率，水动力模型采用变尺度网格系统。大范围的江、河口采用 500 m x 500 m 的矩形网格，高潮以下的长江口区域采用 1500 m x 500 m 的矩形网格，杭州湾、舟山海区采用 1500 m x 1500 m 正方形网格，大范围的江、河口采用 500 m x 500 m 的矩形网格，杭州湾、舟山海区采用 1500 m x 500 m 正方形网格。网格总数目为 718 x 466 个，有效网格数目为 43 008 个（见图 2）。

长江口属于强对流河口，水动力模型采用动边界处理技术，动态设置干湿网格，为更好地拟合河道边界，边界处采用半网格（正交三角网格），其细节如图 3 所示。

图 2 整体网格分布

Fig. 2 Grid division of research region

图 3 边界半网格处理示意

Fig. 3 Special grid division of research region

3.2 条件设置

3.2.1 初始条件

长江口属于强对流河口，水动力模型达到稳定所用
时间较短，因此模型采用冷启动模式，初始潮位取憩流时刻的平均潮位，初始流速取零，河流水深取年均水深。

3.2.2 边界条件

模型上游设置为流量型边界，采用大通站测实日平均流量系列；模型下游设置为压力型边界，3个开边界采用逐时潮位序列，由潮汐预报模型和潮汐表插值计算得到。

3.3 参数设置

3.3.1 时间步长设置

为提高模型计算效率，时间步长采用动步长，基准步长设置为 1 s，实际步长由模型根据实时克朗数（CFL）情况自动调整。经统计平均时间步长为 30 s 左右，平水期和枯水期稍大，丰水期稍小。

3.3.2 其他参数设置

水平涡黏系数采用 $A_v = A_r = 100$ m2/s，扩散系数采用 1×10^{-5} m2/s，粗糙高度是 EFDC 模型中表征河床底板对水体阻力的变量，相当于曼宁公式中的糙率的作用，参考相关文献，徐六泾以上采用 0.015 m，徐六泾至长江口门之间采用 0.001 m，杭州湾及其他海区采用 0.01 m。

3.4 模型验证

为保证模型的可靠性和适用性，水动力模型验证采用 3 组不同水期的潮流和径流资料：①枯水期，1998 年 1—2 月；②平水期，2005 年 6—7 月；③丰水期，2005 年 10—11 月。

模型上游输入长江大通站日流量，径流与潮流相互作用，通过河口进入东海。流量平衡来讲，上游输入的水量与下游控制断面的净下泄流量应该保持一致。统计模型计算徐六泾断面的净下泄流量，与大通输入流量进行对比，以验证模型水流量平衡。由图 5 可见，枯水期大通站输入水量和徐六泾断面下泄水量偏差最小，仅为 1.8%；平水期最大，为 2.8%，丰水期为 2.2%。图 6 可见，3 个水期徐六泾出流量与大通流量过程一致，平水期和枯水期一致性更好。整体来看，3 个验证期两个断面流量差别不大，反映了不同径流输入条件下长江径流输入与下泄水量的平衡，很好地体现出了模型守恒性。

3.4.1 水量守恒验证

在模拟计算过程中，模型上游输入长江大通站日流量，径流与潮流相互作用，通过河口进入东海。从水量平衡来讲，上游输入的水量与下游控制断面的净下泄水量应该保持一致。统计模型计算徐六泾断面的净下泄流量，与大通输入流量进行对比，以验证模型水量平衡。由图 5 可见，枯水期大通站输入水量和徐六泾断面下泄水量偏差最小，仅为 1.8%；平水期最大，为 2.8%，丰水期为 2.2%。图 6 可见，3 个水期徐六泾出流量与大通流量过程一致，平水期和枯水期一致性更好。整体来看，3 个验证期两个断面流量差别不大，反映了不同径流输入条件下长江径流输入与下泄水量的平衡，很好地体现出了模型守恒性。

3.4.2 潮位/水位验证

对模拟潮位与实测潮位进行对比，从对比结果（见图 7）来看，长江口门以外区域的点位受潮流影响更大，较好地反映出近海潮位变化过程，从潮位对比

![图 4 验证点分布](image)

Fig. 4 The distribution of measured stations

![图 5 大通-徐六泾三年水量对比](image)

Fig. 5 Amount of water compared
图 6 水量变化过程对比
Fig. 6 Processes of water compared

图 7 枯水期潮位验证
Fig. 7 Water surface measured in dry season

3.4.3 流速验证
从流向对比结果(见图 8)来看，长江口门以上站位明显为往复流，长江口外站位明显为顺时针旋转流，模拟结果与实测结果完全一致。从流速对比结果(见图 8)来看，大部分验证点流速绝对值变化过程和趋势一致，偏差较小；部分站位极值流速偏差相对较大，这可能是局部地形概化精度所致。整体来看，长江口流速模拟较好，能够反映长江口的基本情况。

4 长江下游及河口区水动力特征讨论
模拟 2004—2007 年枯水期(1—2 月)、丰水期(6—7 月)、平水期(10—11 月)的水动力过程，并对长江下游及河口区水动力空间特征、时间特征，及径流、潮流相互作用等情况进行分析讨论。

4.1 空间特征
河口区大潮流速明显大于小潮流速，落潮流历时大于涨潮流历时，在小潮期间体现最为明显，越往上
图 8 流速流向验证
Fig. 8 Flow velocity and direction measured

图 9 特征时刻流场平面
Fig. 9 Plan view of flow field in special time
4.2 时间特征

徐六泾净下泄流量与大通站平均流量基本一致，流量偏差与上游流量无明显关系。从 2004—2007 年各水期模拟结果来看，平水期平均流量为 21,104 m³/s，水文偏差最大；丰水期平均流量为 39,574 m³/s，水文偏差最小；枯水期平均流量为 11,974 m³/s，水文偏差为 1.7%。这一结果与径流、潮流作用机制相符合。

长江径流与潮流相互作用，各水期上游流量不同，流量越大，徐六泾断面总下泄量也越大；潮流量越小，枯水期潮流影响最大，平水期次之，丰水期潮流影响最小。对模拟结果进行统计分析，径流量与潮流量、径潮比之间存在明显的相关关系（见图 11）。丰水期径潮比达到 2.5，平水期大约为 1.0，而枯水期仅为 0.5 左右。这一结果与丰水期径流主导，枯水期潮流主导的结论一致。

5 结论

a）基于 EFDC 模型，构建长江下游及河口区二维水动力模型。为了保证更好地适应地形条件，模型采用变尺度矩形网格系统，大通—徐六泾之间采用 500 m × 500 m 正方形网格，徐六泾以下的长江口区采用 1,500 m × 500 m 的矩形网格，海区采用 1,500 m × 1,500 m 正方形网格，弯道边界处采用三角形网格，有效网格数目为 43,008 个。时间步长采用动步长模式，平均步长达到 30 s 左右，以提升模型稳定度和计算效率。

b）利用 1998 年冬季，2005 年夏季和秋季实测资料，对模型进行参数率定和模型验证。模拟的
潮位和流速与实测成果拟合效果较好，潮位保证区间水量平衡，流速保证区间水流动与涨落径向准确。从各水期的验证结果来看，水动力模型很好地再现了长江下游河口水动力过程和特征。水位的高低是影响水动力模拟效果的重要参数，按区域分别给出，徐六径以上采用 0.015 m，徐六径至长江口门之间采用 0.001 m，杭州湾及其它海区采用 0.01 m，河道，河口，海区存在一定的差异。

c) 应用模型模拟2004—2007年各水期的水动力过程，并对模拟结果进行统计分析。从空间特征来看，水流在河口内为往复流，在河口区为顺时针旋转流。长江潮流界随着径流与潮差的变化在河口上、下游 150～450 km 之间移动，在确定潮差下，径流与潮流界之间具有明显的对应关系。从时间特征来看，不同水期径流量存在一定的差异，而径流量与潮流量和径流入海间之间也有明显的定量关系。

参考文献（References）:
[1] 沈洪南，朱建荣，吴华林，等。长江河口陆海相互作用界面[M]。北京：海洋出版社，2009。
[8] 丁平兴、易家豪。河口冲淡水的组成和显式有限元解法[J]。水利水电科学与研究，1983(1)：44-58。
GONG Zheng, ZHANG Chuanjun, ZHANG Dongsheng, et al. 3-D current numerical models of Yangtze Estuary with barotropic mode, baroclinic-diagnosis mode and baroclinic-prediction mode[J]. The Ocean Engineering, 2004, 22(2)：39-54。
KONG Zhen, DING Pingxing, HE Songlin. Analysis of basic characteristics of residual current in the Changjiang River estuary and adjacent sea areas[J]. Advances in Marine Science, 2007, 25(4)：376-379。
KONG Zhen, DING Pingxing, HE Songlin. Analysis of basic characteristics of residual current in the Changjiang River estuary and adjacent sea areas[J]. Advances in Marine Science, 2007, 25(4)：376-379。
[16] 齐国兴，杨志峰，胡建欣。长江口外海水动力过程的三维数值模拟[J]。水动力学研究与进展 A 编，2008,23(2)：212-219。
第 3 期
乔 飞等:长江下游及河口区水动力特征

2010, 22(6) 934-939.

[31] 姜培一,丁义明,胡克林.长江口及邻近海域夏季温盐分布特征数值分析[J].华东师范大学学报(自然科学版),2008(6) ;14-23.

