Gasification and Pyrolysis Characteristics of Household Garbage in a Rotary Kiln Gasifier

WEI Chao¹,², XIA Xunfeng¹*, WANG Jinggang², WANG Lijun¹, LÜ Huiyu², ZHANG Ying¹

1. State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
2. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract: Fixed-bed gasification has low gas heat value, low gasification efficiency, small fuel scope and complex pretreatment at room temperature. The influence of different preheated air temperature and excess air coefficient for municipal solid waste in a small, rotary kiln pyrolysis gasifier was studied with the control variable method. The result showed that the preheated air temperature rising is helpful for pyrolysis and gasification, but there are some limitations. When the temperature exceeded 600 °C, the garbage gasification gas decreased obviously. The garbage reached the maximum value and gasification efficiency and minimized the tar yield when the excess air coefficient was 0.4. The heavy metal contents in slag, fly ash and garbage were investigated at the conditions of excess air coefficient 0.4 and air preheating temperature 500 °C. The lead content in fly ash was much higher than the value in GB 18598-2001 Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes, indicated a need for processing before being emitting. Dioxin sampling analysis results were below the value in GB 18485-2014 Standard for Pollution Control on the Municipal Solid Waste Incineration. The results showed that the best excess air coefficient of the rotary kiln pyrolysis gasification process was 0.4, and the optimum air preheating temperature was 500 °C. Under the optimum conditions, the tar production, fly ash and coke slag heavy metal content was small, and dioxin levels were less than 0.1 ng/m³.

Keywords: pyrolysis and gasification furnace; pyrolysis and gasification; preheated air temperature; excess air coefficient

Gasification and pyrolysis characteristics of household garbage in a rotary kiln gasifier provide valuable insights into the efficient and sustainable management of waste. This study highlights the impact of preheated air temperature and excess air coefficient on the gasification process, showing that careful control is necessary to achieve optimal conditions. The authors conclude that an excess air coefficient of 0.4 and an air preheating temperature of 500 °C yield the best results for minimizing heavy metal and dioxin levels in the final products. This research underscores the importance of standardization and controlled processing in the incineration of household waste, contributing to the development of more environmentally friendly waste management technologies.

在国内，当前常用的气化技术是采用固定床和流化床气化，以常温或预热温度不高的普通空气或富氧空气作为气化剂[23]。高温气化气化技术的开发与研究还处于萌芽时期。为尽快提高气化技术，我国在高温气化气化技术方面与国外先进技术的差距，积极展开高温气化气化技术的研究与开发，将具有十分重要的意义。目前，关于高温气化气化技术的研究及报道集中在固定床和流化床，而关于回转窑式热解气化炉[24]的相关研究甚少。

1 材料方法

1.1 样品采集

采集经过筛选、破碎、磁选及干燥后的进炉垃圾，垃圾的工业成分分析得到水分、挥发分、灰分，固定碳的含量分别为21.8%、39.6%、26.2%、12.4%。垃圾元素分析得到C、H、N、S含量分别为35.3%、2.78%、0.800%、0.210%。垃圾的热值为9.10 MJ/kg。

试验设计如下：

a) 热解气化试验。将垃圾样品经过地秤称重后，运送到垃圾储藏室进行渗透处理。经过渗透处理的垃圾先通过人工筛选，把较大的金属以及玻璃等难以燃烧的物质分拣出来，初步提高了垃圾的燃烧效率。人工筛选后的垃圾经链式传送带送往滚筒筛，经过3个滚筒筛的筛选后的垃圾送入到垃圾储存仓放置，渗透。储存仓放置一段时间的垃圾送往破碎机进行充分破碎。然后，将储藏室的垃圾送往干燥滚筒干燥处理，干燥后的垃圾送往回转窑式热解气化炉处理。热解气化前水封除尘[28]以及灰渣捕集[29]处理后通往二燃室再燃烧，燃烧后的烟气经净化系统处理后排放到大气中。

b) 不同预热空气温度下过量空气系数对回转窑热解气化特性的影响试验。根据热解气化气化炉处理垃圾的热解气化温度为700℃左右，试验设置预热空气温度为常温（25℃）、100、200、500、700℃，研究回转窑热解气化炉中过量空气系数（a）对气化气的
影响。垃圾在小型回转窑式热解气化炉中模拟研究设定的过量空气系数变化范围为0.4～1.0。过量空气系数变化间距为0.2，分别收集热解气化气进行气体含量的分析，计算热解气化气中各种气体的含量百分比。

c）热量含量分析试验。过量空气系数为0.4时，空气预热温度为500℃条件下，采集该回转窑式热解气化炉中产生的焦油进行分析测试。

d）重金属含量分析试验。过量空气系数为0.4以及空气预热温度为500℃条件下，收集该回转窑式热解气化炉中产生的底渣、飞灰进行重金属离子含量的分析测试。

e）二噁英含量分析试验。在过量空气系数为0.4以及空气预热温度为500℃条件下，采集该回转窑式热解气化炉中产生的二噁英进行分析测试。

1.2 试验装置及方法

村镇生活垃圾热解气化装置见图1。采用该装置测定垃圾热解气化特性时，准确控制进气量是关键，也是难度最大的问题。该试验采用控制变量方法研究村镇生活垃圾的热解气化特性，此小型回转窑式热解气化炉处理量为2t/d，进料速率为80kg/h。

检测方法、仪器及检出限如表1所示。

![图1 镇生活垃圾热解气化装置](Image00000.png)

Fig.1 Pyrolysis gasification unit of rural garbage

表1 检测方法、仪器及检出限

<table>
<thead>
<tr>
<th>检测项</th>
<th>检测方法</th>
<th>使用仪器</th>
<th>检出限/（mg/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>颗粒物</td>
<td>重量法，参照 GB/T 16157—1996《固定污染源排气中颗粒物测定与气态污染物采样测定方法》</td>
<td>自动烟尘测试仪（SMG 100，益康 RRS 公司，德国）</td>
<td>2</td>
</tr>
<tr>
<td>SO₂</td>
<td>HJ/T 57—2000《固定污染源排气中二氧化硫的测定 定电位电解法》</td>
<td>自动烟尘测试仪（SMG 100，益康 RRS 公司，德国）</td>
<td>1</td>
</tr>
<tr>
<td>HCl</td>
<td>HJ/T 27—1999《固定污染源排气中氯化氢的测定 硫酸亚铁分光光度法》</td>
<td>大气采样器（UV1601 北京北分瑞利分析仪器（集团）有限公司）</td>
<td>0.01</td>
</tr>
<tr>
<td>NOₓ</td>
<td>HJ 693—2014 固定污染源 氮氧化物的测定 定电位电解法</td>
<td>自动烟尘测试仪（SMG 100，益康 RRS 公司，德国）</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>非分散红外吸收法</td>
<td>自动烟尘测试仪（SMG 100，益康 RRS 公司，德国）</td>
<td>1</td>
</tr>
<tr>
<td>Pb</td>
<td>原子吸收分光光度法</td>
<td>原子吸收分光光度计（AA-7000，岛津公司，日本）</td>
<td>0.002</td>
</tr>
<tr>
<td>Cd</td>
<td>原子吸收分光光度法</td>
<td>原子吸收分光光度计（AA-7000，岛津公司，日本）</td>
<td>0.001</td>
</tr>
<tr>
<td>Hg</td>
<td>原子吸收分光光度法</td>
<td>原子吸收分光光度计（AA-7000，岛津公司，日本）</td>
<td>0.0005</td>
</tr>
<tr>
<td>As</td>
<td>原子吸收分光光度法</td>
<td>原子吸收分光光度计（AA-7000，岛津公司，日本）</td>
<td>0.01</td>
</tr>
<tr>
<td>Cu</td>
<td>原子吸收分光光度法</td>
<td>原子吸收分光光度计（AA-7000，岛津公司，日本）</td>
<td>0.1</td>
</tr>
</tbody>
</table>
2 结果与讨论

2.1 过量空气系数对热解气化过程的影响

由图2可见，当过量空气系数为0.4，0.6时，热解气中可燃气体CO随着预热空气温度的增加逐渐增加，此时热解气化炉以燃烧为主。当过量空气系数为0.4，0.6时，热解气化炉的CO最大（变化范围为9.02%~6.03%），随着过量空气系数的增大，CO逐渐减少。

图2 不同预热空气温度下热解气化可燃成分变化

Fig.2 Variation of pyrolysis gasification gas composition under different preheated air temperature

以上结果说明，随着预热空气温度的增加，热解气中可燃气体CO减少，高温预热空气条件下，不利于CO的生成；随着过量空气系数的增加，热解气化炉反应由气化转向燃烧，CO几乎忽略不计，热解气化产物以CO₂为主，随着预热空气系数的增大，氧气量增大，CO燃烧转化为CO₂的化学反应增强

$$2CO + O_2 \xrightarrow{点燃} 2CO_2$$ (1)
有机物 + O₂ → CO₂

当过量空气系数为 0.4, 0.6, 0.8 时,热解气化可燃气体 \(\varphi(H_2) \) 随着预热空气温度的增加逐渐增加,当过量空气系数为 0.4 时, \(\varphi(H_2) \) 增幅最大（增加了 7.14%），并且 \(\varphi(H_2) \) 比重达到最大值。当过量空气系数为 1.0 时,热解气化可燃气体 \(\varphi(H_2) \) 随着预热空气温度的增加先增加后减少,并且 \(\varphi(H_2) \) 减少几乎可以忽略,同时也证明了热解气化由气化转向了燃烧。当过量空气系数为 0.4 时,热解气化 \(\varphi(H_2) \) 相对较大（预热空气温度为 700 °C 时体积分数达到了 7.10%）,随着过量空气系数的增大, \(\varphi(H_2) \) 相对减少。以上趋势说明,预热空气温度的增加,热解气化 \(\varphi(H_2) \) 增加,高温预热空气条件下,有利于 \(H_2 \) 的生成。当过量空气系数的增大,热解气化炉反应由气化转向燃烧, \(\varphi(H_2) \) 减少。

当过量空气系数为 0.4, 0.6, 0.8 时,热解气化可燃气体 \(\varphi(CH_4) \) 随着预热空气温度的增加逐渐减少,此时预热空气温度升高不利于 \(CH_4 \) 的产生。当过量空气系数为 0.8 时,热解气化可燃气体 \(\varphi(CH_4) \) 随着预热空气温度的增加逐渐减少,当过量空气系数为 1.0 时,热解气化可燃气体 \(\varphi(CH_4) \) 随着预热空气温度的增加先增大后减少。当过量空气系数为 0.4 时,热解气化可燃气体 \(\varphi(CH_4) \) 相对较大。以上结果说明, \(\varphi(CH_4) \) 受到过量空气系数及预热空气温度双重因素的影响。总的来说,随着过量空气系数的增大,热解气化炉反应由热解化转向燃烧,热解气化可燃气体 \(\varphi(CH_4) \) 减少。随着 \(\varphi(H_2) \) 与 \(\varphi(CO) \) 的增加,甲烷化反应增强,反应式 (3) ~ (5) 所示。

1. \(2CO + 2H_2 \rightarrow CH_4 + CO_2 \) （3）
2. \(CO + 3H_2 \rightarrow CH_4 + H_2O \) （4）
3. \(CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \) （5）

CO 和 \(H_2 \) 的生成也会促进甲烷化反应的进行, \(CO \) 和 \(H_2 \) 的生成与甲烷化反应之间互相促进、互相影响。因此探究出合适的工艺条件使得这三种物质生成含量相对较大对热解气化反应的进行有意义,从而提高能源利用率。

综上,当过量空气系数为 0.4 时,该回转窑式热解气化可燃气体总含量相对较大,对垃圾的热解气化有利。相比于“炉排炉、流化床炉工艺” ,“回转窑式热解气化工艺”利用可燃气体燃烧供热,减少了热量的流失,无需外加热量,提高了垃圾热能的利用。因此,“回转窑式热解气化工艺”垃圾热能利用率较高。

2.2 过量空气系数对垃圾热解气化污染物生成的影响

图 3 说明,当过量空气系数为 0.4 时,污染物 \(\rho(SO_2) \), \(\rho(NO) \), \(\rho(NO_2) \) 随着预热空气温度的增大而逐渐减少, \(\rho(HCl) \), \(\rho(N_2) \), \(\rho(NH_3) \) 随着预热空气温度的增大趋于不变,并且 \(\rho(N_2) \), \(\rho(NH_3) \) 相比,差异相似,变化趋势线接近重叠。当过量空气系数为 0.6 时,污染物 \(\rho(NO) \), \(\rho(NO_2) \), \(\rho(HCl) \) 随着预热空气温度的增大而逐渐减少,污染物 \(\rho(SO_2) \), \(\rho(N_2) \), \(\rho(NH_3) \) 随着预热空气温度的增大趋于不变,并且 \(\rho(N_2) \) 可以忽略不计, \(\rho(SO_2) \) 与 \(\rho(NH_3) \) 相比,变化相似,变化趋势线接近重叠。当过量空气系数为 0.8 时,污染物 \(\rho(NO) \) 随着预热空气温度的增大而逐渐增加,污染物 \(\rho(SO_2) \) 随着预热空气温度的增大而逐渐减小。污染物 \(\rho(HCl) \), \(\rho(NO_2) \), \(\rho(N_2) \), \(\rho(NH_3) \) 随着预热空气温度的增大而趋于不变, \(\rho(NH_3) \) 几乎可以忽略不计,其中 \(\rho(N_2) \) 与 \(\rho(NH_3) \) 相比,变化相似,变化趋势线接近重叠。当过量空气系数为 1.0 时,污染物 \(\rho(SO_2) \), \(\rho(NO) \), \(\rho(HCl) \) 随着预热空气温度的增大而逐渐减小,污染物 \(\rho(NO_2) \), \(\rho(N_2) \), \(\rho(NH_3) \) 随着预热空气温度的逐渐升高而趋于不变, \(\rho(N_2) \) 与 \(\rho(NH_3) \) 几乎可以忽略不计。

当过量空气系数为 0.4 和 1.0 时,污染物生成量相对较小,并且经 2.1 研究发现,过量空气系数为 0.4 时,垃圾热解产生可燃气体生成量相对较大。过量空气系数为 0.4 且预热空气温度为 500,700 °C 时,该回转窑式热解气化工艺运行工况的烟气达到了 GB 18485—2014《生活垃圾焚烧污染控制标准》的要求。

2.3 过量空气系数和预热空气温度对焦油及重金属生成的影响

预热空气温度为 500,700 °C 下焦油中各组分所占比例变化情况如表 2 所示,当过量空气系数为 0.4 时,空气预热温度为 500 °C 下焦油中不含有非苯环类物质和 1 个苯环类物质。而在过量空气系数为 0.6,0.8,1.0 时,预热空气温度为 700 °C 下焦油中非苯环类物质所占比例小于预热空气温度为 500 °C 下的值。在过量空气系数为 0.6 和 0.8 时,预热空气温度为 700 °C 下焦油中 1 个苯环类物质所占比例小于
预热空气温度为 500 °C 下的值，但过量空气系数为 1.0 时，情况与之相反。同样，当过量空气系数为 0.4 时，预热空气温度 500 °C 下焦油中不含有 2 个苯环和 3-4 个苯环类物质。当过量空气系数为 1.0 时，预热空气温度为 700 °C 下焦油中 2 个苯环类物质所占比例小于预热空气温度为 500 °C 下的值，当过量空气系数为其他值时，预热空气温度为 700 °C 下焦油中 2 个苯环和 3-4 个苯环类物质所占比例都大于预热空气温度为 500 °C 下的值。所以当过量空气系数为 0.4，预热空气温度为 500 °C 时，该回转窑式热解气化炉焦油生成量较小。

根据固体废物浸出毒性浸出方法[46]，且 2.1 节与 2.2 节所述的村镇生活垃圾热解气化过程中气态污染物生成量相对较小的试验条件为过量空气系数为 0.4，空气预热温度为 500 °C。因此将垃圾原样在过量空气系数为 0.4，空气预热温度为 500 °C 条件下的底渣、飞灰做重金属含量的分析测试，共测试了六种重金属——Cr、Cu、Zn、As、Cd 和 Pb。测试结果与 GB 18598—2001《危险废物填埋污染控制标准》[33] 的对比见表 3。根据检测结果，该回转窑式热解气化炉热解产生的炉渣作为制作环保砖的原料处理。

由表 3 中可见，垃圾原样中 ρ(Zn) 较高，但六种重金属的含量均低于 GB 18598—2001 标准限值。底渣中 ρ(Zn)、ρ(Cr) 较高[34]，但也低于 GB 18598—2001 标准限值。飞灰中 ρ(Pb) 超过了 GB 18598—
2001限值,为17.400 mg/L,约为GB 18598—2001限值的3.5倍。此外飞灰中Zn、Cd、Cu的含量也较高,其中\(\rho (Zn) \)接近GB 18598—2001限值的1/2。

根据上述检测结果,需要对该回转窑式热解气化工艺进行优化,增加布袋除尘装置,并增设活性炭吸附装置,减少飞灰的外溢。布袋除尘装置收集的飞灰先经过固化和稳定化,然后送到垃圾填埋场进行安全填埋处理。

2.4 500℃热解气化温度条件下二噁英的生成

在500℃热解气化温度条件下,烟气中\(\rho (\text{二噁英}) \)的6次检测结果值为0.072, 0.084, 0.066, 0.058, 0.088, 0.092, 0.077 ng/m³,平均值为0.077 ng/m³,远低于GB 18485—2014《生活垃圾焚烧污染控制标准》限值(0.10 ng/m³)。由于该设备采用间接冷却的方式,使得高温烟气(2 s内)由800℃左右迅速降至100℃左右,跨越了二噁英再生成的条件区域(200~400℃),导致\(\rho (\text{二噁英}) \)大幅减少。

3 结论

a) 该回转窑式热解气化工艺中,热解气化\(\varphi (CO) \)随着预热空气温度的增加而减少,高温预热空气条件下,不利于CO的生成。随着过量空气系数的增大,热解气化炉反应由气化转向燃烧,\(\varphi (CO) \)增加。热解气化\(\varphi (H_2) \)随着预热空气温度的增大而增加,高温预热空气条件下,有利于\(H_2 \)的生成。随着过量空气系数的增大,热解气化炉反应由热解气化转向燃烧,\(\varphi (H_2) \)减少。

b) 该回转窑式热解气化工艺中,\(\varphi (CH_4) \)受到过量空气系数及预热空气温度双因素的影响。总体来说,随着过量空气系数的增大,热解气化炉反应由热解气化转向燃烧,热解气化可燃气\(\varphi (CH_4) \)减少。

c) 当过量空气系数为0.4时,该回转窑式热解气化工艺产生的可燃气总含量相对其他过量空气系数工况条件较大,对垃圾的热解气化有利。当过量空气系数为0.4,预热空气温度为500℃时,该回转窑式热解气化工艺烟气中污染物排放低于GB 18485—2014《生活垃圾焚烧污染控制标准》的相关限值,并且回转窑式热解气化工艺焦油产量最小。

d) 垃圾原样在过量空气系数为0.4,预热空气温度为500℃下对底渣、飞灰进行重金属含量的分析测试结果显示,底渣、飞灰和垃圾原样中的重金属含量大部分在GB 18598—2001《危险废物填埋污染控制标准》的控制范围内,而飞灰中的铅含量远高于GB 18598—2001限值,需要经过处理后才能排放。

参考文献(References):

power as well as sustainable fuels and chemicals [1]. Environmental Progress & Sustainable Energy, 2010, 28 (3): 324-335.

