引用本文:庄颖,夏斌.广东省交通碳排放核算及影响因素分析[J].环境科学研究,2017,30(7):1154-1162.
ZHUANG Ying,XIA Bin.Estimation of CO2 Emissions from the Transport Sector in Guangdong Province, China and Analysis of Factors Affecting Emissions[J].Reserrch of Environmental Science,2017,30(7):1154-1162.]
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 260次   下载 398 本文二维码信息
码上扫一扫!
分享到: 微信 更多
广东省交通碳排放核算及影响因素分析
庄 颖1,2, 夏 斌1,3,4,5
1.中国科学院广州地球化学研究所, 广东 广州 510640 ;2.中国科学院大学, 北京 100049 ;3.中山大学海洋石油勘探开发研究中心, 广东 广州 510006 ;4.广东省海洋资源与近岸工程重点实验室, 广东 广州 510006 ;5.海洋石油勘探与开发广东高校重点实验室, 广东 广州 510006
摘要:
交通领域是二氧化碳排放的重要领域,为研究广东省的交通碳排放及影响因素,利用IPCC(联合国政府间气候变化专门委员会)在温室气体清单指南中提供的方法估算了广东交通碳排放量,并应用LMDI分解法(对数平均指数法)对广东交通碳排放进行因素分解分析. 结果表明:①2001—2010年广东交通碳排放量从1 950.98×104 t增至6 068.41×104 t,其中交通运输业碳排放是广东交通碳排放的主体,私人交通碳排放已成为广东交通碳排放不可忽视的组成部分. ②交通运输业中的公路碳排放量占比最大,占56%~64%;铁路的碳排放量占比最小,占0.6%~1.6%;水运具有较大的节能优势;民航单位周转量碳排放量最高. ③交通运输业发展水平、运输结构、私人汽车数量规模对广东交通碳排放增加的贡献率分别为68.79%、36.14%、18.66%,是拉动广东交通碳排放增长的主要因素;运输强度与能源强度的贡献率分别为-18.1%、-6.46%,是抑制交通碳排放增长的因素. 广东可以通过采取优化交通运输结构、使用替代清洁能源等措施减少交通碳排放.
关键词:  交通碳排放  影响因素  LMDI模型  广东
DOI:
分类号:
基金项目:国家自然科学基金项目(41372208,9)
Estimation of CO2 Emissions from the Transport Sector in Guangdong Province, China and Analysis of Factors Affecting Emissions
ZHUANG Ying1,2, XIA Bin1,3,4,5
1.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ;2.University of Chinese Academy of Sciences, Beijing 100049, China ;3.Offshore Oil Exploration and Development Center of Sun Yat-sen University, Guangzhou 510006, China ;4.Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510006, China ;5.Key Laboratory of Offshore Oil Exploration and Development of Guangdong Higher Education Institutes, Guangzhou 510006, China
Abstract:
Abstract: The transport sector is a major contributor of CO2 emissions. The emissions from the transport sector in Guangdong province were estimated in accordance with the IPCC Guidelines for National Greenhouse Gas Inventories. The logarithmic mean Divisia index was used to measure the influence of commercial transport sector development, transport modal shift, private vehicle number, energy consumption per private vehicle, carbon emission coefficient, transport intensity and energy intensity on the CO2 emissions of the Guangdong transport sector. The results showed that:(1) CO2 emissions of the transport sector in Guangdong province increased from 19.51 million tons in 2001 to 60.68 million tons in 2010. The commercial transport sector was the major contributor of emissions, and private vehicle CO2 emissions were indispensable. (2) CO2 emissions from highways presented the largest share at 56%-64%, whereas the smallest share was from railways, which accounted for only 0.6%-1.6% of commercial transport sector CO2 emissions. Aviation presented the highest CO2 emissions per unit turnover, while waterways showed the lowest. (3) Commercial transport sector development, transport modal shift and private vehicle number positively affected the growth of emissions, with contributions of 68.79%, 36.13% and 18.66% respectively. By contrast, transport and energy intensities contributed negatively, with -18.1% and -6.46%, respectively. Therefore, the development of commercial transport industry, deterioration of transport modes and growing demand for private vehicles were responsible for the increasing CO2 emissions of the transport sector, whereas transport and energy efficiencies limited the increase in emissions. Transport sector CO2 emissions can be reduced through transport mode improvement and clean energy utilization.
Key words:  transport sector carbon emissions  affecting factors  LMDI model  Guangdong